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Seismic Rheological Model and Reflection Coefficients of the Brittle–Ductile Transition

JOSÉ M. CARCIONE
1 and FLAVIO POLETTO

1

Abstract—It is well established that the upper—cooler—part of

the crust is brittle, while deeper zones present ductile behaviour. In

some cases, this brittle–ductile transition is a single seismic

reflector with an associated reflection coefficient. We first develop

a stress–strain relation including the effects of crust anisotropy,

seismic attenuation and ductility in which deformation takes place

by shear plastic flow. Viscoelastic anisotropy is based on the

eigenstrain model and the Zener and Burgers mechanical models

are used to model the effects of seismic attenuation, velocity dis-

persion, and steady-state creep flow, respectively. The stiffness

components of the brittle and ductile media depend on stress and

temperature through the shear viscosity, which is obtained by the

Arrhenius equation and the octahedral stress criterion. The P- and

S-wave velocities decrease as depth and temperature increase due

to the geothermal gradient, an effect which is more pronounced for

shear waves. We then obtain the reflection and transmission coef-

ficients of a single brittle–ductile interface and of a ductile thin

layer. The PP scattering coefficient has a Brewster angle (a sign

change) in both cases, and there is substantial PS conversion at

intermediate angles. The PP coefficient is sensitive to the layer

thickness, unlike the SS coefficient. Thick layers have a well-

defined Brewster angle and show higher reflection amplitudes.

Finally, we compute synthetic seismograms in a homogeneous

medium as a function of temperature.

Key words: Brittle–ductile transition, melting, anisotropy,

attenuation, shear flow, reflection coefficient.

1. Introduction

The brittle–ductile transition (BDT) plays an

important role in earthquake seismology and geo-

thermal studies (CARTER and KIRBY, 1978; MEISSNER

and STREHLAU, 1982; BATINI and NICOLICH, 1985;

HOBBS et al., 1986; CAMELI et al., 1993; VERGNOLLE

et al., 2003; MATTEIS et al., 2008; DOGLIONI et al.,

2011). The BDT may be one of the factors that

control plate-tectonic activity such as the generation

of mountains and plate break-up. Moreover, it may be

the cause that triggers large shallow earthquakes,

following the conclusions of MEISSNER and STREHLAU

(1982) who found that the brittle–ductile yield stress

envelope has the same form of the frequency-depth

distribution, with a peak in the upper and middle

crust. Measurements and models reveal that below

this interface, determined by pressure–temperature

conditions, aseismic slip activity dominates, since

earthquakes cannot be sustained in ductile layers. The

nucleation of earthquakes occurs in the upper brittle

part, since large deviatoric stresses cannot be gener-

ated for long periods of time in such ductile media.

A possible scenario is shown in Fig. 1, where a thin

layer and a single interface can generate a significant

reflection event.

CAMELI et al. (1993) claim that at the Larderello

geothermal field the so-called K horizon represents

the boundary separating the brittle and the ductile

crust. They state that excess temperature below the

geothermal area induces a ductile behaviour, and that

earthquakes nucleate at the K horizon. The K horizon

in central Italy has been taken by CARCIONE et al.

(2003) as a major interface overlying the top of the

lower crust, the Moho of the Adria plate, the top of

the subducted slab of the Alpine Tethys, and the

Moho of the subducted Tethyan slab. Generally, it is

widely accepted that the crust can roughly be mod-

eled with an upper brittle layer and a lower ductile

layer (RUTTER 1986). More evidence indicates that the

K horizon in the upper crust corresponds to a shear

plane separating the brittle crust from the ductile

crust (BROGI et al., 2003; LIOTTA and RANALLI, 1999).

The viscosity of the crust is a fundamental factor

in defining the properties of the BDT interface, since

it is controlled by the geothermal temperature. The

viscosity ranges from about 1025 Pa s in a cold brittle
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crust, down to about 1018 Pa s in the ductile, more

hot, crust. The wave-velocity contrast is mainly due

to the dissimilar shear rigidity, with much lower

values in the ductile medium (MATSUMOTO and

HASEGAWA, 1996). The ductile medium mainly flows

when subjected to distortional or deviatoric stress.

Under isotropic stress (often called hydrostatic

stress), this medium does not flow appreciably even

though it will deform elastically (small strains or

deformations). It flows under isotropic stress to

achieve (minor) porosity reduction. The magnitude of

the deviatoric stress is proportional to the octahedral

stress, a scalar that is invariant under coordinate

transformations and whose value determines the

character of the flow.

