
Comput Geosci (2008) 12:593–604
DOI 10.1007/s10596-008-9099-5

ORIGINAL PAPER

Simulation of axis-symmetric seismic waves in fluid-filled
boreholes in the presence of a drill string
Simulation of axis-symmetric seismic waves

José M. Carcione · Flavio Poletto ·
Biancamaria Farina

Received: 22 June 2008 / Accepted: 21 July 2008 / Published online: 28 August 2008
© Springer Science + Business Media B.V. 2008

Abstract A numerical algorithm for simulation of
2-D (axis-symmetric) wave propagation using a mul-
tidomain approach is proposed. The method uses a
cylindrical coordinate system, Chebyshev and Fourier
differential operators to calculate the spatial deriva-
tives along the radial and vertical direction, respec-
tively, and a Runge–Kutta time-integration scheme.
The numerical technique is based on the solution of
the equations of momentum conservation combined
with the stress–strain relations of the fluid (drilling
mud) and isotropic elastic media (drill string and forma-
tion). Wave modes and radiated waves are simulated in
the borehole-formation system. The algorithm satisfies
the reciprocity condition and the results agree with
an analytical solution and low-frequency simulation
of wave-propagation modes reported in the literature.
Examples illustrating the propagation of waves are
presented for hard and soft formations. Moreover, the
presence of casing, cement, and formation heterogene-
ity have been considered. Since the algorithm is based
on a direct (grid) method, the geometry and the prop-
erties defining the media at each grid point, can be
general, i.e., there are no limitations such as planar
interfaces or uniform (homogeneous) properties for
each medium.
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1 Introduction

The extraction of hydrocarbons and geothermal re-
sources from the Earth’s crust requires the drilling of
deep wells. Seismic while drilling is a recent technology
that uses the extensional wave generated at the drill
bit and detected at the rig to obtain reverse vertical-
seismic-profile (VSP) seismograms [18]. This pilot
signal is used to process the data acquired at the sur-
face by a seismic survey. Moreover, drill-string guided
waves contain information about the drilling conditions
and can be used to transmit data from downhole to
the surface. Other borehole signals that can be used
to transmit information to the surface are the low-
frequency Stoneley wave traveling between the mud
and the formation (the so-called tube waves), and the
wave traveling inside the drill pipes, filled with drilling
mud. The velocity of these guided waves depends on
the drilling-mud properties, the elastic properties of
the surrounding formation, the borehole lateral di-
mensions, and the drill-string properties and geometry.
Hence, understanding wave propagation in boreholes
with a drill-pipe is important for a correct data process-
ing and for designing optimal acquisition parameters.

Lee [13] and Lea and Killingstad [12] consider
the drill-string/borehole system with the inner and
outer drilling mud. They compute the velocities of
the different wave modes by using a low-frequency
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approximation and conclude that wave coupling is im-
portant, mainly between the fluid modes (inner and
annular pressure waves). Rama Rao and Vandiver [19]
analyze the acoustic properties of a water-filled bore-
hole with pipes, calculating the axis-symmetric propa-
gation of the different modes for frequencies less than
1 kHz, and considering soft and hard formations.

A relatively simple 1-D modeling algorithm has been
proposed by Carcione and Poletto [8], who have solved
the differential equations describing wave propagation
through the drill string. They compute waveforms of
the extensional, torsional, and flexural waves by mod-
eling the geometrical features of the coupling joints,
including piezoelectric sources and sensors.

