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A B S T R A C T

Part of the crust shows generally brittle behaviour while areas of high temperature and/or high pore pressure,
including the mantle, may present ductile behaviour. For instance, the potential heat source of geothermal fields,
overpressured formations and molten rocks. Seismic waves can be used to detect these conditions on the basis of
reflection and transmission events. Basically, from the elastic-plastic point of view the seismic properties
(seismic velocity, quality factor and density) depend on effective pressure and temperature. Confining and pore
pressures have opposite effects on these properties, and high temperatures may induce a similar behaviour by
partial melting. In order to model these effects, we consider a poro-viscoelastic model based on the Burgers
mechanical element and the squirt-flow model to represent the properties of the rock frame to describe ductility
in which deformation takes place by shear plastic flow, and to model local and global fluid flow effects.

The Burgers element allows us to model the effects of the steady-state creep flow on the dry-rock frame. The
stiffness components of the brittle and ductile media depend on stress and temperature through the shear
viscosity, which is obtained by the Arrhenius equation and the octahedral stress criterion. Effective pressure
effects are taken into account in the dry-rock moduli by using exponential functions whose parameters are
obtained by fitting experimental data as a function of confining pressure. Since fluid effects are important, the
density and bulk modulus of the saturating fluids (water at sub- and supercritical conditions) are modeled by
using the equations provided by the NIST website. The squirt-flow model has a single free parameter represented
by the aspect ratio of the grain contacts. The theory generalizes a preceding theory based on Gassmann (low-
frequency) moduli to the more general case of the presence of local (squirt) flow and global (Biot) flow, which
contribute with additional attenuation mechanisms to the wave propagation.

1. Introduction

The upper crust shows generally brittle behaviour while deeper
zones, including the mantle, may present ductile behaviour with partial
melt, depending on the pressure-temperature conditions (e.g., Meissner
and Strehlau, 1982; Williams and Garnero, 1996; Tauzin et al., 2010).
Seismic waves can be used to detect these conditions on the basis of
wave velocity and attenuation. Early models explain the seismic low-
velocity zones (e.g., asthenosphere) as a region of partially molten rock
(Walsh, 1969). Mavko and Nur (1975) suggest that a reasonable me-
chanism for transient deformation in the upper mantle is small-scale
flow of partial melt. Schmeling (1985) discusses and reviews such
models. However, Karato and Jung (1998) claim that melt alone cannot
explain the observations and suggest a model by which water enhances
anelastic relaxation and partial melting causes water removal from
minerals. If melted material completely wets grain-boundaries, a small
amount of melt is enough to reduce the seismic wave velocities (Karato,
2014). Therefore, a combined effect of melt and water relaxation seems

to explain seismic velocity in the crust and mantle. Karato and Jung
(1998) report a quality factor ∝ −Q ω γ , where ω is the angular fre-
quency and =γ 0.1–0.3. Their model includes a temperature depen-
dence of Q through an Arrhenius type equation. Takei (2002) in-
vestigated the effect of pore geometry based on Gassmann equations
and various theories including several aspect-ratio models.

We consider a constitutive equation including ductility (and melt),
through the Burgers mechanical model, and anelastic (seismic) re-
laxation described by the squirt-flow model, based on Biot’s theory. We
model the shear stiffness modulus using the Burgers model, where
ductility depends on temperature, depth and in situ pressures. The rock
(Burgers) viscosity is obtained by the Arrhenius equation and the oc-
tahedral stress criterion (Carcione and Poletto, 2013; Carcione et al.,
2014). The only attenuation mechanism obtained from the dispersion
equation of Biot’s theory is the so-called global flow, that is, wave-
length-scale equilibration between the peaks and troughs of the wave
(Biot, 1962; Carcione, 2014). This mechanism is due to the viscous
nature of the pore-fluid, as well as the mesoscopic loss, where the
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mesoscopic-scale length is much larger than the grain sizes but much
smaller than the wavelength of the pulse. In this case the rock perme-
ability plays tan important role. Experimental evidence can be found in
Batzle et al. (2006), and a theoretical analysis can be found several
works, notably Pride et al. (2004) and Carcione and Picotti (2006).

