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ABSTRACT:
In thermoelastic wave attenuation, such as that caused by heterogeneities much smaller than the wavelength, e.g.,

Savage theory of spherical pores, the shape of the relaxation peak differs from that of the Zener (or standard linear

solid) mechanical model. In these effective homogeneous media, the anelastic behavior is better represented by a

stress-strain relation based on fractional derivatives; particularly, P- and S-wave dispersion and attenuation is well

described by a Cole–Cole equation. We propose a time-domain algorithm for wave propagation based on the

Gr€unwald–Letnikov numerical derivative and the Fourier pseudospectral method to compute the spatial derivatives.

As an example, we consider Savage theory and verify the algorithm by comparison with the analytical solution in

homogeneous media based on the frequency-domain Green function. Moreover, we illustrate the modeling perfor-

mance with wave propagation in a two half-space medium where one section is lossless and the other is a Cole–Cole

medium. This apparently simple example, which does not have an analytical solution, shows the complexity of the

wavefield that characterizes a single flat interface. VC 2021 Acoustical Society of America.
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I. INTRODUCTION

Heat flow is one of the mechanisms to explain anelastic

wave propagation (Savage, 1966; Treitel, 1959; Zener,

1938). Heterogeneities and/or cracks or cavities much

smaller than the signal wavelength affect the compressional

(P) and shear (S) waves by dissipating their energy to heat.

Zener (1938) explained the physics in these terms: “Stress

inhomogeneities in a vibrating body give rise to fluctuations

in temperature, and hence to local heat currents. These heat

currents increase the entropy of the vibrating solid, and

hence are a source of internal friction.” Mechanical and heat

sources induce temperature gradients, and the flow or diffu-

sion equalizes the temperature difference and gives rise to

P- and S-wave energy dissipation and velocity dispersion.

This physical mechanism is the basis of thermoelasticity or

non-isothermal elasticity (Carcione et al., 2019b; Carcione

et al., 2020a; Carcione et al., 2019c; Lord and Shulman,

1967). A similar phenomenon occurs in poroelasticity,

where the Biot slow mode represents energy loss (attenua-

tion) due to fluid-pressure diffusion (Carcione et al., 2019b;

Picotti and Carcione, 2017).

In Carcione et al. (2020a), we present analytical solutions

of thermoelasticity, related to the attenuation and dispersion

of the P and S waves and not algorithms to simulate wave

propagation. On the other hand, Carcione et al. (2020b) deals

with the simulation of P waves. Here, we generalize this

thermo-acoustic approach to simulate P and S waves with the

Cole–Cole stress-strain relation [Cole and Cole (1941) and

Eq. (8.138) of Carcione (2014)]. This rheology requires the

use of fractional time derivatives. Many authors used frac-

tional calculus as an empirical tool to describe the properties

of linear viscoelastic materials (Caputo, 1967; Caputo and

Mainardi, 1971), and a wide bibliography is given in

Mainardi (2010), including a historical perspective. A quite

recent overview of these topics is provided in Holm (2019).

There are several works where the Cole–Cole model is

analyzed, but many of these works denote this model as the

fractional Zener model instead of the Cole–Cole. In-depth

analyses are provided for attenuation and dispersion proper-

ties and power-law regimes for Cole–Cole/fractional Zener

viscoelastic media (Chandrasekaran and Holm, 2019;

N€asholm, 2013; N€asholm and Holm, 2013; Parker et al.,
2019; Wismer, 2006). The related wave equations are also

developed under assumptions of linear conservations of

momentum and mass. Fractional calculus has been applied

in thermoelasticity, mostly based on the Caputo derivative

(e.g., Garra, 2017), which is an analytical tool to solve frac-

tional differential equations. The Cole-Cole model, origi-

nally adopted for an optimal fit of electromagnetic

experimental data (Cole and Cole, 1941), has been used in

different works to describe wave attenuation (e.g., Spencer,

1981; Picotti and Carcione, 2017).