The approach proposed here generalizes the method
of Lee [13] and Lea and Kyllingstad [12] in that (1) it is
not restricted to the low-frequency approximation; (2)
it gives the heterogeneous differential equations of mo-
tion, i.e., the equations are not restricted to a uniform
drill string; (3) the algorithm gives the full-wave so-
lution, without approximations, such as neglecting the
shear stress σrz; and (4) it considers the formation and
other layers such as the borehole casing and cement.
Our algorithm simulates 3-D axis-symmetric waves in
a 2-D multidomain and it is based on a pseudospectral
expansion of the solution in the spatial coordinates and
a Taylor method time-integration scheme. The radial
spatial derivatives are computed with the Chebyshev
method, the vertical spatial derivatives are computed
with the Fourier method, and the integration in time is
carried out using the fourth-order Runge–Kutta algo-
rithm (e.g., [2, 6]). The algorithm uses four meshes, cor-
responding, in principle, to the inner mud, drill string,
outer mud, and casing/formation media (Fig. 1 shows
a vertical section of the borehole). Vertical variations
of the drill string section, such as those due to the
presence of coupling joints, are modeled by setting the
properties of the drilling mud to the relevant grid points
associated with the drill string. Variations of the hole
diameter are treated in a similar way. Two adjacent
meshes are combined by decomposing the wave fields
into incoming and outgoing wave modes at the interface
between the media and modifying these modes on the
basis of the fluid/solid boundary conditions [3].

This method can also be used to simulate synthetic
logs at the sonic frequency range [20], and reverse
vertical-seismic profiles. The problem of obtaining a re-
alistic VSP survey by using pseudospectral differential
operators was considered by Kessler and Kosloff in two
papers [14, 15]. They solve for 2-D acoustic and elastic
wave propagation in a (horizontal) plane perpendicular
to the axis of symmetry of the hole by using Chebychev
and Fourier differential operators in the radial and
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Fig. 1 Diagram showing a section of the borehole–drill-string–
formation system used in the simulation of propagation modes.
The ranges of the four meshes are ra − ε for the inner mud
(ε is the minimum radius of the inner mesh), rb − ra for the
drill-string, rc − rb for the outer mud, and rd − rc for the casing–
cement–formation system

angular directions, respectively. We are considering
the simulation in a vertical plane. Therefore, the
present work is a first step to achieve a complete 3-D
simulation.

2 Equations of momentum conservation

We consider the constitutive equations for solid and
fluid layers. The axis-symmetric 3-D equations of mo-
mentum conservation in cylindrical coordinates for the
solid (i.e., pipe, casing, and formation) can be expressed
as [10]

ρv̇r = 1
r

∂

∂r
(rσrr) + ∂σrz

∂z
− σθθ

r
+ fr, (1)

ρv̇z = 1
r

∂

∂r
(rσrz) + ∂σzz

∂z
+ fz, (2)

where r, θ , and z are the spatial variables, ρ is the
density, the σ values are stress components, the v values
are particle velocities, and the f values are body forces
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per unit volume. A dot above a variable denotes time
differentiation.

The corresponding equations for the fluid (drilling
mud) are

ρv̇r = ∂σrr

∂r
, (3)

ρv̇z = ∂σrr

∂z
, (4)

where −σrr is the fluid pressure and the external dilata-
tional source is incorporated in the constitutive relation
(see Eq. 9).

3 Stress–strain relations

The 3-D stress–strain relations for the solid are given
by

σ̇rr = (λ + 2µ)
∂vr

∂r
+ λ

(
∂vz

∂z
+ vr

r

)
, (5)

σ̇θθ = λ

(
∂vr

∂r
+ ∂vz

∂z

)
+ (λ + 2µ)

vr

r
, (6)

σ̇zz = (λ + 2µ)
∂vz

∂z
+ λ

(
∂vr

∂r
+ vr

r

)
, (7)

σ̇rz = µ

(
∂vr

∂z
+ ∂vz

∂r

)
, (8)

where λ and µ are the Lamé constants. These constants
are related to the P-wave and S-wave velocities (vP and
vS) by λ = ρ(v2

P − 2v2
S) and µ = ρv2

S.
The corresponding constitutive equation for the fluid

is

σ̇rr = λ

(
∂vr

∂r
+ ∂vz

∂z
+ vr

r

)
+ ḟrr, (9)

where frr is a dilatational source.

