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Abstract Seismic propagation in the upper part of the crust, where geothermal reser-

voirs are located, shows generally strong velocity dispersion and attenuation due to

varying permeability and saturation conditions and is affected by the brittleness and/or

ductility of the rocks, including zones of partial melting. From the elastic-plastic as-

pect, the seismic properties (seismic velocity, quality factor and density) depend on

effective pressure and temperature. We describe the related effects with a Burgers me-

chanical element for the shear modulus of the dry-rock frame. The Arrhenius equation

combined to the octahedral stress criterion define the Burgers viscosity responsible of

the brittle-ductile behaviour.

The effects of permeability, partial saturation, varying porosity and mineral compo-

sition on the seismic properties is described by a generalization of the White mesoscopic-

loss model to the case of a distribution of heterogeneities of those properties. White

model involves the wave-induced fluid flow attenuation mechanism, by which seismic

waves propagating through small-scale heterogeneities, induce pressure gradients be-

tween regions of dissimilar properties, where part of the energy of the fast P-wave

is converted to slow P (Biot)-wave. We consider a range of variations of the radius

and size of the patches and thin layers whose probability density function is defined

by different distributions. The White models used here are that of spherical patches

(for partial saturation) and thin layers (for permeability heterogeneities). The complex

bulk modulus of the composite medium is obtained with the Voigt-Reuss-Hill average.

Effective pressure effects are taken into account by using exponential functions.

We then solve the 3D equation of motion in the space-time domain, by approximat-

ing the White complex bulk modulus with that of a set of Zener elements connected

in series. The Burgers and generalized Zener models allows us to solve the equations

with a direct grid method by the introduction of memory variables. The algorithm

uses the Fourier pseudospectral method to compute the spatial derivatives. It is tested

against an analytical solution obtained with the correspondence principle. We consider

two main cases, namely the same rock frame (uniform porosity and permeability) satu-
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rated with water and a distribution of steam patches, and water-saturated background

medium with thin layers of dissimilar permeability. Our model indicates how seismic

properties change with the geothermal reservoir temperature and pressure, showing

that both seismic velocity and attenuation can be used as a diagnostic tool to estimate

the in-situ conditions.

Keywords Mesoscopic loss · brittle · ductile · Zener model · Burgers model ·
seismic-wave simulation · distribution of patch sizes · Fourier method.

1 Introduction

The seismic characterization of porous and fractured crustal rocks, such as anelastic-

ity due to varying permeability and/or saturation and the brittle-ductile behavior, is

essential in geothermal exploration, since it plays an important role in determining

the availability of geothermal energy. Carcione and Poletto (2013) have introduced an

elastic-plastic rheology based on the Burgers mechanical model (e.g., Mainardi and

Spada, 2011) to describe the brittle-ductile behaviour on the basis of variations of the

shear modulus as a function of temperature. This rheology has been shown to model

seismic waves in the crust and mantle, where zones of partial melting occur. The Burg-

ers element allows us to model the effects of the steady-state creep flow on the dry-rock

frame. The stiffness components of the brittle and ductile media depend on stress and

temperature through the shear viscosity, which is obtained by the Arrhenius equation

using the octahedral stress criterion, including the tectonic stress.

The prediction of permeability, the capacity of a material to transmit fluid, is es-

sential in geothermal studies (Manning and Ingebritsen, 1999). Permeability plays an

important role in heat and mass transfer and crustal rheology. It is known that perme-

ability can be obtained from seismic data (e.g., Feng and Mannseth, 2010). Therefore,

a theory predicting seismic velocity and attenuation including this important property

is required. The modeling proposed here also considers the wave-induced attenuation.