We propose to solve the time-domain differential equa-

tions with a direct grid method, where the spatial derivatives

are computed with the Fourier pseudospectral method (e.g.,

Carcione, 2014) and the fractional time derivatives with the

Gr€unwald–Letnikov (GL) series (Caputo et al., 2011;a)Electronic mail: jingba@188.com
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Carcione et al., 2002), which is an extension of the standard

finite-difference approximation for derivatives of integer

order. As an example, we consider the theory proposed by

Savage (1966) for empty round pores. In this model, the P

and S waves suffer attenuation due to shear loss, while there

are no losses due to dilatational deformations.

II. THE COLE–COLE MODEL

Effective attenuation can be described by means of

power laws in the form of fractional derivatives. With the

purpose of obtaining the equivalent viscoelastic medium, we

use the Cole–Cole model, which has been adopted to

describe dispersion and energy loss (attenuation) in dielec-

trics, anelastic media, and electric networks (Bagley and

Torvik, 1986; Bano, 2004; Cole and Cole, 1941; Grimnes

and Martinsen, 2005; Hanyga, 2003). The frequency-

domain Cole–Cole stress-strain relation (based on irrational

powers of the frequency) can be represented in the time

domain as a differential equation involving derivatives of

fractional order (e.g., Carcione, 2014). The complex modu-

lus of a Cole–Cole element can be expressed as

MðxÞ ¼ MR �
1þ ðixs�Þq

1þ ðixsrÞq
; (1)

where x is the angular frequency, MR is the relaxed (low-fre-

quency) modulus, sr and s� are relaxation times, 0 � q < 2 is

a real number, and i ¼
ffiffiffiffiffiffiffi
�1
p

is the imaginary number. When

q¼ 1, we obtain the Zener model (e.g., Carcione, 2014), while

q¼ 0 gives the lossless case. The quality factor associated with

M is ReðMÞ=ImðMÞ, where Re and Im denote real and imagi-

nary parts, respectively. Its minimum value is located at

x0 ¼
1ffiffiffiffiffiffiffiffi
srs�
p (2)

and is equal to

Q0 ¼
ð1þ c2Þcot uþ 2c csc u

c2 � 1
;

c ¼ s�
sr

� �q=2

; u ¼ pq

2
: (3)

f0 ¼ x0=ð2pÞ is the central frequency of the relaxation peak,

and 1=Q0 is the maximum dissipation factor (e.g., Carcione,

2014).

Using x0 and Q0 as parameters, we have

s� ¼
c1=q

x0

; sr ¼
c�1=q

x0

; (4)

where c is a solution of Eq. (3):

c ¼ 1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ Q2

0

p
sin u

Q0 sin u� cos u
: (5)

The unrelaxed (high-frequency) modulus is

MU ¼ MR
s�
sr

� �q

: (6)

The Cole–Cole model stress (r)-strain (�) relation, cor-

responding to the kernel (1), is

rþ sq
r
@qr
@tq
¼ MR �þ sq

�

@q�

@tq

� �
: (7)

The limit s�¼ 0 gives the Kelvin–Voigt model imple-

mented in Caputo et al. (2011). If Q0 !1, we have the low-

frequency elastic limit, with c¼ 1, s� ¼ sr, and M¼MR.

III. PHASE VELOCITY AND QUALITY FACTOR

The complex velocity is the key quantity to obtain the

phase velocity and quality factor. In n-dimensional (nD)

space, the complex P-wave velocities are

~v1ðxÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~KðxÞ þ 2ð1� 1=nÞ~lðxÞ

q

s

and v1ðxÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
KCðxÞ þ 2ð1� 1=nÞlCðxÞ

q

s
; (8)

where ~K and ~l are the bulk and shear moduli of the thermo-

elastic medium, respectively, KC and lC are the correspond-

ing Cole–Cole bulk and shear moduli, and q is the

composite mass density. Note that in nD space, the P-wave

modulus is KC þ 2ð1� 1=nÞlC [Eq. (3.12) of Carcione

(2014)], so that in two-dimensional (2D) space, it is

KC þ lC. This is the value that has to be used in the 2D

Green function to obtain the analytical solution to be com-

pared with the 2D numerical simulations.