4 Domain decomposition and boundary conditions

The solution on each grid is obtained by using a fourth-
order Runge–Kutta method as time stepping algorithm,
the Chebyshev differential operator [4, 6] to com-
pute the spatial derivatives along the radial direction
and the Fourier differential operator [6] along the ver-
tical direction. The Fourier and Chebyshev operators
have spectral accuracy and, therefore, avoid numerical
dispersion, which is a characteristic feature of low-order

schemes. In fact, the existing modeling schemes have
finite accuracy due to the low-order approximations of
the time and space derivatives since they are mostly
based on finite-difference and finite-element methods.
The pseudospectral operators are infinitely accurate
for band-limited periodic functions with cutoff spatial
wavenumbers smaller than the cutoff wavenumbers of
the mesh [6, 9]. Moreover, they use two points per mini-
mum wavelength, allowing minimum computer storage
requirements, mainly in 3-D space. Another advantage
is the accurate modeling of surface and interface waves
[7], since the Chebyshev collocation points are denser
at the edges of the mesh. The use of characteristics
allows us to simulate Dirichlet, Neumann, and nonre-
flecting boundary conditions [4]. This versatility makes
the Chebyshev differentiation very accurate for domain
decomposition problems, such as the case of fluid–
solid interfaces [7]. To our knowledge, finite difference
methods have not been used to describe such interfaces
with domain decomposition. Both spatial derivatives
are computed using the fast Fourier transform, which
can be vectorized and can run efficiently in parallel
computers.

The Gauss–Lobatto collocation points correspond-
ing to the Chebyshev operator are defined as ri =
− cos[π(i − 1)/(nr − 1)], i = 1, . . . , nr, where nr is the
number of radial grid points. Two adjacent meshes are
combined by decomposing the wave field into incoming
and outgoing wave modes at the interface between
the media and modifying these modes on the basis
of the fluid/solid boundary conditions [6]. The inward
propagating waves depend on the solution exterior to
the subdomains and, therefore, are computed from the
boundary conditions (continuity of stress and particle-
velocity components), while the behavior of the out-
ward propagating waves is determined by the solution
inside the subdomain [3, 5, 15]. The approach involves
the following equations for updating the field variables
at the grid points defining the interface between the
fluid and the solid, such that the upper sign corresponds
to fluid (1) /solid (2) and the lower sign to solid (1) / fluid
(2):

v(new)
r (1, 2) = 1

Z P(1) + Z P(2)

×
[
Z P(1)v(old)

r (1) + Z P(2)v(old)
r (2)

± σ (old)
rr (1) ∓ σ (old)

rr (2)
]
, (10)

v(new)
z = v(old)

z ∓ 1
Z S

σ (old)
rz (solid), v(new)

z = v(old)
z (fluid),

(11)
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σ (new)
rr (1, 2) = Z P(1)Z P(2)

Z P(1) + Z P(2)

×
[
± v(old)

r (1) ∓ v(old)
r (2) + 1

Z P(1)
σ (old)

rr (1)

+ 1
Z P(2)

σ (old)
rr (2)

]
, (12)

σ
(new)
θθ = σ

(old)
θθ + λ

(λ + 2µ)

[
σ (new)

rr − σ (old)
rr

]
, (13)

σ (new)
zz = σ (old)

zz + λ

(λ + 2µ)

[
σ (new)

rr − σ (old)
rr

]
, (14)

σ (new)
rz = 0, (15)

where Z P = ρvP and Z S = ρvS. The upper signs cor-
respond to the inner mud (1)/string (2) and outer mud
(1)/casing (2) interfaces, and the lower signs correspond
to the string (1)/outer mud (2) interface.

Because of the singularity at the hole axes (r = 0),
we choose the inner radius, ε, of the inner mesh (inner
mud) different from zero and small with respect to the
wavelength. This boundary satisfies the following free-
surface boundary conditions:

v(new)
r = v(old)

r − σ (old)
rr /Z P, (16)

v(new)
z = v(old)

z , (17)

σ (new)
rr = 0. (18)

The outer boundary of the outer grid (formation) satis-
fies the following nonreflecting boundary conditions:

v(new)
r = 0.5

(
v(old)

r + σ (old)
rr /Z P

)
, (19)

v(new)
z = 0.5

(
v(old)

z + σ (old)
rz /Z S

)
, (20)

σ (new)
rr = 0.5

(
σ (old)

rr + Z Pv(old)
r

)
, (21)

σ (new)
rz = 0.5

(
σ (old)

rz + Z Sv
(old)
z

)
, (22)

σ
(new)
θθ = σ

(old)
θθ + λ

E
(
σ (new)

rr − σ (old)
rr

)
, (23)

σ (new)
zz = σ (old)

zz + λ

E
(
σ (new)

rr − σ (old)
rr

)
, (24)

Absorbing strips are added to attenuate further the
wave field at the outer boundary and also at the top and
the bottom of all meshes [4].