There is experimental evidence that linear visco-

elastic models are appropriate to describe the

behavior of ductile media. GANGI (1981, 1983),

among others, obtained exponential functions of time

using linear viscoelastic models to fit data for syn-

thetic and natural rocksalt. The viscoelastic creep—

with steady-state creep—of salt has been described

by a Burgers model which includes the transient

creep of the Zener model, which does not exhibit

steady-state creep, and the steady-state creep of a

Maxwell model (CARCIONE et al., 2006). On the other

hand, CHAUVEAU and KAMINSKI (2008) described the

effect of transient creep on the compaction process on

the basis of a Burgers’s model. The Burgers model is

shown in Fig. 2 (the Maxwell and Zener models are

particular cases of the Burgers model). Comprehen-

sive reviews and the mathematical basis for

describing the Burgers rheology can be found in

MAINARDI (2010) and MAINARDI and SPADA (2011).

Here, the Zener model is used to model the visco-

elastic deformation with no plastic flow. The type of

viscoelastic model depends on the value of the

octahedral stress, which determines the limit sepa-

rating transient flow from unrecoverable steady-state

flow. The nature of seismic attenuation as well

steady-state viscosity effects can be explained with

the dislocation theory, where the relaxation times

depend on the in-situ stress and temperature condi-

tions (ANDERSON, 1989). Alternative models were

developed by WALSH (1969) where the liquid phase

are lens-shaped inclusions of melt or films of melt

surrounding spherical grains. A relatively new, por-

ous model, that could possibly contribute to damp

seismic waves is the mesoscopic-loss mechanism, by

which wave energy is converted to diffusion energy

of the Biot slow-mode type (e.g., CARCIONE and

PICOTTI, 2006).

Seismic wave propagation is described by the ei-

genstrain theory (CARCIONE and CAVALLINI, 1994;

CARCIONE, 2007) to model anisotropy and attenuation in

the crust, while the Burgers model is used to model the

ductility effects (CARCIONE et al., 2006). The crust is

then described by a transversely isotropic stress–strain

1

Figure 2
Mechanical representation of the Burgers viscoelastic model for

shear deformations (e.g., CARCIONE, 2007). r, e, l, and g repre-

sent stress, strain, shear modulus, and viscosity, respectively, where

g1 (Zener viscosity) describes seismic relaxation, while g (Burgers

viscosity) is related to plastic flow and processes such as

dislocation creep

Upper crust

Middle crust

Lower crust

Upper mantle

Partial melt

Brittle-ductile transition
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D

ep
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Figure 1
Scheme of the Earth’s crust showing possible scenarios of the

brittle–ductile transition, namely, reflection from a thin layer (left)

and a reflection from a single interface (right)
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relation with five (independent) complex and frequency

dependent stiffnesses. The type of creep is regulated by

critical octahedral-stress values and a flow viscosity as a

function of temperature and pressure. Next, we obtain

the reflection and transmission coefficients of the BDT,

represented as a single interface. The theory can be

found in CARCIONE (1997, 2007) and SIDLER et al.

(2008).

Finally, we compute synthetic seismograms in

homogeneous media to study the effects of temper-

ature on the attributes of the seismic wavefield,

particularly, attenuation and velocity dispersion. One

feasible and economic technique to measure the

seismic properties is seismic while drilling, a method

that exploits the drill-bit noise as a source of seismic

waves (POLETTO and MIRANDA, 2004). This technique

has been adapted for geophysical exploration in

geothermal wells (POLETTO et al., 2011).

2. Mean and Octahedral Stresses

We use the octahedral-stress theory to describe

the deformation of the ductile layer. In Cartesian

coordinates (x, y, z), we define the octahedral stress

as

so ¼
1

3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðrv � rhÞ2 þ ðrv � rHÞ2 þ ðrh � rHÞ2
q

;

ð1Þ

where the r’s are the stress components in the principal

system, corresponding to the vertical (v) lithostatic

stress, and the maximum (H) and minimum (h) hori-

zontal tectonic stresses (see Fig. 3a). Figure 3b shows

the octahedral stress as a function of the octahedral

strain. When the stress vector associated with the

normal to the octahedral plane is generated, its com-

ponents in the principal directions are the eigenstresses

(or principal stresses). Alternatively, it has two com-

ponents—one normal to the plane (which has a

magnitude equal to the mean stress) and one tangential

to the plane which has a magnitude equal to the octa-

hedral stress (the latter is proportional to the magnitude

of the deviatoric stress).