Another important loss mechanism is the so-called “squirt flow”, by
which there is flow from fluid-filled microcracks (grain contacts) to the
pore space and vice versa (Mavko et al., 2009; Carcione, 2014). Biot
(1962) was the first to discuss this mechanism and proposed a viscoe-
lastic mechanical model to describe it. The problem resides in finding a
suitable squirt-flow model, in which the parameters can be entirely
estimated from the microstructural properties of the rock. Such a model
has recently been proposed by Gurevich et al. (2010) (see Carcione and
Gurevich, 2011). The density and bulk modulus of the saturating fluids
(water and steam) are modeled by using the equations provided by the
National Institute of Standards and Technology (NIST) website, in-
cluding supercritical behaviour. The new model describes seismic at-
tenuation by the combined effect of rock ductility (partially melting)
and squirt flow.

Crustal values of Q have been determined by Castro et al. (2008),
that can be useful to calibrate the model. Apart from intrinsic dissipa-
tion, in inhomogeneous media waves can experience the so called ap-
parent attenuation due to scattering. Hoshiba (1993) measured intrinsic
absorption and scattering attenuation from earthquake sources using
the multiple lapse time window analysis. Rachman and Chung (2016)
used the same technique to measure attenuation down to the brittle-
ductile transition. Here, shear seismic attenuation include both intrinsic
absorption and scattering losses described by a Zener kernel.

2. Theory

2.1. The Burgers model for brittle-ductile behaviour

The constitutive equation, including both the shear viscoelastic and
ductile behaviour, can be described with the Burgers model as reported
in Carcione and Poletto (2013) and Carcione et al. (2014). The Burgers
model is a series connection of a dashpot and a Zener model (Fig. 1)a
and its complex shear modulus can be written as
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The quantities τσ and ∊τ are seismic relaxation times, μ0 is the re-
laxed shear modulus (see below) and η is the flow viscosity describing
the ductile behaviour. The relaxation times can be expressed as
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where τ0 is a relaxation time such that =ω τ1/0 0 is the center frequency
of the relaxation peak and Q0 is the minimum quality factor.

The limit → ∞η in Eq. (1) recovers the Zener kernel to describe the
behaviour of the brittle material, while →τ 0σ and →∊τ 0 yield the
Maxwell model used by Dragoni and Pondrelli (1991):

= − −μ μ μ ωη(1 i / )B 0 0
1 (e.g., Carcione, 2014). For → →η μ0, 0B and the

medium becomes a fluid. Moreover, if → ∞ → ∊ω μ μ τ τ, /B σ0 , where μ0 is
the relaxed (ω = 0) shear modulus of the Zener element ( = ∞η ).

The viscosity η can be expressed by the Arrhenius equation (e.g.,
Carcione et al., 2006; Montesi, 2007). It is related to the steady-state
creep rate ∊̇ by
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where σo is the octahedral stress (e.g., Gangi, 1981; Carcione et al.,
2006; Carcione and Poletto, 2013), A and n are constants, E is the ac-
tivation energy, R=8.3144 J/mol/°K is the gas constant and T is the
absolute temperature. The parameters of the empirical relation (3) are
determined by performing laboratory experiments at different strain

rates, temperatures and/or stresses (e.g. Gangi, 1983; Ranalli, 1997;
Fogler, 2005; Avramov, 2007)

The octahedral stress is
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where the σ ’s are the stress components in the principal system, cor-
responding to the vertical (v) lithostatic stress, and the maximum (H)
and minimum (h) horizontal tectonic stresses.

The temperature is a function of depth through the geothermal
gradient G. A linear approximation is =T zG, where z is the depth.

2.2. The squirt-flow model

In the absence of external sources, the time-differentiated stress-
strain relations for an inhomogeneous isotropic poroelastic medium,
according to Biot’s theory are

= ∗ + +
= − +

≡ ∇ ≡ ∇ ≡ ∂ + ∂ −

σ μ d K δ αMφδ
p M φ α

φ d v v δv q

̇ 2 ϑ ,
̇ ( ϑ),

where ϑ · , · , ( ) ϑ,

ij G ij G ij ij

f

ij i j j i ij
1
2

1
3 (5)