5 Simulations

An example of multimesh is shown in Fig. 2, where the
location of the grid points in the radial direction can
be seen. The thicker lines correspond to the interfaces
between the media. The shown multimeshes model
uses nr = 11, 11, 11, and 76 grid points in the radial
direction for the inner mud, drill string, outer mud, and
formation, respectively.

5.1 Comparison between numerical and analytical
solution

To test the algorithm and, particularly, the effective-
ness of the boundary condition at the origin (r = ε),
we compare the numerical and analytical solutions for
acoustic axis-symmetric propagation in a homogeneous
fluid (mud) with compressional velocity vP = 1,558 m/s
and density ρ = 1 g/cm3. The models corresponding

z
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mud

Drill
pipe
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mud

Formation

Fig. 2 Example of multimesh showing the location of the grid
points in the radial direction. The thicker lines correspond to the
interfaces between the media. Some points corresponding to the
formation are shown
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Fig. 3 Models corresponding to the analytical (a) and numerical
(b) solutions. The dashed lines represent the paths of the signals
from the source S to the receiver R. 1 is the direct arrival and 2 is
the signal reflected at the inner boundary (r = ε). In a, there is no
reflection from the origin

to the analytical and numerical solutions are shown in
Fig. 3.

To calculate the analytical solution, we consider a
ring source composed of N point sources. The radius
of the ring is r0 = 16 m. The analytical signal at the
receiver, located at 32 m from the ring center, is the
linear superposition of Green’s functions of all the point
sources.

Each Green’s function only depends on the distance
r from the singular point source to the receiver and
is obtained by combining Newton’s Eq. 3 and 4 and
Hooke’s law (Eq. 9), where frr(t, r) = g(t)δ(r) with δ

Dirac’s function. We obtain
(

) − 1
c2

∂tt

)
σrr = − 1

v2
P

g̈δ(r), (25)

whose solution is [6]:

σrr = H(t)
4πrv2

P
g

(
t − r

vP

)
, (26)

where H is the Heaviside function. Then, the analytical
solution corresponding to the ring is given by:

σrr = H(t)
4πv2

P

N∑

i=1

1
ri

g
(

t − ri

vP

)
(27)

To calculate the numerical solution, we use one mesh,
74 m wide and 200 m high, discretized with 91 radial
grid points and 250 vertical grid points. At the in-
nermost radius, ε = 50 cm, the free-surface boundary
conditions Eqs. 16, 17, and 18 are applied. As stated
above, a dilatational source is applied at r0 = 16 m

and the receiver is located at the same source depth,
at 32 m from the axis. The comparison between the
analytical and numerical solutions is shown in Fig. 4.
The agreement is good and provides a first verification
of the modeling algorithm. The phases of the first ar-
rivals are the same because the paths of the signals, in
the analytical and numerical cases, are the same. The
phases of the second arrivals are opposite because, in
the analytical case, the signal arrives from the more
distant point source (left side of the ring), while in the
numerical case, the signal is reflected by the innermost
boundary where the free-surface boundary condition is
applied. In fully 3-D media, this will not happen since
the singularity at the borehole axis in 3-D space is much
smaller than the wavelength and will not be seen by the
wave.

5.2 A reciprocity test

The following numerical experiments test the algo-
rithm by verifying the reciprocity principle. Seismic
reciprocity implies that sources and receivers can be in-
terchanged under certain conditions. This relationship
holds for a viscoelastic medium with arbitrary boundary
conditions, inhomogeneity, and anisotropy (e.g., [10]).