The rock starts to yield when so exceeds the

elastic octahedral-stress limit soe. Below this limit,

there is gradual creep deformation when constant

stress is applied. Then, if so is lower than the elastic

limit soe, the material follows a viscoelastic stress–

strain relation. If so lies between soe and the plastic

limit sop, steady-state flow occurs. Beyond sop failure

is likely to occur.

3. Stress–Strain Relations

The constitutive equation including both the vis-

coelastic and ductile behaviour, can be written as a

z

x

y

Octahedral plane

Eigenstress vector

τ0
σm

τ0p

τ0e

Plastic limit

Elastic limit 

Elastic regime

Failure

Steady-state regime

Effective strain

O
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Figure 3
Mean and octahedral stresses (a) versus octahedral (effective)

strain (b). The octahedral-stress vector, which is a measure of the

shear deformation, lies on the octahedral plane. The normal to this

surface makes the same angle with the direction of the three

principal stresses rv, rh and rH (rm = (rv ? rh ? rH)/3 is the

mean stress)
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generalization of the one-dimensional (1D) stress–

strain relation reported by DRAGONI (1990) and

DRAGONI and PONDRELLI (1991) to the three-dimen-

sional (3D) anisotropic and anelastic case, replacing

the Maxwell model by the Burgers model and using

the eigenstrain theory introduced by CARCIONE and

CAVALLINI (1994) (see also CARCIONE et al., 2006;

CARCIONE, 2007). In the frequency-domain and using

the Voigt notation, we have

r ¼ P � e; ð2Þ

where

r ¼ ½r11; r22; r33; r23; r13; r12�> ð3Þ

is the stress vector,

e ¼ ½�11; �22; �33; 2�23; 2�13; 2�12�>; ð4Þ

is the strain vector and P is the stiffness matrix whose

components are given below. The stress and strain

components rij and �ij correspond to the standard

notation in 3D space (e.g., CARCIONE, 2007).

For a transversely isotropic medium with unre-

laxed elasticity constants cIJ, the complex stiffness

components are

p11 ¼ K1ð2þ a2Þ�1 þ K2ð2þ b2Þ�1 þ K4=2

p12 ¼ p11 � K4

p33 ¼ a2K1ð2þ a2Þ�1 þ b2K2ð2þ b2Þ�1

p13 ¼ aK1ð2þ a2Þ�1 þ bK2ð2þ b2Þ�1

p55 ¼ K3=2

p66 ¼ K4=2;

ð5Þ

where

a ¼ 4c13

c11 þ c12 � c33 þ
ffiffiffi

c
p ;

b ¼ 4c13

c11 þ c12 � c33 �
ffiffiffi

c
p ;

ð6Þ

and KIðxÞ; I ¼ 1; . . .; 4are complex and frequency-

dependent eigenstiffnesses, given by

K1 ¼
1

2
ðc11 þ c12 þ c33 þ

ffiffiffi

c
p
ÞM1

K2 ¼
1

2
ðc11 þ c12 þ c33 �

ffiffiffi

c
p
ÞM2

K3 ¼ 2c55M2

K4 ¼ ðc11 � c12ÞM2;

ð7Þ

with

c ¼ 8c2
13 þ ðc11 þ c12 � c33Þ2; ð8Þ

where

M1 ¼
1þ ixsð1Þ�

1þ ixsð1Þr

ð9Þ

is a Zener (dilatational) kernel, x is the angular fre-

quency, with i ¼
ffiffiffiffiffiffiffi

�1
p

; and

M2 ¼
1þ ixsð2Þ�

1þ ixsð2Þr � il
xg ð1þ ixsð2Þ� Þ

ð10Þ

is a Burgers (shear) kernel (CARCIONE, 2007). The

quantities sr and s� are seismic relaxation times,

l ¼ 1

6
ð4c55 þ c11 � c12Þ; ð11Þ

and g is the flow viscosity describing the ductile

behaviour related to shear deformations. Evidence of

a single relaxation peak in partially melted rocks is

discussed by SATO (2005). The theory can easily be

generalized to more relaxation mechanisms by add-

ing Zener elements in a series or a parallel connection

(e.g., CARCIONE, 2007). The use of more elements

depends on the availability of experimental data at

different frequency ranges.

The relaxation times can be expressed as

sðmÞ� ¼ s0

Q
ðmÞ
0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Q
ðmÞ
0

2
þ 1

q

þ 1

� �

;

sðmÞr ¼ sðmÞ� �
2s0

Q
ðmÞ
0

;

m ¼ 1; 2;

ð12Þ

where s0 is a relaxation time such that x0 = 1/s0 is

the center frequency of the relaxation peak and Q0
(m)

are the minimum quality factors.