Similarly, the complex S-wave velocities are

~v2ðxÞ ¼

ffiffiffiffiffiffiffiffiffiffiffi
~lðxÞ

q

s
and v2ðxÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
lCðxÞ

q

s
: (9)

The Cole–Cole phase velocity and quality factor are

vpi ¼ Re
1

vi

� �� ��1

; i ¼ 1ðPÞ; 2ðSÞ (10)

and

Qi ¼
Reðv2

i Þ
Imðv2

i Þ
(11)

(e.g., Carcione, 2014). The actual properties of the thermo-

elastic medium are obtained by replacing vi by ~vi.

As stated in Appendix A, pure dilatations do not cause

attenuation in Savage’s model, and the main cause is shear

deformations (S waves in this case), whose Cole–Cole com-

plex modulus, lC, is given by Eq. (1) after a fit of QS as a

function of frequency, with MR given by �l [Eq. (A3)]. The

bulk modulus is KC ¼ ~K ¼ �K , with �K given by Eq. (A3),
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and the complex P-wave modulus can be obtained from Eq.

(8) as q~v2
1 or as qv2

1.

IV. DYNAMICAL EQUATIONS

The conservation of linear momentum for a 3D linear

anelastic medium, describing dilatational and shear defor-

mations, can be written as

q@2
t ui ¼ @jrij; i; j ¼ 1ðxÞ; 2ðyÞ; 3ðzÞ; (12)

where r and u denote the stress tensor and the displacement

components and @t and @i denote the partial time and spatial

derivatives, respectively. The initial conditions are

uið0; xÞ ¼ 0; @tuið0; xÞ ¼ 0, and uiðt; xÞ ¼ 0, for t < 0, where

x ¼ ðx; y; zÞ is the position vector. In the frequency domain,

the stress-strain relations can be rewritten as follows:

r ¼ 1

3
rxx þ ryy þ rzzð Þ ¼ Kð�xx þ �yy þ �zzÞ � K�;

r1 ¼ rxx � ryy ¼ 2lð�xx � �yyÞ � l�1;

r2 ¼ rxx � rzz ¼ 2lð�xx � �zzÞ � l�2;

rxy ¼ l�xy;

rxz ¼ l�xz;

ryz ¼ l�yz; (13)

where � denotes the strain tensor components, and

�1 ¼ 2ð�xx � �yyÞ;
�2 ¼ 2ð�xx � �zzÞ;
�ij ¼ @iuj þ @jui; (14)

where the last equation is the strain-displacement relation.

The above equations correspond to relaxation mecha-

nisms described by the stress-strain relation (7). Then the

complete set of equations describing the propagation in

three-dimensional (3D) space is

@2
t ui ¼ q�1@jrij;

rþ sp
r1

@pr
@tp
¼ KR �þ sp

�1

@p�

@tp

� �
;

rk þ sq
r2

@qrk

@tq
¼ lR �k þ sq

�2

@q�k

@tq

� �
; k ¼ 1; 2;

rxy þ sq
r2

@qrxy

@tq
¼ lR �xy þ sq

�2

@q�xy

@tq

� �
;

rxz þ sq
r2

@qrxz

@tq
¼ lR �xz þ sq

�2

@q�xz

@tq

� �
;

ryz þ sq
r2

@qryz

@tq
¼ lR �yz þ sq

�2

@q�yz

@tq

� �
; (15)

where p and q refer to the dilatational and shear relaxation

mechanisms, respectively, and

rxx ¼ rþ 1

3
ðr1 þ r2Þ; ryy ¼ rþ 1

3
ðr2 � 2r1Þ;

rzz ¼ rþ 1

3
ðr1 � 2r2Þ: (16)