We test reciprocity for selected recording points
in the borehole and in the formation. The model is
shown in Fig. 5, and consists of a drill string with tool
joint immersed in the drilling mud, in the presence
of casing, cement, and an inhomogeneous formation.
Table 1 shows the acoustic and geometrical proper-
ties of the model [8, 22]. The extensions of the four
meshes are ra − ε for the inner mud, rb − ra for the
tool joint, rc − rb for the outer mud, and rd − rc for
the casing–cement–formation system. In these calcula-
tions, we use nr = 11, 11, 11, and 76 grid points with
variable grid spacing along the radial direction for the
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σ
rr

0.01 0.02 0.03 0.04

Time (s)

Fig. 4 Comparison between the analytical (solid line) and nu-
merical (dotted line) solutions (relative amplitude) using the
“free-surface” boundary condition at the borehole axis
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Fig. 5 Vertical section of the borehole/drill string system used
for the reciprocity tests. Note the presence of a tool joint and
a layer (see properties in Table 1), and the different horizontal
and vertical scales. The first experiment consists of a vertical
force fz applied to the drill string and a receiver that records the
radial particle velocity vr in the formation. The receiver is located
at 80 cm from the borehole axis. The reciprocal experiment
corresponds to a radial source fr in the formation and the vertical
particle velocity vz in the drill string. The second experiment
consist of an explosive source frr in the inner mud and a receiver
that records the radial particle velocity vr in the formation. The
reciprocal experiment corresponds to a radial source fr in the
formation and the pressure field in the inner mud. The reciprocal
experiments are indicated between parentheses

four meshes (inner mud, pipe, outer mud, and casing–
cement–formation). The minimum grid spacings along
the radial direction are 1.2, 0.75, 2.14, and 0.8 mm, for

the inner mud, pipe, outer mud, and casing–cement–
formation, respectively. The number of grid points in
the vertical direction is nz = 125 with a uniform grid
spacing of 1.6 cm. A tool joint of 45.5 cm length is
located between the vertical grid points 34 and 62. The
drill pipe has inner and outer radii equal to 5.5 and
7.6 cm, respectively, and where there is no tool joint,
the radial grid points 1 to 3 and 8 to 11 have the drilling-
mud properties. The casing and cement correspond to
the radial grid points 1 to 3 (0.5 cm thick) and 4 to 6
(1 cm), respectively, of the outer mesh. The horizontal
interface is located at the vertical grid points 50 (80 m
depth). We perform two tests. First, we compare the ra-
dial particle velocity (vr) measured in the formation due
to a vertical force ( fz) in the drill string, to the vertical
particle velocity (vz) at the drill string location due to
a radial force ( fr) in the formation. In the second test,
we compare the radial particle velocity (vr) measured
in the formation due to an explosive source ( frr) in the
inner mud to the pressure (pr) in the inner mud due
to a radial force ( fr) in the formation (e.g., see [1, 6]).
The comparisons, corresponding to the first and sec-
ond experiments, are shown in Fig. 6a, b, respectively,
where the dots correspond to the radial source. To
avoid numerical noise, we use three point sources along
the radial direction, with weight 0.3, 1, and 0.3; the
location of the central source is defined as the source
location. Source (receiver) and receiver (source) in the
first experiment are located at the grid points (ir, iz) =
(5, 72) (string) and (ir, iz) = (38, 37) (formation),
corresponding to the coordinates (6.25, 115) and (106,
59) cm, respectively (the radial coordinates refer to the
hole axes). The source and the receiver in the inner
mud are located at the grid points (ir, iz) = (5, 72), cor-
responding to the coordinates (2, 115) cm. The pulses
(Ricker wavelets) have a peak frequency of 14 kHz.
The solution is propagated to 3 ms with a time step of
0.04 µs. (The maximum time step is determined by the
minimum grid spacing divided by the maximum P-wave
velocity.) The agreement is good and provides a further
verification of the modeling algorithm.