The twofold eigenstiffnesses K3 and K4 are rela-

ted to pure ‘‘isochoric’’ eigenstrains, i.e., to volume-

preserving changes of shape only, while the single

eigenstiffnesses K1 and K2 are related to eigenstrains

that consist of simultaneous changes in volume and

shape. For relatively weak anisotropy, K1 corre-

sponds to a quasi-dilatational deformation and K2 to a

quasi-shear deformation. Moreover, K3 and K4

determine the mechanical behaviour of the shear

waves along the principal axes. According to these

2024 J. M. Carcione, F. Poletto Pure Appl. Geophys.
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arguments and Eqs. (9) and (10), the ductile medium

shows permanent relaxation of the normal and shear

stresses.

The limit g!1 in Eq. (10) recovers the Zener

kernel to describe the behaviour of the brittle mate-

rial, while sð2Þr ! 0 and sð2Þ� ! 0 (or, more generally,

sð2Þr ¼ sð2Þ� ) yield the Maxwell model used by DRAG-

ONI (1990) and DRAGONI and PONDRELLI (1991):

M2 ¼ 1� il
xg

� ��1

ð13Þ

(e.g., CARCIONE, 2007). For g! 0;M2 ! 0 and the

medium becomes an anisotropic fluid whose anelastic

properties are governed by the kernel M1, with

p33 = a2p11, p12 = p11 and p13 = ap11.

The viscosity g can be expressed by the Arrhenius

equation (e.g., CARCIONE et al., 2006). It is related to

the steady-state creep rate _� by

g ¼ so

2_�
; ð14Þ

where so is the octahedral stress. It can be expressed as

_� ¼ A1sn
o expð�E=RTÞ ð15Þ

(e.g., GANGI, 1983; CARCIONE et al., 2006), where A1
and n are constants, E is the activation energy,

R = 8.3144 J/mol/K is the gas constant and T is the

absolute temperature. The form of the empirical rela-

tion (15) is determined by performing experiments at

different strain rates, temperatures and/or stresses (e.g.,

GANGI, 1983; CARTER and HANSEN, 1983).

4. Reflection and Refraction Coefficients

The coefficients for a single interface and a layer

can be found in CARCIONE (1997, 2007). For an inci-

dent wave with subscript W = P or W = S, where P

and S denote compressional and shear waves, the

reflection-transmission coefficient vector is

½RWP;RWS; TWP; TWS�> ¼ ðBA2 � A1Þ�1 iW ; ð16Þ

where A1 and A2 are the propagator matrices related

to the upper and lower media, B is the propagator

matrix of the layer, and iW is the incidence vector.

The explicit expressions can be found in CARCIONE

(2007) (Chapter 6). This approach, which is the basis

of most reflectivity methods, dates back to THOMSON

(1950). For a layer with zero thickness, we obtain the

coefficients of a single interface.

5. Synthetic Pulses

We compute transient seismic waves in homoge-

neous media by superposing plane waves and

performing a numerical integration from the fre-

quency to the time domain. The field at distance

x, initiated by a source whose spectrum is S(x), is

given by

uðx; tÞ ¼ Re

Z

SðxÞ exp½iðxt � jxÞ� expð�axÞ dx;

ð17Þ

where jðxÞ is the wavenumber, aðxÞ;

aðxÞ ¼ pf

QðxÞvðxÞ ð18Þ

is the attenuation factor, where f ¼ x=ð2pÞ is the

frequency and v(x) is the phase velocity. The defi-

nition of these kinematic quantities can be found, for

instance, in CARCIONE (2007).

6. Example

The brittle and ductile rocks are described by the

same unrelaxed properties, with the following

Thomsen parameters: � ¼ 0:05; c ¼ 0:1 and d = 0.2,

and a vertical P-wave velocity v33 = 6 km/s (CHEN

et al., 2009; VAVRYČUK, 2005). Assuming a Poisson

medium, we obtain the vertical S-wave velocity as

v55 ¼ v33=
ffiffiffi

3
p

: Then, c33 = qv33
2 , where q ¼

2;600 kg/m3; c11 ¼ c33ð1þ 2�Þ; c66 ¼ c55ð1þ 2cÞ

and c13 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2dc33ðc33 � c55Þ þ ðc33 � c55Þ2
q

� c55:

The density is assumed constant as a first approxi-

mation. Stress and temperature increase with depth,

and while higher temperatures expand the melts,

implying lower density, higher stresses cause melts to

compress, implying higher density. Hence, the two

effects compensate.