In 2D space, the above system simplifies as follows:

@2
t ux ¼ q�1 @xrxx þ @zrxzð Þ;
@2

t uz ¼ q�1 @xrxz þ @zrzzð Þ;

rþ sp
r1

@pr
@tp
¼ KR �þ sp

�1

@p�

@tp

� �
;

�r þ sq
r2

@q�r
@tq
¼ lR �� þ sq

�2

@q��

@tq

� �
;

r̂ þ sq
r2

@qrxz

@tq
¼ lR �̂ þ sq

�2

@q�̂

@tq

� �
;

� ¼ @xux þ @zuz;

�� ¼ 2ð@xux � @zuzÞ;
�̂ ¼ @xuz þ @zux; (17)

where �r ¼ r2; �� ¼ �2; r̂ ¼ rxz; �̂ ¼ �xz and

rxx ¼ rþ 1

2
�r; rzz ¼ r� 1

2
�r: (18)

V. NUMERICAL ALGORITHM

The fractional derivative is based on the GL approxima-

tion (Mainardi, 2010; Podlubny, 1999). The derivative of

order q of a function g is

@qg

@tq
� Dqg ¼ 1

hq

XJ

j¼0

ð�1Þj q
j

� �
gðt� jhÞ; (19)

where h is the time step, and J ¼ t=h� 1. The derivation of

this equation can be found, for instance, in Carcione et al.
(2002). The fractional derivative of g at time t depends on

all the previous values of g. The binomial coefficients are

negligible for j exceeding an integer J, and this allows us to

truncate the sum at j¼L, L � J, where L is the effective

memory length.

Fractional derivatives of order q < 1 require large mem-

ory resources and computational time, because the decay of

the binomial coefficients in Eq. (19) is slow (Carcione,

2009; Carcione et al., 2002), and the effective memory

length L is large. We increase the order of the derivative by

applying a time derivative of order m to the third, fourth,

and fifth equations of Eq. (17). The result is

@2
t ux ¼ q�1 @xrxx þ @zrxzð Þ þ f1;

@2
t uz ¼ q�1 @xrxz þ @zrzzð Þ þ f3;

Dmrþ sp
r1

Dmþpr ¼ KR Dm�þ sp
�1

Dmþp�
� �

;

Dm�r þ sq
r2

Dmþq�r ¼ lR Dm�� þ sq
�2

Dmþq��
� �

;

Dmr̂ þ sq
r2

Dmþqr̂ ¼ lR Dm�̂ þ sq
�2

Dmþq�̂
� �

;

� ¼ @xux þ @zuz;

�� ¼ 2ð@xux � @zuzÞ;
�̂ ¼ @xuz þ @zux; (20)
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where we added the source terms fi (body forces). It is

enough to take m¼ 1 to have a considerable saving in mem-

ory storage compared to m¼ 0. We discretize Eq. (20) at

t¼ nh. Using the notation un ¼ uðnhÞ, the left-hand side of

the first two equations in Eq. (20) can be approximated as

h2 D2ui

	 
n ¼ unþ1
i � 2un

i þ un�1
i ; i ¼ 1ðxÞ;2ðzÞ; (21)

where we have used a right-shifted finite-difference expres-

sion for the second derivative.

For m¼ 1, the GL derivative (19) at time nh can be

rewritten as

D1þqgn ¼ gn

h1þq
þ rð1þqÞ

g ;

rð1þqÞ
g ¼ 1

h1þq

XJ

j¼1

ð�1Þj
1þ q

j

 !
gn�j; (22)

where r
ð1þqÞ
g has the memory of the field from n – 1 and

back in time.