(Biot, 1962; Carcione, 2014), where σij are the total stress components,
pf is the phase-averaged pressure fluctuation in the fluid, v is the phase-
averaged particle-velocity vector of the solid constituent of the two-
phase poroelastic medium, with components vi, and q is the porosity-
weighted relative fluid velocity with respect to the solid. The quantities
μ K M, ,G G and α are poroelasticity coefficients defined below. A dot
above a variable denotes time differentiation, ∂i denotes spatial differ-
entiation with respect to the xi-coordinate, δij is the Kronecker delta and

Fig. 1. Mechanical representation of the Burgers viscoelastic model for shear deforma-
tions (a) (e.g., Carcione, 2014). ∊σ μ, , and η represent stress, strain, shear modulus and
viscosity, respectively, where η1 describes seismic relaxation while η is related to plastic
flow and processes such as dislocation creep. Sketch of the squirt-flow model (b), where
two sandstone grains in contact are shown. The soft pores are the grain contacts and the
stiff pores constitute the main porosity. The quantity R is the radius of the disk-shaped
soft pore (half disk is represented in the plot).
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the symbol “∗” denotes time convolution. The stress-strain relations are
written in the particle-velocity/stress formulation, which is suitable to
perform numerical simulations. The time convolution arises from the
fact that μB in Eq. (1) depends on frequency and for simplicity its time-
domain dependence (a relaxation function) is denoted with the same
symbol.

The poroelasticity coefficients in Eq. (5) are the Gassmann bulk and
shear moduli,

= + = =K K α K M K μ μ μ( ) ( ) andG m m m G m B
2 (6)
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where ϕ is the porosity, Km and μm are the bulk and shear moduli of the
drained matrix, and Ks and Kf are the solid and fluid bulk moduli, re-
spectively (e.g., Carcione, 2014; Carcione et al., 2017). We explicitly
indicate the functional form of α and M on Km, since we shall replace
this modulus by a modified matrix (or frame) complex modulus K,
which includes the squirt-flow mechanism. In the same manner, μm will
be replaced by μ. The new moduli are complex-valued and frequency-
dependent.

The squirt flow model is based on the fact that the pore space of
many rocks has a binary structure: relatively stiff pores, which con-
stitute the majority of the pore space, and relatively compliant (or soft)
pores, which are responsible for the pressure dependency of the por-
oelastic moduli. When the frequency is higher than the squirt char-
acteristic frequency, the fluid pressure doesn’t have enough time to
equilibrate between stiff and compliant pores during a half wave cycle
(the so called unrelaxed state). Then, compliant pores at the grain
contacts are effectively isolated from the stiff pores and hence become
stiffer with respect to normal (but not tangential) deformation. In order
to model the frequency dependency of the moduli, Gurevich et al.
(2010) assumed a geometrical configuration by which a compliant pore
forms a disk-shaped gap between two grains, and its edge opens into a
toroidal stiff pore (Fig. 1b).

Using this model, the bulk and shear moduli of the saturated rock at
low frequencies are given by Gassmann’s equations,

= + =K K α K M K μ μ( ) ( ) and ,G G
2 (8)

where K and μ are the bulk and shear moduli of the modified frame
including the un-relaxation due to the presence of the squirt-flow me-
chanism, and α and M are given by Eq. (7) substituting Km with K. For
simplicity, we keep the same notation for the Gassmann moduli, but
now they are complex-valued and frequency-dependent.

Gurevich et al. (2010) obtained the modified dry moduli in the
following form
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where Km and μm are the dry-rock bulk and shear moduli at the con-
fining pressure p K,c h is the dry-rock bulk modulus at a confining pres-
sure where all the compliant pores are closed, i.e., an hypothetical rock
without the soft porosity, and ϕc is the compliant porosity. This is so
small – nearly 0.001 for most rocks – that the total porosity ϕ can be
assumed to be equal to the stiff porosity. The key quantity in Eqs. (9) is
the effective bulk modulus of the fluid saturating the soft pores:

= ⎡
⎣⎢

− ⎤
⎦⎥

= −∗K J kR
kRJ kR

K k
h

ωη
K

1 2 ( )
( )

, 2 3i
,f f

f

f

1

0 (10)

where J0 and J1 are Bessel functions, ηf is the fluid shear viscosity, R is
the radius of the crack and h is its thickness (see Fig. 1b). If the fluid
modulus satisfies
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we have the approximation
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Fig. 2. Water density (a), sound velocity (b) and viscosity (c) for a wide range of pressures
and temperatures (data taken from the NIST website).
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is an effective viscosity.
The peak relaxation frequency of the squirt-flow model is (Carcione

and Gurevich, 2011)
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using the approximations ≈K Kh m and ≫a 1. Hence, the peak fre-
quency decreases with increasing viscosity and decreasing aspect ratio
of the crack.