The loss parameters of the brittle and ductile

layers are obtained from empirical equations derived

Vol. 170, (2013) Rheology and Reflection Coefficient of the Brittle–Ductile Transition 2025
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by CASTRO et al. (2008) for the crust in southern Italy.

They obtain Q0
(2) = 18.8 f1.7 for the upper crust and

up to a frequency of 10 Hz. We calculate the dila-

tational Q-factor as Q0
(1) = Q0

(2)k/l, where l is given

in Eq. (11) and k is a bulk modulus given by

k ¼ 1

9
ð6c11 þ 3c33 � 8c55 � 4c66Þ:

This relation implies that the harder the medium the

higher the Q factor, i.e., less attenuation. Moreover,

in most of the examples we consider a frequency of

f = 3 Hz and x0 = 2 pf.

The temperature is a function of depth through the

geothermal gradient G as T = z G, where z is depth and

G = 60 �C/km in our calculations. The lithostatic

stress is rv ¼ �qgz; where �q ¼ 2;400 kg/m3 is the

average density and g = 9.81 m/s2 is the gravity con-

stant. To obtain the octahedral stress (1) we consider a

simple model based on the gravity contribution at

depth z. The horizontal stresses can be estimated as

rH ¼
mrv

1� m
; and rh ¼ nrH ð19Þ

where

m ¼ c13ðc11 � c12Þ
c11c33 � c2

13

; ð20Þ

is the Poisson ratio along the horizontal direction (e.g.,

CARCIONE and CAVALLINI, 2002). The factor m/(1 - m)

lies between 0.25 and 1 for m ranging from 0.2 to 0.5,

with the latter value corresponding to a liquid (hydro-

static stress). The parameter n B 1 has been introduced

to model additional effects due to tectonic activity

(anisotropic tectonic stress). Furthermore, we consider

A1 ¼ 1010:8ðMPaÞ�n
s�1;E ¼ 134 kJ/mol and

n = 2.6, which correspond to quartzite (KIRBY and

KRONENBERG 1987; Table 3, line 11) and take n = 0.8.

The above degree of stress anisotropy is consistent with

values at prospective depths provided by HEGRET

(1987) for the Canadian Shield, and in agreement with

data reported in ENGELDER (1993, p. 91).

The octahedral stress and flow viscosity as a

function of depth and temperature are shown in

Fig. 4. Let

vII ¼ Re�1

ffiffiffiffiffiffi

q
pII

r
� �

and QII ¼
ReðpIIÞ
ImðpIIÞ

;

I ¼ 1; 3; 5; 6

ð21Þ

be the phase velocities and quality factors along the

principal axes of the transversely isotropic medium,

where ‘‘Re’’ and ‘‘Im’’ denote real and imaginary

parts, respectively (e.g., CARCIONE, 2007). The phase

velocity, as given in Eq. (21), can also be expressed

in terms of the wavenumber j as x=j:
Minimum Q values as a function of the Burgers

viscosity can be obtained with good approximation.

If we consider that sðmÞr ¼ sðmÞ� ; there is no seismic

loss and the attenuation is solely due to the Burgers

viscosity. We obtain the minimum value of Q33 as a

function of this viscosity as

�Q33 ¼ q1�gþ q2

�g
¼ 2

N

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

KðK þ NÞ
p

;

�g ¼
ffiffiffiffiffi

q2

q1

r

¼ l
x

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1

1þ N=K

s

;

ð22Þ

where �g is the critical viscosity,

(a)

(b)

Figure 4
Octahedral stress (a) and flow viscosity (b) as a function of depth

and temperature

2026 J. M. Carcione, F. Poletto Pure Appl. Geophys.
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q1 ¼
x
l

K

N
þ 1

� �

;

q2 ¼
l
x

K

N
;

K ¼ 1

2
a2ð2þ a2Þ�1ðc11 þ c12 þ c33 þ

ffiffiffi

c
p
Þ;

N ¼ 1

2
b2ð2þ b2Þ�1ðc11 þ c12 þ c33 �

ffiffiffi

c
p
Þ:

ð23Þ

As can be seen, the minimum quality factor depends

only on the elastic properties of the medium, while

the critical viscosity depends also on frequency. In

the isotropic case, we have a ¼ 1; b ¼ �2;K ¼
k;N ¼ ð4=3Þl; �g ¼ ðl=xÞ=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ 4l=ð3kÞ
p

; �Q ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

3kð3k þ 4lÞ
p

=ð2lÞ: If the medium is a Poisson solid

we obtain �g ¼ ðl=xÞ3=
ffiffiffi

5
p

and �Q ¼ 3
ffiffiffi

5
p

=2: A crit-

ical temperature can be defined in terms of the critical

viscosity using Eqs. (14) and (15). We obtain

�Tð�CÞ ¼ E

R ln 2A1�gsn�1
0

� �� 273; ð24Þ

where s0 and A1 should be given in Pa and 1/(s Pan),

respectively.