Table 1 Geometrical and
material properties used for
the reciprocity test

vP vS ρ ε ra rb rc rd
(m/s) (m/s) (g/cm3) (cm) (cm) (cm) (cm) (cm)

Inner mud 1,520 0 1 0.16 5.5 – – –
Tool joint 5,900 3,190 7.85 – 5.2 8.25 – –
Drill pipe 5,900 3,190 7.85 – 5.5 7.6 – –
Outer mud 1,520 0 1 – – 8.25 17 –
Casing 5,900 3,190 7.85 – – – – –
Cement 4,400 2,100 2 – – – – –
Layer 1 3,200 1,850 2.6 – – – 17 200
Layer 2 2,200 1,300 2.4 – – – 17 200
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Fig. 6 Test of the algorithm
using the reciprocity
principle, where a
corresponds to the first
experiment described in Fig. 5
(vertical force in drill string),
and b corresponds to the
second experiment described
in Fig. 5 (dilatational source
in inner mud). The solid line
is the radial particle velocity
measured at the formation,
while the dots correspond to
the pressure and particle
velocity measured at the
inner mud (a) and at the drill
string (b) (see Fig. 5)
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5.3 Simulation of propagation modes

Next, we simulate wave propagation in a fluid-filled
borehole in the presence of drill string and surrounded
by two different formations. The properties of the two
formations, hard and soft, are given in Table 2. The
hard formation shear speed corresponds to sandstone
and that of the soft formation to shales and clays. The
shear wave velocity vS of these formations is higher
(hard) and lower (soft) than the acoustic mud velocity.
The compressional wave velocity is assumed to be

√
3

times the shear velocity (Poisson’s ratio = 1/4) in both
cases. The numerical meshes have nr = 11, 11, 11, and
91 grid points in the radial direction for the inner mud,
drill string, outer mud, and formation, respectively. The
extension of the outer grid is rd = 20 m. The model
depth is 200 m discretized with nz = 375 grid points
and a uniform grid spacing of 0.5 m. The perturbation
is a vertical force with a peak frequency of 375 Hz. It
is applied to the drill string at the radial grid points

4, 5, and 6, with weight 0.3, 1, and 0.3, respectively,
and to the vertical grid point 300. Vertically polarized
receivers are located at the radial grid points 5, 5,
and 5, for the inner mud, drill string, and outer mud,
respectively, and at the radial grid points 2, 5, and 46 in
the formation (16 cm, 25 cm, and 10 m away from the
borehole axis, respectively). The solution is propagated
to 35 ms with a time step of 90 ns, and the output
time traces are resampled to 27 µs. The simulation
uses the material properties and dimensions given by
Rama Rao and Vandiver [19], which are summarized in
Table 2.

There are three propagating modes for frequencies
below 1 kHz [19]. The first mode (M1) is the exten-
sional wave traveling in the drill string. It has a velocity
close to that of the axial waves traveling along a steel
rod in air. This mode is nondispersive up to 1 kHz and
insensitive to the properties of the drilling fluid and for-
mation. The second mode (M2) has a velocity close to
that of plane waves in fluids confined in an elastic pipe

Table 2 Geometrical and
material properties used to
simulate borehole waves

vP vS ρ ε ra rb rc rd
(m/s) (m/s) (g/cm3) (cm) (cm) (cm) (cm) (m)

Inner mud 1,558 0 1 0.26 5.32 – – –
Drill pipe 5,900 3,400 7.8 – 5.32 6.35 – –
Outer mud 1,558 0 1 – – 6.35 15.2 –
Hard formation 3,279 1,893 2 – – – 15.2 20
Soft formation 1,409 813 2 – – – 15.2 20
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and its characteristics are determined mainly by the
properties of the inner mud and pipe and very weakly
by the media outside the pipe. The third mode (M3),
strongly influenced by the formation, is equivalent to
the Stoneley wave traveling in boreholes without pipe
(commonly termed “tube wave”).