Following Picotti and Carcione (2017), we obtain

unþ1
x ¼h2 q�1 @xrxxþ@zrxzð Þþ f1

� �
þ2un

x�un�1
x ;

unþ1
z ¼h2 q�1 @xrxzþ@zrzzð Þþ f3

� �
þ2un

z�un�1
z ;

rn¼ 1

ar1

rn�1�hsp
r1

r1þp
r þKR a�1

�n��n�1þhsp
�1

r1þp
�

� �h i
;

�rn¼ 1

ar2

�rn�1�hsq
r2

r1þq
�r þlR a�2

��n���n�1þhsq
�2

r1þq
��

� �h i
;

r̂n¼ 1

ar2

r̂n�1�hsq
r2

r1þq
r̂ þlR a�2

�̂n� �̂n�1þhsq
�2

r1þq
�̂

� �h i
;

�n¼@xun
xþ@zu

n
z ;

��n¼2ð@xun
x�@zu

n
z Þ;

�̂n¼@xun
zþ@zu

n
x ; (23)

where

an ¼ 1þ sn

h

� �p

; n ¼ �1; r1;

an ¼ 1þ sn

h

� �q

; n ¼ �2; r2: (24)

VI. EXAMPLES

A. Thermoelastic model

We consider Savage (1966) theory of thermoelasticity

for a solid with voids (see Appendix A), which holds for a

relatively small porosity, since the voids do not interact

(Eshelby, 1957) (e.g., / � 0:1). Here, we assume an ideal

medium with a high thermal expansion coefficient, to obtain

a high dissipation, and the following properties:

a : 10�3 �K�1;

c=c : 5� 10�6 m2=s;

C ¼ b=c : 1:1;

K= �K : 1:18;

r : 0:17;

K : 39 GPa ¼ 39� 109 kg= m s2ð Þ;
a : 0:4 mm ¼ 0:0004 m;

T0 : 300 �K; (25)

where C is the so-called Gr€uneisen ratio. The porosity and

�l=l can be obtained from Eq. (A3), with

/ ¼ 1

3

K
�K
� 1

� �
2� 4r
1� r

: (26)

We obtain /¼ 9.5%, l=�l ¼1.19, b ¼ 3aK¼ 117� 106 kg/

(m s2 �K), c ¼ b=C¼ 106� 106 kg/(m s2 �K), c¼ 532 m kg/

(s3 �K), �K ¼ 33 GPa, l¼ 33 GPa, �l¼ 27.6 GPa, �r¼ 0.173,

and �E ¼ �K þ 4�l=3¼ 70 GPa [note that l ¼ 3Kð1� 2rÞ=
ð2þ 2r)] (see Appendix A for the definition of the above

properties). The composite density is q ¼ ð1� /Þqs¼ 2397

FIG. 1. (Color online) (a) and (b) Dissipation factors of the P and S waves

as a function of frequency, with the Cole–Cole (q¼ 0.825) and Zener fits of

the shear-wave relaxation peaks.
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kg/m3, where qs¼ 2650 kg/m3 and the 2D relaxed P- and S-

wave velocities are 5029 and 3397 m/s, respectively.

In this theory, only shear attenuation occurs [K is real

and l is complex and frequency dependent in Eqs. (8) and

(9)], since dilatations are lossless. Then the second equation

(15) and the third equation (17) simplify, as well as the

corresponding discrete representations in Eqs. (20) and (23),

so that only the fractional order q is considered. In Eq. (23),

we have

rn ¼ rn�1 þ KR �n � �n�1ð Þ: (27)

Figure 1 shows the dissipation factors with the corre-

sponding fits using the Cole–Cole model with q¼ 0.825 and

Zener model (q¼ 1), where f0¼ 23.37 Hz, Q0¼ 18.65,

lR ¼ �l¼ 33 GPa, and lU¼ 36 GPa.