Figure 5 shows the velocities and quality factors as

a function of temperature. As can be seen, the P-wave

velocities decrease after a given viscosity dictated by a

critical (transition) temperature (ca. 900 K) and the

Arrhenius equation. The P-wave attenuation has a

maximum at this transition and at higher temperatures

the medium becomes an anisotropic fluid whose quality

factors are solely determined by the kernel M1. Indeed,

the lack of the shear losses increases the quality factor

and the material behaves fluid-like with weaker atten-

uation. This is consistent with the fact the a pure solid

and a pure liquid have weak attenuation and partial

saturation (melting in this case) shows lower Q factors,

similar to the behaviour of the mesoscopic-loss mech-

anism (e.g., SINGH et al., 2000; CARCIONE and PICOTTI,

2006). By this mechanism, wave energy is converted to

diffusion energy of the Biot slow-mode type, when the

heterogeneities of the medium are smaller than the

seismic wavelength but greater than a characteristic

pore scale.

For instance, the minimum value of Q33 is

approximately 6 at a critical viscosity of 1.8 GPa s.

Evidence of such low Q values in the crust are

reported in KAMPFMANN and BERCKHEMER (1985) and

SATO et al., (1988). A good estimation of these crit-

ical values can be obtained with Eq. (22).

Appendix shows how to obtain the energy

velocities and dissipation factors as a function of the

ray and phase angles from the complex stiffnesses

(5). Figures 6 and 7 display the energy velocities

(a) and quality factors (b) as a function of the ray and

propagation (phase) angles for the brittle and ductile

medium, with T = 300 �C and T = 700 �C, respec-

tively. The velocity and attenuation reduction is

remarkable in the ductile case, with the shear-wave

attenuation Q factors approaching zero. Moreover,

the QP anisotropy is more pronounced.

Next, we consider seismic frequencies, i.e,

f = 30 Hz and x0 = 2 pf. However, since the empiri-

cal equations for Q0
(2) above holds for frequencies lower

(k
m

/s
)

(a)

(b)

Figure 5
Phase velocities and quality factor along the principal axes of the

transversely isotropic medium as a function of temperature. The

frequency is 3 Hz
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than 10 Hz, we assume the same values of Q0
(1) and Q0

(2)

obtained for f = 3 Hz. Figure 8 shows the phase

velocities and quality factor as a function of tempera-

ture. The difference with respect to Fig. 5 are due to the

viscosity related to the plastic flow. The transition

occurs at higher temperatures (750 �C instead of

650 �C) and the P-wave quality factors do not increase

significantly after melting.

Figure 9 shows the S to P vertical velocity ratio

versus temperature for three frequencies (a) and the

frequency dependence of the quality factors at

718 �C (b). This ratio, or equivalently the so-called

VP/VS ratio, can be and indicator of the presence of

fluids or partial melt as can be seen in Fig. 9a, with

higher v33/v55 values with increasing melting. On the

other hand, as Fig. 9b shows, P-wave attenuation is

stronger along the horizontal (11) direction. Phase

velocity dispersion curves at different temperatures

are displayed in Fig. 10. At low temperature, there

is no significant dispersion, while at the critical

(a)

(b)

Figure 6
Energy velocities (a) and quality factors (b) as a function of the ray

and propagation (phase) angles for the brittle medium

(T = 300 �C). The frequency is 3 Hz

(a)

(b)

Figure 7
Energy velocities (a) and quality factors (b) as a function of the ray

and propagation (phase) angles for the ductile medium

(T = 700 �C). The frequency is 3 Hz
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temperature, where partial melt occurs, the dispersion

is significant. At higher temperatures, the liquid nature

of the rock yields a weaker P-wave dispersion but

velocities have opposite behaviour compared to

Fig. 10a. Real data to test the theoretical results are

scarse or not available. However, laboratory data have

been acquired, for instance, by SPETZLER and ANDERSON

(1968) who measured the P- and S-wave velocities and

attenuation factors in a binary system that is a solid at

low temperatures and partially melted at high temper-

atures. The data indicates that velocities and Q factors

drop abruptly at certain critical temperatures and that

the low velocity zones show high attenuation values, in

qualitative agreement with the results presented here.