Wave-induced fluid flow explains the high attenuation of low-frequency waves in fluid-

saturated rocks. When seismic waves propagate through small-scale heterogeneities,

pressure gradients are induced between regions of dissimilar properties. White (1975),

White et al. (1975) and Johnson (2001) have shown that attenuation and velocity dis-

persion measurements can be explained by the combined effect of mesoscopic-scale

inhomogeneities and energy transfer between wave modes, with P-wave to slow P

(Biot)-wave conversion being the physical mechanism. We refer to this mechanism as

mesoscopic loss (Ba et al., 2015). The mesoscopic-scale length is intended to be larger

than the grain sizes but much smaller than the wavelength of the pulse. For instance,

if the matrix porosity varies significantly from point to point, diffusion of pore fluid

between different regions constitutes a mechanism that can be important at seismic

frequencies. A review of the different theories and authors, who have contributed to

the understanding of this mechanism, can be found, for instance, in Carcione (2014).

Regarding geothermal reservoirs, the mesoscopic-loss model has been recently ap-

plied to seismic modeling by Grab et al. (2017) using the COMSOL MultiphysicsR

finite-element solver. Their modeling results show that large attenuation peaks are

present for a rock volume containing a network of open fractures (high permeability).

The characteristic frequency, at which the attenuation reaches its peak, is linked with

the fluid mobility, which is a measure of hydraulic permeability and fluid viscosity. At
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low seismic frequencies, the attenuation is observed to be controlled by mesoscopic fluid

flow while at sonic to ultrasonic frequencies, attenuation is associated with squirt flow.

The squirt-flow model has a single free parameter represented by the aspect ratio of the

grain contacts. Seismic modeling, including both the Burgers model and the squirt-flow

effect, has been performed by Carcione et al. (2017). These authors have generalized a

preceding theory based on Gassmann (low-frequency) moduli to the more general case

of the presence of local (squirt) flow and global (Biot) flow, which contribute with addi-

tional attenuation mechanisms to the wave propagation (Poletto et al., 2017). Grab et

al. (2017) conclusively show that indicators for reservoir permeability and fluid content

are deducible from the magnitude of seismic attenuation and the critical frequency at

which the peak of attenuation and maximum velocity dispersion occur.

In this work, the effects of varying permeability, partial saturation, porosity and

mineral composition are described by a generalization of the White mesoscopic-loss

model to the case of a distribution of those properties. We consider a range of varia-

tions of the radius of the (spherical) patches based on probability density functions. The

complex bulk modulus of the composite medium is obtained with the Voigt-Reuss-Hill

(VRH) average. This average is based on iso-strain (Voigt) and iso-stress (Reuss) ap-

proximations (the stress and strain are unknown and are expected to be non-uniform).

The VRH estimates were found in most cases to have an accuracy comparable to that

of the self-consistent schemes and are valid for complex rheologies such as general

anisotropy (e.g., Man and Huang, 2011). Here, effective pressure effects are taken into

account by using exponential functions.

Alternative models describing attenuation and velocity dispersion in heterogeneous

media have been developed by Shapiro and Müller (1999), Toms et al. (2006) and Müller

et al. (2008), where the authors consider a multiple-scattering approach to approximate

the scattered field of a system of randomly distributed poroelastic inclusions. Correla-

tion functions of the spatial heterogeneities, such as the von Kármán function, are used

in these works. They show that due to the heterogeneities of poroelastic structures, the

attenuation of P-waves is influenced by the permeability in an enhanced way. More-

over, they find that the effects of the patch geometry are not important, even if the

attenuation peak for the random model is broader and smaller in amplitude than that

of the White periodic model, the frequency dependence of attenuation and velocity are

very similar.

Since it is not practical to model explicitly the mesoscopic patches and thin layers

in seismic modeling, White effective-medium theory provides a method to implement

the related anelastic effects efficiently. This is achieved by approximating the White

complex bulk modulus with that of a set of Zener elements connected in series. Then,

the Burgers and generalized Zener models allows us to solve the equations with a

direct grid method by the introduction of memory variables. Moreover, zones of high

permeability, such as a single fracture, can be described with the present full waveform

modeling algorithm, by obtaining the stiffness moduli and permeability as a function

of porosity, using the Krief and Kozeny-Carman equations, respectively.