As can be seen, the Cole–Cole model provides an excel-

lent representation of the physics. The P- and S-wave phase

velocities and quality factors are given by Eqs. (10) and

(11), respectively, and shown in Fig. 2 for the Cole–Cole

and Zener models.

B. Numerical test

We verify the algorithm by comparing numerical and

analytical solutions for a homogeneous medium (see

Appendix B). The source time-history is

sðtÞ ¼ a� 1

2

� �
exp ð�aÞ; a ¼ pðt� tsÞ

tp

" #2

; (28)

where tp is the period of the wave and we take ts ¼ 1:4tp. Its

frequency spectrum is

FIG. 2. (Color online) Phase velocities of the P and S waves as a function

of frequency, corresponding to the Cole–Cole (q¼ 0.825) and Zener

models.

FIG. 3. Comparison between the analytical and numerical solutions of the

horizontal and vertical displacements, ux (a) and uz (b), respectively.

FIG. 4. (Color online) Comparison between the lossless and lossy solutions

of the displacements. The lossless case is taken at the zero frequency limit.
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SðxÞ ¼ tpffiffiffi
p
p
� �

�a exp ð��a � ixtsÞ;

�a ¼ x
xp

� �2

; xp ¼
2p
tp
; (29)

and the peak frequency is fp ¼ 1=tp.

The numerical mesh has uniform vertical and horizon-

tal grid spacings of 20 m and 231� 231 grid points. The

medium properties are those of the previous example. A

vertical source is applied at the center of the mesh with

a peak frequency equal to the relaxation frequency. We

use a memory length L¼ 75 and a time step h¼ 0.5 ms.

Figure 3 compares the numerical and analytical transient

solutions at a distance of
ffiffiffi
2
p
� 800 m from the source

location.

The agreement between solutions is excellent and has

an L2-norm error less than 0.5%. Figure 4 compares the elas-

tic (lossless case) with the anelastic case, where the attenua-

tion and velocity dispersion can clearly be appreciated.

Snapshots of the displacements at 0.45 s are displayed

in Fig. 5, where the energy radiation pattern can be seen,

with the P wave showing maximum energy in the vertical

direction and the shear wave along 45� (e.g., Helbig, 1994).

Let us now consider an inhomogeneous medium, spe-

cifically, an interface separating two half-spaces. The upper

medium has the properties corresponding to the previous

examples, while the lower medium has K¼ 147 GPa,

l¼ 88 GPa, and q¼ 2650 Kg/m3, and it is lossless. The 2D

P- and S-wave velocities are 9428 and 5773 m/s, respec-

tively. Figure 6 shows a snapshot at 0.35 s, where the

reflected, transmitted, and refracted events can be observed.

In particular, H denotes the lateral wave connecting the

reflected P wavefront with the transmitted P wavefront (e.g.,

Brekhovskikh, 1960), which is commonly called refracted

wave in seismic exploration.

VII. CONCLUSIONS

We present a numerical algorithm to model thermoelas-

tic wave propagation based on the Cole–Cole model, which

implies the solution of fractional time derivatives of stress

and strain. This model is better suited to represent thermo-

elastic peaks than the Zener (or standard linear solid) model.

In fact, it is shown that the match between the Cole–Cole

model and Savage theory of thermoelasticity is excellent,

where this theory describes P- and S-wave propagation and

FIG. 5. Snapshots of the displacements, ux (a) and uz (b) at 0.45 s, due to a

vertical force (f3) located at the center of the mesh.

FIG. 6. Snapshots of the displacements, ux (a) and uz (b) at 0.35 s due to a

vertical force (f3) above a medium interface. The P and S waves above and

below the interface can be observed. RP, RS, PS, and H denote the reflected

P, reflected S, converted PS, and refracted (head) waves.