We now compute the reflection and refraction

coefficients. First, we consider a single interface

separating a brittle medium with stiffnesses

p11 ¼ ð122; 0:78ÞGPa

p12 ¼ ð33; 0:05ÞGPa

p13 ¼ ð57; 0:22ÞGPa

p33 ¼ ð111; 0:65ÞGPa

p55 ¼ ð37; 0:30ÞGPa

p66 ¼ ð45; 0:37ÞGPa;

corresponding to 300 �C, and a ductile medium

defined by

(a)

(b)

Figure 8
Phase velocities and quality factor along the principal axes of the

transversely isotropic medium as a function of temperature. The

frequency is 30 Hz

(b)

(a)

Q11

Q33

Q55 = Q66

Figure 9
v55/v33 ratio versus temperature at three different frequencies (a),

and quality factors as a function of frequency corresponding to a

temperature of 718 �C (b)
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p11 ¼ ð70; 9ÞGPa

p12 ¼ ð68;�5ÞGPa

p13 ¼ ð73;�2ÞGPa

p33 ¼ ð80; 6ÞGPa

p55 ¼ ð1; 6ÞGPa

p66 ¼ ð1; 7ÞGPa;

corresponding to 700 �C. The frequency is 3 Hz. The

following figures display the absolute values of the

scattering coefficients and their respective phases.

Figures 11 and 12 show the reflection and transmission

coefficients as a function of the ray angle, corre-

sponding to incident P- and S-waves, respectively. The

(a)

(b)

(c)

Figure 10
Phase velocity as a function of frequency at 536 �C (a), 718 �C

(b) and 900 �C (c)

A
m

pl
itu

de

(a)

(b)

Figure 11
Reflection and transmission coefficients for a single interface as a

function of the ray angle. The incident wave is compressional

(P) and its frequency is 3 Hz
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PP reflection coefficient has an elastic Brewster angle

(CARCIONE, 2007) approximately at hB ¼ 23�; where a

phase change occurs (the coefficient changes sign).

Here we define the Brewster angle as the incidence

angle for which the reflection coefficient is zero.

Actually, the real part of RPP is negative at near offset

and becomes positive beyond hB: This real part chan-

ges sign and becomes negative again at 72�. There is

substantial conversion from P to S with a maximum

value at nearly 40�. On the other hand, RSS (see Fig. 12)

is high (0.55) at near offsets, since the S-velocity

contrast at the interface is higher than the P-velocity

contrast. The real part of this coefficient is positive as a

function of the ray angle.

Next, we consider a ductile layer (slab) embedded

in an isotropic crust with plane-wave moduli p33 and

p55. The ductile medium is anisotropic with the

properties indicated above. Figure 13 and 14 show the

reflection and transmission coefficients as a function

of the incidence phase angle, corresponding to inci-

dent P- and S-waves, respectively. The normal-

incidence reflection coefficient increases with the slab

thickness and a Brewster angle is clear at hB ¼ 22� for

a slab thickness of 0.5 km, as in the case of a single

interface. This effect is more pronounced for a thicker

slab, as can be seen from the steep phase change in

Fig. 11b. The converted P to S wave has a high

amplitude at intermediate angles, around 30�. On the

other hand, RSS and RSP decrease with the incidence

angle but are not much sensitive to the slab thickness.

Finally, we compute seismograms in a homoge-

neous medium by using Eq. (17). P- and S-wave

synthetic pulses as a function of temperature are shown

(a)

(b)

Figure 13
Reflection and transmission coefficients for a ductile layer as a

function of the incidence phase angle. The thickness of the layer is

indicated. The incident wave is compressional (P) and its frequency

is 3 Hz

A
m

pl
itu

de

(a)

(b)

Figure 12
Reflection and transmission coefficients for a single interface as a

function of the ray angle. The incident wave is shear (S) and its

frequency is 3 Hz
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in Figs. 15 and 16, respectively. The source is a Han-

ning pulse in the bandwidth range 5–60 Hz (OPPENHEIM

and SCHAFER, 1975). High attenuation is observed in the

highly dispersive zone at the critical temperature of

718 �C. As expected, S waves show also high attenu-

ation at high temperatures and do not propagate.

7. Conclusions

The abrupt brittle–plastic transition is believed to be

the lower limit of seismicity and may be an indication of

geothermal activity, since its reflectivity may reveal the

presence of partial melting and/or overpressured fluids.