The squirt-flow model is consistent with Gassmann’s theory in the
low-frequency limit, and with Mavko-Jizba unrelaxed moduli in the
high-frequency limit (Mavko and Jizba, 1991). All the parameters of the
model have a clear physical meaning. There is only one adjustable
parameter: the aspect ratio of compliant pores (grain contacts) h R/ .

In order to include the pressure dependence, we express the dry-
rock bulk moduli as

= =K K g p μ μ g p( ), and ( ),m d m B d0 1 2 (15)

where =g p r( ), 1,2r d defines the dependence of the moduli on the dif-
ferential pressure = −p p pd c , where pc is the confining pressure, p is the
average pore pressure and K0 is the bulk modulus at infinite effective
pressure. Moreover, if = ∞η ω, = 0 and = ∞pd we obtain =μ μm 0.
The simplest form of function g, in good agreement with experimental
data, is

= − − − =∗g p a p p r( ) 1 (1 )exp( / ), 1,2r d r d r (16)

(Kaselow and Shapiro, 2004), where ar and ∗pr are parameters. It is gr
=1 for → ∞pd (e.g., very high confining pressure) and =g ar r for

→p 0d (pore pressure equal to the confining pressure).
The bulk density is

= − +ρ ϕ ρ ϕρ(1 ) ,s f (17)

where ρs and ρf are the grain and fluid densities, respectively.

Fig. 3. Pore pressure (a), temperature (b), water density (c) water sound velocity (d) and water viscosity (e) as a function of depth, according to the NIST website.
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3. Phase velocity and dissipation factor

The phase velocity and dissipation factor (inverse of the quality
factor), including the Burgers, Biot and squirt-flow losses, are
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where vc is the complex velocity (e.g., Carcione, 2014). For shear waves
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where T is the rock tortuosity and κ is the permeability. Here we as-
sume = − − ϕ1 0.5(1 1/ )T (Mavko et al., 2009).

The complex velocity of the P waves is obtained from the following
second-order equation:

+ + =ρ ρ v a v a 0,c c1
4

1
2

0 (22)

where

= − − +

= +

( )
( )

a αρ ρ M ρ K μ

a K μ M

(2 ) ,f G G1 1
4
3

0
4
3 (23)

(e.g., Carcione, 2014 eq. (7.324)).
Manning and Ingebritsen (1999) inferred permeability from thermal

modeling and metamorphic systems suggesting the following depen-
dence with depth z,

= − − = − ⎛
⎝

⎞
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−κ z T
G

log 3.2 log 14 3.2 log 14.
(24)

where z is the depth in km and the permeability is given in m2. The
second expression assumes a linear geothermal law, =T zG.

4. Example

We consider sample KTB 61C9b (amphibolite) reported in Popp and
Kern (1994) (their Table II and Fig. 3). The “crack-free” dry- and wet-
rock S-wave velocities are 3880m/s and 3820m/s, respectively, where
“crack-free” means that the compliant pores are closed. We assume
ρs =3000 kg/m3 and consider the water properties at 20 °C and
80MPa, such that ρf =1033 kg/m3 and Kf =2.7 GPa. From Gassmann
equation, stating that the dry-rock and the wet-rock shear moduli are
equal, we have that = − = + −μ ρ ϕ ϕρ(1 )3880 [ (1h s f

2

ϕ ρ) ]3820s
2 =41.5 GPa, and therefore =ϕ 8.4%. The mineral bulk

Fig. 4. Seismic velocities (a) and quality factors (b) as a function of depth. The frequency
is 10 Hz.