J. Acoust. Soc. Am. 149 (3), March 2021 Carcione et al. 1951

https://doi.org/10.1121/10.0003749

https://doi.org/10.1121/10.0003749


attenuation in a medium with empty spherical pores. The

wave field is computed in the time-space domain using the

GL approximation to solve for the fractional derivatives and

the Fourier pseudospectral method to calculate the spatial

derivatives of the wave equation. The modeling algorithm,

which has been tested with the analytical Green’s function,

can be used to solve wave propagation in general heteroge-

neous thermoelastic media, as illustrated by an example that

considers two half-spaces.

In summary, this work introduces a methodology with

two novel aspects: First, the use of a thermoelastic theory to

describe attenuation and dispersion and represent the physics

with the Cole–Cole model and, second, the simulation of P-

and S-wave propagation in the space-time domain using this

model. In this way, full-wave synthetic seismograms in general

heterogeneous thermoelastic media can be computed.
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APPENDIX A: THERMOELASTIC ATTENUATION
BY A MEDIUM WITH SPHERICAL PORES

Savage (1966) obtained the quality factor of the P and S

waves for media filled with spherical voids of radius a. The

P-wave quality factor is

QP ¼
3

2
� 1� �r

1� 2�r
� QS; (A1)

where QS is the S-wave quality factor given below and �r is

the relaxed effective Poisson ratio of the porous medium (at

zero frequency), given by

�r ¼ 3 �K � 2�l
2ð3 �K þ �lÞ ; (A2)

where

�K ¼ K

1þ 3/ð1� rÞ
2� 4r

; �l ¼ l

1þ 15/ð1� rÞ
7� 5r

(A3)

(Eshelby, 1957). �K and �l are the relaxed effective bulk and

shear moduli of the porous medium [the so-called dry-rock

moduli, KR and lR in Eq. (15)]; / is the porosity; and K, l,

and r are the bulk and shear moduli and Poisson ratio of the

solid (or mineral), respectively. For S waves,

Q�1
S ¼

180l/CbT0

�lK
� ð1� 2rÞð1þ rÞ

7� 5r
� FðxÞ; (A4)

where T0 is a reference absolute temperature for the state of

zero stress and strain, c is the specific heat per unit volume,

b ¼ ð3kþ 2lÞa ¼ 3aK; (A5)

k is a Lam�e constant, a is the coefficient of linear thermal expan-

sion (the volumetric one is 3a) (e.g., Carcione et al., 2019c),

FðxÞ ¼ v2ð2v2 þ 5vþ 4Þ

ð2v3 � 9v� 9Þ2 þ v2ð2v2 þ 8vþ 9Þ2
h i ;

v2 ¼ xca2

2c
; (A6)

and c is the coefficient of heat conduction (or thermal con-

ductivity). The quantities v and F are dimensionless.

Then the P- and S-wave phase velocities and quality

factors are given by Eqs. (10) and (11), respectively, with

KC ¼ ~K ¼ �K , since pure dilatations do not cause attenua-

tion, and lC is given by Eq. (1).

Savage (1966) does not obtain the phase velocity, but

strictly, this velocity can be obtained with the method pro-

posed by O’Donnell et al. (1981), based on the

Kramers–Kronig relations (e.g., Carcione et al., 2019a).

Carcione et al. (2020a) used this approach to obtain the com-

plex velocity and P-wave modulus of the Savage model. In

the present work, it is enough to obtain the Cole–Cole com-

plex modulus by fitting the Savage quality factor, since the

Cole–Cole model also obeys the Kramers–Kronig relations.

Thermoelastic attenuation has a peak approximately at

the frequency

f0 ¼
c

2ca2
; (A7)

where c=c is a thermal diffusivity and v2 ¼ ðp=2Þðf=f0Þ.