Combining a Burgers mechanical kernel and the

Arrhenius equation to calculate the flow viscosity, we

obtain a realistic rheological model describing the

transition. The model includes anisotropy and seismic

wave attenuation. The P-wave velocities decrease after

a given viscosity related to a critical (transition) tem-

perature and the P-wave attenuation has a maximum at

this transition, where the quality factors have a mini-

mum value, which depends only on the elastic

properties of the medium. This occurs at a critical vis-

cosity which is inversely proportional to the frequency.

At higher temperatures the medium becomes an

anisotropic fluid. This is consistent with the fact that a

pure solid and a pure liquid have weak attenuation and

partial saturation (melting in this case) shows lower

attenuation. In the ductile regime, the shear-wave

quality factor approaches zero and the P-wave attenu-

ation anisotropy is more pronounced.

Figure 15
P-wave seismograms at different temperatures, corresponding to

the 11 (a) and 33 (b) components. The source is a Hanning pulse in

the bandwidth range 5–60 Hz

(a)

(b)

Figure 14
Reflection and transmission coefficients for a ductile layer as a

function of the incidence phase angle. The thickness of the layer is

indicated. The incident wave is shear (S) and its frequency is 3 Hz
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Regarding a sharp brittle–ductile interface, the PP

reflection coefficient has a Brewster angle and there

is substantial conversion from P to S energy. The SS

coefficient is high at near offsets since the S-velocity

contrast at the interface is higher than the P-velocity

contrast. On the other hand, for a ductile layer (slab)

embedded in an isotropic crust, the normal-incidence

reflection coefficient increases with the slab thickness

and a Brewster angle is clear for a thick slab. The SS

and SP reflection coefficients decrease with the

incidence angle but are not much sensitive to the slab

thickness. Finally, P-wave synthetic pulses show high

attenuation and dispersion at the critical temperature,

where partial melt occurs, and can be used as an

indication of the presence of the brittle–ductile

transition.

Appendix

Wave Velocities and Quality Factors

The complex velocities are required to calculate

wave velocities and quality factors of the fractured

medium. They are given by

vqP ¼ ð2qÞ�1=2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

p11l2
1 þ p33l23 þ p55 þ A

q

vqSV ¼ ð2qÞ�1=2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

p11l2
1 þ p33l23 þ p55 � A

q

vSH ¼ q�1=2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

p66l21 þ p55l23

q

A ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

½ðp11 � p55Þl21 þ ðp55 � p33Þl23�
2 þ 4½ðp13 þ p55Þl1l3�2

q

ð25Þ

(CARCIONE, 2007), where l1 ¼ sin h and l3 ¼ cos h are

the directions cosines, h is the propagation angle

between the wavenumber vector and the symmetry

axis, and the three velocities correspond to the qP, qS

and SH waves, respectively. The phase velocity is

given by

vp ¼ Re
1

v

� �� ��1

; ð26Þ

where v represents either vqP, vqSV or vSH. The

energy-velocity vector of the qP and qSV waves is

given by

ve

vp

¼ ðl1 þ l3 cot wÞ�1ê1 þ ðl1 tan wþ l3Þ�1ê3 ð27Þ

(CARCIONE, 2007), where

tan w ¼ Reðb�X þ n�WÞ
Reðb�W þ n�ZÞ ; ð28Þ

defines the angle between the energy-velocity vector

and the z-axis (the ray angle), the asterisk denotes

complex conjugate,

b ¼
ffiffiffiffiffiffiffiffiffiffiffiffi

A� B
p

;

n ¼ �pv
ffiffiffiffiffiffiffiffiffiffiffiffi

A� B
p

;

B ¼ p11l2
1 � p33l2

3 þ p55 cos 2h;

ð29Þ

where the upper and lower signs correspond to the qP

and qS waves, respectively. Moreover,

W ¼ p55ðnl1 þ bl3Þ;
X ¼ bp11l1 þ np13l3;

Z ¼ bp13l1 þ np33l3

ð30Þ

Figure 16
S-wave seismograms at different temperatures, corresponding to

the 55 (a) and 66 (b) components. The source is a Hanning pulse in

the bandwidth range 5–60 Hz
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(CARCIONE, 2007), where ‘‘pv’’ denotes the principal

value, which has to chosen according to established

criteria (SIDLER et al., 2008).

On the other hand, the energy velocity of the SH

wave is

ve ¼
vp

qReðvÞ l1Re
p66

v

	 


ê1 þ l3Re
p55

v

	 


ê3

h i

: ð31Þ

Finally, the quality factor is given by

Q ¼ Reðv2Þ
Imðv2Þ : ð32Þ
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