We recast the wave equation in the time-domain using the particle-velocity/stress

formulation. The model is discretized on a mesh, and the spatial derivatives are calcu-

lated with the Fourier method by using the Fast Fourier Transform. The algorithm is

verified with an analytical solution obtained by applying the correspondence principle

to the frequency-domain elastic analytical solution (e.g., Pilant, 1979, p. 67), and then

performing an inverse Fourier transform back to the time domain. We consider two

main cases, namely the same rock frame (uniform permeability) saturated with water
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and a distribution of steam patches, and a water saturated medium with thin layers of

dissimilar permeability.

2 Mesoscopic-loss model for a distribution of saturation and permeability

The effects of heterogeneous permeability and fluid saturation are determined from a

mesoscopic rock-physics theory (White, 1975; White et al., 1975; Mavko et al, 2009),

which provides realistic values of attenuation as a function of porosity, steam satura-

tion, fluid viscosity and permeability (Appendix A). It is assumed that the medium

has patches of mesoscopic heterogeneities in a uniform background, where mesoscopic

means smaller than the wavelength and larger than the pore size. White’s model (see

Carcione et al., 2003; Carcione, 2014) describes wave velocity and attenuation as a

function of frequency for a given size, a, of the mesoscopic patches.

White (1975) developed the theory for a gas-filled sphere of porous medium of

radius a located inside a water-filled cube of porous medium. For simplicity in the

calculations, White considered an outer sphere of radius b (b > a), instead of a cube,

where the gas saturation is Sg = a3/b3.

Here, we use a generalization of his theory to an heterogeneous frame and a dis-

tribution of radii aj , j = 1, . . . , J . The following also holds for a fixed radius and

a distribution of saturations S1j . Several probability density (PDF) functions can be

used. The normal distribution from a0 − ∆a to a0 + ∆a is given by the Gaussian

function

PDFj =
δ√
2πσ

exp[−(aj − a0)2/(2σ2)], (1)

where a0 is the dominant radius and σ is the variance of the distribution. There are J

radii equi-spaced at intervals δ = 2∆a/(J − 1). The Rayleigh PDF from 0 to 4 a0 is

PDFj =
2πaj

(J − 1)a0
exp

[
−π

4

(
aj
a0

)2
]
, (2)

where a0 is the mean radius. The uniform PDF from a0 −∆a to a0 +∆a is

PDFj =
1

J
. (3)

In all the cases it is
∑
j PDFj = 1. Other distributions can be found in den Engelsen

et al. (2002).

According to Appendix A, we obtain J complex moduli Kj describing the anelastic

properties of each porous medium with radius aj . We assume that the composite bulk

modulus is given by the Voigt-Reuss-Hill (VRH) average. The Voigt and Reuss averages

are iso-strain and iso-stress approximations, respectively (the stress and strain are

unknown and are expected to be non-uniform). The VRH estimates were found in

most cases to have an accuracy comparable to those obtained by more sophisticated

techniques such as self-consistent schemes and are valid for complex rheologies such as

general anisotropy and arbitrary grain topologies (e.g., Man and Huang, 2011). Then,

based on equation (43), the bulk modulus of the porous medium filled with water and

a distribution of steam patches is

K =
1

2
(KV +KR), (4)
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where

KV =
∑
j

PDFjKj and K−1R =
∑
j

PDFjK
−1
j (5)

and the same approach for the shear modulus.

The effective density is given by the arithmetic average

ρ =
∑
j

PDFjρj . (6)

For a given patch radius a, the location of the relaxation peak is

fp =
κ2KE2

πη2(b− a)2
=

κ2KE2

πη2a2(S
1/3
g − 1)2

(7)

(White, 1975; Carcione, 2014) (see Appendix A, equation (52)), where the subindex “2”

corresponds to the fluid (water). Increasing a implies decreasing the peak frequency.

Note that we could represent other properties as PDF, such as viscosity and fluid bulk

properties. On the other hand, for permeability heterogeneities, we use White et al.