APPENDIX B: GREEN’S FUNCTION AND ANALYTICAL
SOLUTION

The solution of the wavefield generated by an impulsive

point force in a 2D elastic and lossless medium is given by

Eason et al. (1956) [see also Pilant (1979)]. For a force acting in

the positive z-direction, this solution can be expressed as

u1ðr; tÞ ¼
F0

2pq

� �
xz

r2
G1ðr; tÞ þ G3ðr; tÞ½ 	; (B1)

u3ðr; tÞ ¼
F0

2pq

� �
1

r2
z2G1ðr; tÞ � x2G3ðr; tÞ
� �

; (B2)

where F0 is a constant that gives the magnitude of the force,

r ¼ ðx2 þ z2Þ1=2
,

G1ðr; tÞ ¼
1

c2
1

ðt2 � s2
PÞ
�1=2Hðt� sPÞ

þ 1

r2
ðt2 � s2

PÞ
1=2Hðt� sPÞ

� 1

r2
ðt2 � s2

SÞ
1=2Hðt� sSÞ (B3)

and
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G3ðr; tÞ ¼ �
1

c2
2

ðt2 � s2
SÞ
�1=2Hðt� sSÞ

þ 1

r2
ðt2 � s2

PÞ
1=2Hðt� sPÞ

� 1

r2
ðt2 � s2

SÞ
1=2Hðt� sSÞ; (B4)

sP ¼
r

c1

; sS ¼
r

c2

; (B5)

and c1 and c2 are the compressional- and shear-wave phase

velocities. To apply the correspondence principle and obtain

the anelastic solution, one needs the elastic frequency-

domain solution (Bland, 1960; Carcione, 2014). Using the

transform pairs of the zero- and first-order Hankel functions

of the second kind,ð1
�1

1

s2
ðt2 � s2Þ1=2Hðt� sÞ exp ðixtÞdt

¼ ip
2xs

H
ð2Þ
1 ðxsÞ; (B6)

ð1
�1
ðt2 � s2Þ�1=2Hðt� sÞ exp ðixtÞdt ¼ � ip

2
H
ð2Þ
0 ðxsÞ;

(B7)

we obtain

u1ðr;x; c1; c2Þ

¼ F0

2pq

� �
xz

r2
Ĝ1ðr;x; c1; c2Þ þ Ĝ3ðr;x; c1; c2Þ
� �

;

(B8)

u3ðr;x; c1; c2Þ

¼ F0

2pq

� �
1

r2
z2Ĝ1ðr;x; c1; c2Þ � x2Ĝ3ðr;x; c1; c2Þ
� �

;

(B9)

where

Ĝ1ðr;x; c1; c2Þ ¼ �
ip
2

1

c2
1

H
ð2Þ
0

xr

c1

� �
þ 1

xrc2

H
ð2Þ
1

xr

c2

� �"

� 1

xrc1

H
ð2Þ
1

xr

c1

� �#
; (B10)

Ĝ3ðr;x; c1; c2Þ ¼
ip
2

1

c2
2

H
ð2Þ
0

xr

c2

� �
� 1

xrc2

H
ð2Þ
1

xr

c2

� �"

þ 1

xrc1

H
ð2Þ
1

xr

c1

� �#
: (B11)

Using the correspondence principle, we replace the

elastic wave velocities in Eqs. (B8) and (B9) by the

anelastic wave velocities v1 and v2 defined in Eqs. (8) and

(9). The 2D viscoelastic Green’s function can then be

expressed as

u1ðr;xÞ ¼
u1ðr;x; v1; v2Þ; x 
 0;

u�1ðr;�x; v1; v2Þ; x < 0;

(
(B12)

and

u3ðr;xÞ ¼
u3ðr;x; v1; v2Þ; x 
 0;

u�3ðr;�x; v1; v2Þ; x < 0;

(
(B13)

where the asterisk denotes complex conjugate. This

frequency-domain form ensures that the solution is real in

the time domain. Multiplication with the source function

(29) and a numerical inversion by the discrete Fourier trans-

form yield the desired time-domain solution (Ĝ1 and Ĝ3 are

assumed to be zero at x¼ 0, since the Hankel functions are

singular).
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