Fig. 5. Seismic velocities (a) and quality factors (b) as a function of depth, without the
Burgers mechanism. The frequency is 10 Hz.
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modulus can be obtained from Gassmann equation corresponding to the
bulk modulus (see Eq. (7.34) in Carcione (2014)). The “crack-free” dry-
and wet-rock P-wave velocities are 6670m/s and 6770m/s, respec-
tively. Then, we have = = − − =K K ρ ϕ(1 )[6670 (4/3)3880 ] 67 GPam h s

2 2

and = + − − =K ϕρ ϕ ρ[ (1 ) ][6770 (4/3)3820 ] 75 GPaG f s
2 2 . Solving the

2nd-order equation for Ks resulting from Gassmann equation, we obtain

=K 137 GPas . According to Eq. (15) we have = =K K 67.1 GPah0 and
= =μ μ 41.3 GPah0 . The pressure dependence is

= − − − = − − −g p g p1 (1 0.39)exp( /50), 1 (1 0.52)exp( /62),d d1 2 (25)

where pd is given in MPa, which is in agreement with Fig. 3 of Popp and
Kern (1994). Moreover, we consider h R/ = 0.00001 and

P wave

S wave

Ve
lo

ci
ty

 (k
m

/s
)

Fig. 6. Seismic velocities as a function of frequency at 6 km depth; (a) With the squirt-
flow, Burgers and Biot peaks, (b) With the squirt-flow and Biot peaks, (c) With the Burgers
and Biot peaks.

Fig. 7. Quality factors s a function of frequency at 6 km depth; (a) Squirt-flow, Burgers
and Biot peaks, (b) Squirt-flow and Biot peaks, (c) Burgers and Biot peaks.
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= −ϕ p[%] 0.472 exp( 0.02741 ),c c (26)

according to Fig. 5a of Popp and Kern (1994) (pc is given in MPa).
Closure of cracks with confining pressure is reflected in the values of
the wet-rock crack porosity ϕc.

Next, we obtain the wave velocities and quality factors at different
temperature-pressure conditions. The shear seismic loss parameter is

obtained from empirical equations derived by Castro et al. (2008) for
the crust in Southern Italy. They report =Q f18.80

1.7 for the upper crust
and up to a frequency of 10 Hz. In the examples we consider a Zener
peak frequency of =f 3 Hz0 , with =ω πf20 0, which gives =Q 1220 . The
temperature is a function of depth through the geothermal gradient G as

=T zG, where z is depth and G=60 °C/km in our calculations. The

Fig. 8. Seismic velocities as a function of frequency at 12 km depth; (a) With the squirt-
flow, Burgers and Biot peaks, (b) With the squirt-flow and Biot peaks, (c) With the Burgers
and Biot peaks.

10
00

/Q

Fig. 9. Quality factors as function of frequency at 12 km depth; (a) With the squirt-flow,
Burgers and Biot peaks, (b) With the squirt-flow and Biot peaks, (c) With the Burgers and
Biot peaks.
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lithostatic stress is = − = −σ ρ gz pv c, where =ρ 2600 kg/m3 is the
average density and g=9.81m/s2 is the gravity constant. To obtain the
octahedral stress (4) we consider a simple model based on the gravity
contribution at depth z. The horizontal stresses can be estimated as

=
−

=σ νσ
ν

σ ξσ
1

, andH
v

h H (27)

where

=
−

+
ν

K μ
K μ

3 2
2(3 )

0 0

0 0 (28)

is the Poisson ratio. The factor −ν ν/(1 ) lies between 0.25 and 1 for ν
ranging from 0.2 to 0.5, with the latter value corresponding to a liquid
(hydrostatic stress). The parameter ⩽ξ 1 has been introduced to model
additional effects due to tectonic activity (anisotropic tectonic stress).
Furthermore, we consider ∞A = −100 (MPa) n =− Es , 134 kJ/mol1 and
n=2.6 (e.g., Kirby and Kronenberg, 1987), and take =ξ 0.8. The above
degree of stress anisotropy is consistent with values at prospective
depths provided by Hegret (1987) for the Canadian Shield, and in
agreement with data reported in Engelder (1993, p. 91).