(1975) model (see Appendix A) and instead of a radius, the thickness of the layers are

randomly represented with the PDF.

Since the numerical seismic modeling is performed in the time domain, we approxi-

mate the VRH complex bulk modulus with that of a set of Zener elements (e.g., Picotti

et al, 2010) (see the next Section).

3 The anelastic mechanical model

The constitutive equation, including both the viscoelastic (mesoscopic and shear seis-

mic losses) and brittle-ductile behaviour, can be written as a generalization of the

stress-strain relation reported in Carcione and Poletto (2013).

3.1 Seismic anelasticity and brittleness-ductility due to shear deformations

The Burgers model is a series connection of a dashpot and a Zener model as can be

seen in Figure 1. The usual expression in the time domain is the creep function

χ =

(
t

ηB
+

1

µ0

[
1−

(
1− τσ

τε

)
exp(−t/τε)

])
H(t) (8)

(Carcione et al., 2006; Carcione, 2014), where t is time and H(t) is the Heaviside

function. The quantities τσ and τε are seismic relaxation times for shear deformations,

µ0 is the relaxed shear modulus (see below) and ηB is the (Burgers) flow viscosity

describing the ductile behaviour related to shear deformations. The frequency-domain

shear modulus µ can be obtained as µ = [F(χ̇)]−1, where F denotes time Fourier

transform and a dot above a variable denotes time derivative. It gives

µ = µ0

(
1 + iωτσ
1 + iωτε

− iµ0
ωηB

)−1
, (9)
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where i =
√
−1 and ω is the angular frequency. The shear relaxation times can be

expressed as

τε =
τ0
Q0

(√
Q0

2 + 1 + 1

)
, τσ = τε −

2τ0
Q0

, (10)

where τ0 is a relaxation time such that ω0 = 1/τ0 is the center frequency of the

relaxation peak and Q0 is the minimum quality factor.

The limit ηB → ∞ in equation (9) recovers the Zener kernel to describe the be-

haviour of the brittle material, while τσ → 0 and τε → 0 yield the Maxwell model used

by Dragoni and Pondrelli (1991):

µ = µ0

(
1− iµ0

ωηB

)−1
(11)

(e.g., Carcione, 2014). For ηB → 0, µ→ 0 and the medium becomes a fluid. Moreover,

if ω → ∞, µ → µU = µ0τε/τσ, and µ0 is the relaxed (ω = 0) shear modulus of the

Zener element (ηB =∞).

The Burgers viscosity ηB can be expressed by the Arrhenius equation (e.g., Car-

cione et al., 2006; Montesi, 2007). It is given by

ηB =
σ1−no

2A
exp(E/RT ), (12)

where σo is the octahedral stress,

σo =
1

3

√
(σv − σh)2 + (σv − σH)2 + (σh − σH)2 (13)

(e.g., Carcione and Poletto, 2013), where the σ’s are the stress components in the

principal system, corresponding to the vertical (v) lithostatic stress, and the maximum

(H) and minimum (h) horizontal tectonic stresses, A and n are constants, E is the

activation energy, R = 8.3144 J/mol/oK is the gas constant and T is the absolute

temperature. The form of the empirical relation (12) is determined by performing

experiments at different strain rates, temperatures and/or stresses (e.g., Gangi, 1983;

Carter and Hansen, 1983).

3.2 Dilatational anelasticity due to wave-induced fluid flow

We consider a parallel connection of L Zener elements to approximate the composite

bulk modulus (4). The dilatational relaxation function is

ψK(t) = K0

[
1− 1

L

L∑
l=1

(
1− τεl

τσl

)
exp(−t/τσl)

]
H(t), (14)

where τεl and τσl are the relaxation times and K0 is the relaxed bulk modulus. The

complex modulus can be expressed as

K(ω) =
K0

L

∑
l

(
1 + iωτεl
1 + iωτσl

)
. (15)
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In order to include in the equation of motion pressure effects, we express the bulk

moduli as

K → Kg1(pe), and µ→ µg2(pe), (16)

where gr(pe), r = 1, 2 defines the dependence of the moduli on the effective pressure

pe = pc − np, where pc is the confining pressure, p is the pore (fluid) pressure, n is

the effective stress coefficient, and K0 and µ0 are the bulk and shear moduli at infinite

effective pressure and ηB =∞ (or ω =∞).