Approximate expressions of the phase velocity of
the various modes at low frequencies are given in the
following. Kolsky [11] provides the velocity of the M1
mode (rod mode) as a function of the wavelength, but
since the wavelength itself is a function of the phase

velocity, this results in a cubic equation for the phase
velocity vs the frequency f :

c3
1 − c0(c2

1 − v2) = 0, v = π fνrb , (28)

where c0 = (Y/ρ)1/2, with ρ and Y = µ(3λ + 2µ)/(λ +
µ) the density and Young modulus of the pipe, ν =
λ/[2(λ + µ)] is the Poisson ratio, and rb is the radius
of the rod. The group velocity is given by 3c1 − 2c0 [11].
Using the values in Table 1 and f = 600 Hz we obtain,
for mode M1, c0 = 5,131 m/s, c1 = 5,130 m/s, and a group
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Fig. 7 Hard formation. The left side of the panel shows the VSP
of the pressure field calculated at constant radial locations in the
center of the mesh corresponding to the inner mud (a), string
(b), outer mud (c), and three different locations in the formation
[16 cm (d), 25 cm (e), and 10 m (f) from the hole axis]. The vertical
line indicates the location of the seismograms shown in the right

side of the panel, that represent the pressure field measured in
the borehole 20 m above the source. The source is a vertical
force applied in the pipe at a depth of 160 m. The numbers in
the upper right side of each seismogram are the scale factors
of the amplitude computed in each medium with respect to the
amplitude in the drill string
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velocity of 5,130 m/s. At f = 10 kHz, the phase and
group velocities are 5,040 and 4,859 m/s, respectively.

The velocity of the M2 mode is given by:

c2 =
[
ρ f

(
1
λ f

+ 1
M

)]−1/2

, (29)

where

M = Y(r2
b − r2

a)

2[(1 + ν)r2
b + (1 − ν)r2

a]
, (30)

rb and ra are the outer and inner radii of the pipe, ρ f

and λ f are the density and bulk modulus of the mud,
and ν is the Poisson ratio of the pipe [21]. Therefore,
using the values in Table 1, we obtain c2 = 1,464 m/s for
ra = 5.5 cm and rb = 7.6 cm.

Finally, the velocity of the M3 mode without pipe
and in the presence of casing is [16]:

c3 =
[
ρ f

(
1
λ f

+ 1
N

)]−1/2

, (31)
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Fig. 8 Soft formation. The left side of the panel shows the VSP of
the pressure field calculated at constant radial locations in the
center of the mesh corresponding to the inner mud (a), string
(b), outer mud (c), and three different locations in the formation
[16 cm (d), 25 cm (e), 10 m (f) from the hole axis]. The vertical
line indicates the location of the seismograms shown in the right

side of the panel, that represent the pressure field measured in
the borehole 20 m above the source. The source is a vertical
force applied in the pipe at a depth of 160 m. The numbers in
the upper right side of each seismogram are the scale factors
of the amplitude computed in each medium with respect to the
amplitude in the drill string
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N = 2(1 − ν)µF + (µ − µF)(1 − a2)

2(1 − ν) − (1 − µF/µ)(1 − 2ν)(1 − a2)
(32)

where a = rc/r′
c, with rc and r′

c the inner and outer radii
of the casing, µF the formation shear modulus, and µ

and ν the shear modulus and Poisson ratio of the steel
casing. At infinite shear-wave velocity, the tube-wave
velocities approach the sound speed of mud (the limit
is not exact for Marzetta and Schoenberg’s equation).
At zero shear-wave velocity, cased boreholes have a
finite tube-wave velocity, while the velocity in uncased
boreholes is zero. The cased-hole and uncased-hole ve-
locities c3 are 1,413 and 1,354 m/s, respectively, for the
formation properties given in Table 1. Using the values

of Table 2, the velocities of modes M1 and M2, which
do not depend on the formation type, are 5,379 and
1,467 m/s, respectively, while the velocity of mode M3 is
1,389 m/s for the hard formation and 942 m/s for the soft
formation, considering frequencies below 1 kHz. The
simulations are performed by tuning the parameters
to avoid instabilities, which may arise because of large
differences in the radial and vertical dimensions of the
cells and strong impedance contrasts.