The water properties as a function of pressure and temperature are
obtained from the fluid thermo-physical database provided in the
website of the National Institute of Standards and Technology (NIST),
collected from laboratory measurements by Lemmon et al. (2005). In
“Thermophysical Properties of Fluid Systems”, we choose water (1) and
Isothermal Properties (3). The range of allowable values are [0,
1000] °C and [0, 1000]MPa. In order to analyse the seismic properties
in the presence of overpressure and anomalous temperatures, we ex-
tract the water density, ρw, sound velocity, cw, and viscosity from the
NIST webstite for the range [0, 900] °C and [0, 200] MPa. A 3D plot is
shown in Fig. 2. The part of the density surface with a value of ap-
proximately 200 kg/m3, delimited by 40–100MPa and 100–200 °C,
corresponds to the vapor phase. The bulk modulus is then given by

=K ρ cf w w
2 .

A state of hydrostatic pore pressure is given by =p ρ gzf , where
=ρ 1040f kg/m3 is an average fluid density. We consider a depth range

[5, 15] km, where pore pressure and temperature vary from 51 to
153MPa and 300 to 900 °C, respectively (the geothermal gradient is
60 °C/km). The experimental density, sound velocity and viscosity of
water are shown in Fig. 3, together with the pressure and temperature
profiles. Compare these values to the ones at ambient conditions, de-
fined by a temperature of 20 °C and a pressure of 0.1MPa: a water
density of 998 kg/m3 and a sound velocity of 1482m/s.

Next, we obtain the seismic properties using the approximation
(12), which allows for numerical computations of seismograms using
the Zener model (Carcione and Gurevich, 2011). Fig. 4 shows the
seismic (phase) velocity (a) and quality factor (b) as a function of depth.
The frequency is 10 Hz. As can be seen, the P-wave velocities decrease
after a given viscosity dictated by a critical (transition) temperature (ca.
930 K) (the brittle-ductile transition) and the Arrhenius equation. The
P-wave attenuation has a maximum at this transition and at higher
temperatures the medium becomes a fluid whose quality factors are
solely determined by the dilatational losses. Indeed, the lack of the
shear losses increases the quality factor and the material behaves fluid-
like with weaker attenuation. This is consistent with the fact that a pure
solid and a pure liquid have weak attenuation and melting shows lower
Q factors. The main contribution to anelasticity is given by the Burgers
loss mechanism. Fig. 5 shows the same properties in the absence of this
mechanism, where attenuation is only due to the squirt-flow me-
chanism, which disappears at increasing depths due to the closing of
cracks. The S wave shows lower attenuation.

Figs. 6 and 7 shows the behaviour of the phase velocity and quality
factor as a function of frequency for a temperature of 360 °C (the depth
is 6 km), where case (a) includes the three loss mechanisms. The waves
are very dispersive due to the low Q factor. The Biot peak (global flow)
can be seen at high frequencies ( = −f ϕη ρ πκρ ρ ϕρ/[2 ( )]B f f fT ). The

same properties at 12 km depth, beyond the brittle-ductile transition,
are represented in Figs. 8 and 9. The Burgers peak moves towards the
low frequencies at shallower depths, above the brittle-ductile transi-
tion.

The equations of motion in the space–time domain can be obtained
as in Carcione and Gurevich (2011) and can be solved with numerical
methods using memory variables provided the condition (11) is sa-
tisfied. Similarly, the Burgers kernel can also be implemented (Carcione
et al., 2014).

5. Conclusions

The Earth crust behaves brittle and ductile depending on the in situ
temperature and pressure conditions. We present a methodology to
model the seismic properties of the crust, including melting, by using a
poro-viscoelastic description, based on Biot theory and the Burgers and
squirt-flow models. The theory describes variations of the properties
due to changes in temperature and confining and pore pressure,
through the dry-rock stiffness moduli. The wet-rock seismic velocities
can explicitly be obtained as a function of the water properties at cri-
tical and supercritical conditions. The Burgers element allows us to
model the effects of the steady-state creep flow on the dry-rock frame.
The stiffness components of the brittle and ductile media depend on
stress and temperature through the shear viscosity, which is obtained
by the Arrhenius equation and the octahedral stress criterion. The
theory generalizes a preceding theory based on Gassmann (low-fre-
quency) moduli to the more general case of the presence of local
(squirt) flow and global (Biot) flow, which contribute with additional
attenuation mechanisms to the wave propagation. The squirt-flow
model has a free parameter represented by the aspect ratio of the grain
contacts.
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