Laboratory experiments show that under hydrostatic pore pressure, confining stress

and differential pressure dependences of elastic moduli are phenomenologically de-

scribed by the following relationship

gr(pe) = ar + brpe − cr exp(−pe/p∗r), r = 1, 2 (17)

(Kaselow and Shapiro, 2004; Carcione, 2014), where ar, br, cr and p∗r are fitting pa-

rameters for a given set of measurements. If nr = 1, pe = pd = pc − p, the differential

pressure. The simplest form of function g, in good agreement with experimental data,

is obtained for ar = 1, br = 0, cr = 1− dr and nr = 1, i. e.,

gr(pd) = 1− (1− dr) exp(−pd/p∗r), r = 1, 2, (18)

where gr =1 for pd → ∞ (e.g., very high confining pressure) and gr = dr for pd → 0

(pore pressure equal to the confining pressure).

4 Equations of motion

In order to obtain the equations of motion to describe wave propagation it is convenient

to consider the Burgers relaxation function

ψµ(t) = [A1 exp(−t/τ1)−A2 exp(−t/τ2)]H(t) (19)

(Carcione, 2014; Carcione and Poletto, 2013), where

τ1,2 = − 1

ω1,2
and A1,2 =

µ1µ2 + ω1,2ηεµ2
ηε(ω1 − ω2)

. (20)

and

(2ηBηε)ω1,2 = −b±
√
b2 − 4µ1µ2ηBηε, b = (µ1 + µ2)ηB + µ2ηε. (21)

In terms of the relaxation times and µ0, it is

µ1 =
µ0τε
τε − τσ

, µ2 = µ0
τε
τσ
, ηε = µ1τε. (22)

The complex shear modulus is

µ = F(ψ̇µ) = iω

(
A1τ1

1 + iωτ1
− A2τ2

1 + iωτ2

)
. (23)

It can be verified that equations (9) and (23) coincide.

The stress-strain relation is given by

σ̇ij = ψ̇K ∗ ϑδij + 2ψ̇µ ∗
(
ε̇ij −

1

3
ε̇kkδij

)
, (24)
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where σ are stress components, ε are strain components, ϑ = ε̇ii = ∂ivi is the dilatation

field, v are particle-velocity components, ∂i indicates a spatial derivative with respect

to the variable xi, i = 1,2,3 (x1 = x, x2 = y and x3 = z), δ is Kronecker delta and “∗”
denotes time convolution.

The velocity-stress formulation is

σ̇ij = ψ̇K ∗ ∂kvkδij + ψ̇µ ∗
(
∂ivj + ∂jvi −

2

3
∂kvkδij

)
, (25)

where we have used the velocity-rate of strain relation ε̇ij = 1
2 (∂ivj + ∂jvi).

All the convolutions have the form ψ̇ ∗ ∂ivj and can be avoided by introducing

memory variables. We obtain,

ψ̇K ∗ ϑ = KU

(
ϑ+

∑
l

el

)
= KU

(
∂kvk +

∑
l

el

)
, (26)

where

KU =
K0

βL
, β =

(∑
l

τεl
τσl

)−1
(27)

is the unrelaxed modulus, and el are dilatational memory variables,

el = ϕlH ∗ ϑ, ϕl =
β

τσl

(
1− τεl

τσl

)
exp(−t/τσl), (28)

satisfying

ėl =
1

τσl

[
β

(
1− τεl

τσl

)
ϑ− el

]
(29)

(Carcione, 2014).