Figures 7 and 8 show the VSP of the pressure field
recorded in the inner mud, string, outer mud, and
formation, hard and soft, respectively, and VSP seis-
mograms at 20 m above the source. The constant wave
delay is about 3 ms. The amplitudes of the signals,

Fig. 9 Propagation in the
presence of a horizontal
interface separating two
layers. VSP of the pressure
field calculated at constant
radial locations in the center
of the mesh corresponding to
the inner mud (a), string (b),
outer mud (c), and three
different locations in the
formation [16 cm (d), 25 cm
(e), 10 m (f) from the hole
axis]. In the lowest part of the
panel is shown a blow up of
the oversaturated VSP
detected in the string (b). It is
possible to observe the
presence of weak signals in
the drill pipe due to the
reflections from the layers
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computed in the inner mud and outer mud and at
three different points in the hard and soft formations,
are lower than the amplitude in the drill string. The
scale factors are shown in the upper right side of each
seismogram.

M1 is the dominant mode in the drill string and
the measured velocity is approximately 5,380 m/s, its
amplitude is about 40 times greater than that detected
in the hard formation and 80 times greater than that
detected in the soft formation in a receiver close to
the borehole wall. These scale factors are so high that
the mode is not visible in the seismograms acquired
at the formations where mode M3 is the dominant
mode with amplitude only lower than that detected in
the drill pipe (see the right panel of Figs. 7 and 8). The
ratio between the amplitudes detected in the pipe and
in the formations increases with the distance from the
borehole axis.

The velocity of mode M3, measured by picking the
maximum of the energy, is 1,340 m/s, in the model
with a hard formation, while this velocity is 921 m/s
in the inner mud and 946 m/s in the outer mud, in
the model with a soft formation. Modes M2 and M3
are difficult to distinguish since their velocities are
very similar, especially in the presence of the hard
formation. The amplitude of the signal observed in the
inner mud, in the presence of both formations, is more
than four orders of magnitude weaker than that in the
pipe.

In both formations, it is possible to observe waves
radiated by the borehole system and interpreted as
head waves. In the soft formation, the pipe waves are
weaker than that observed in the hard formation and
decay away from the hole axis (see Fig. 8f), while in
the hard formation, such waves are still present at 10 m
from the hole axis (see Fig. 7f). In the soft formation,
where the velocity of the formation is subsonic, it is
possible to observe, separately, mud waves radiated by
the inner and the outer mud (see Fig. 8d, e).

In order to study the effects of formation discontinu-
ity, we simulate the wave propagation in the presence
of two half-spaces in contact, defining a horizontal
interface in the formation. As the reciprocity exam-
ple shown in Fig. 5, this problem cannot be solved
by using analytical methods such as the one used by
Rama Rao and Vandiver [19]. The model geometry
and acoustic properties for the drilling mud and pipe
are given in Table 2. The upper layer, extending until
a depth of 180 m, has vP = 2,800 m/s, vS = 1,620 m/s,
and ρ = 2 g/cm3. The lower layer has vP = 4,200 m/s,
vS = 2,450 m/s, and ρ = 2.2 g/cm3. The results are
shown in Fig. 9. Weak events, due to the formation

discontinuity, can be observed in the drill pipe, with
amplitudes thousand times lower than the dominant
signal.

6 Conclusions

We simulate axis-symmetric waves in boreholes with in-
ner mud, nonuniform pipes, outer mud, and formation.
The media is uniform along the azimuthal direction, but
there are no restrictions along the vertical and radial
directions, where any type of inhomogeneity can be
modeled. The algorithm allows us to model in detail the
nonuniform drill string and simulate the different prop-
agating modes along the borehole-formation system.
We observe the dominant mode M1 in the drill pipe
in both (hard and soft) formations with a velocity close
to the theoretical one. In the formations, we observe
the mode M3 together with the pipe waves (interpreted
as head waves). The algorithm is tested by comparison
to an analytical solution and reciprocity tests, and the
computations agree with the low-frequency results ob-
tained by using more simplified analyses reported by
other authors.
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