On the other hand,

ψ̇µ ∗ ∂ivj = A1(∂ivj + e
(1)
ij )−A2(∂ivj + e

(2)
ij ), i, j = 1, 3, (30)

where

e
(l)
ij = ϕlH ∗ ∂ivj , ϕl = − 1

τl
exp(−t/τl), l = 1, 2, (31)

which satisfy

ė
(l)
ij = − 1

τl
(∂ivj + e

(l)
ij ). (32)

The explicit expression of the stress-strain relation (25) is

σ̇xx = ψ̇K ∗ (∂xvx + ∂yvy + ∂zvz) +
2

3
ψ̇µ ∗ (2∂xvx − ∂yvy − ∂zvz),

σ̇yy = ψ̇K ∗ (∂xvx + ∂yvy + ∂zvz) +
2

3
ψ̇µ ∗ (2∂yvy − ∂xvx − ∂zvz),

σ̇zz = ψ̇K ∗ (∂xvx + ∂yvy + ∂zvz) +
2

3
ψ̇µ ∗ (2∂zvz − ∂yvy − ∂xvx), (33)

σ̇xy = ψ̇µ ∗ (∂xvy + ∂yvx),

σ̇xz = ψ̇µ ∗ (∂xvz + ∂zvx),

σ̇yz = ψ̇µ ∗ (∂yvz + ∂zvy).
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Substituting the memory variables according to equations (26) and (30), we obtain

3σ̇xx = 3KU (∂xvx + ∂yvy + ∂zvz +
∑
l el) + 2 [(A1 −A2)(2∂xvx − ∂yvy − ∂zvz)+

A1(2e
(1)
xx − e

(1)
yy − e

(1)
zz )−A2(2e

(2)
xx − e

(2)
yy − e

(2)
zz )
]
,

3σ̇yy = 3KU (∂xvx + ∂yvy + ∂zvz +
∑
l el) + 2 [(A1 −A2)(2∂yvy − ∂xvx − ∂zvz)+

A1(2e
(1)
yy − e

(1)
xx − e

(1)
zz )−A2(2e

(2)
yy − e

(2)
xx − e

(2)
zz )
]
,

3σ̇zz = 3KU (∂xvx + ∂yvy + ∂zvz +
∑
l el) + 2 [(A1 −A2)(2∂zvz − ∂xvx − ∂yvy)+

A1(2e
(1)
zz − e

(1)
xx − e

(1)
yy )−A2(2e

(2)
zz − e

(2)
xx − e

(2)
yy )
]
.

σ̇xy = (A1 −A2)(∂xvy + ∂yvx) +A1(e
(1)
xy + e

(1)
yx )−A2(e

(2)
xy + e

(2)
yx ),

σ̇xz = (A1 −A2)(∂xvz + ∂zvx) +A1(e
(1)
xz + e

(1)
zx )−A2(e

(2)
xz + e

(2)
zx ),

σ̇yz = (A1 −A2)(∂yvz + ∂zvy) +A1(e
(1)
yz + e

(1)
zy )−A2(e

(2)
yz + e

(2)
zy ).

(34)

On the other hand, the dynamical equations of motion are

v̇x =
1

ρ
(∂xσxx + ∂yσxy + ∂zσxz) + sx,

v̇y =
1

ρ
(∂xσxy + ∂yσyy + ∂zσyz) + sy,

v̇z =
1

ρ
(∂xσxz + ∂yσyz + ∂zσzz) + sz

(35)

(e.g., Carcione, 2014), where si are source components.

The equations of motion are given by equations (29), (32), (34) and (35) in the un-

known vector v = (vx, vy, vz , σxx, σyy, σzz , σxy, σxz , σyz , el, e
(l)
ij )>. In matrix notation

v̇ = M · v + s, (36)

where M is a 27+L × 27+L matrix containing the material properties and spatial

derivatives.

4.1 Wave velocities and attenuation

The wave velocities can be obtained from the density and equation (24), which rep-

resents the stress-strain relations of an isotropic-viscoelastic medium. We make use of

the frequency-domain version of the stress-strain relations and µ =
[
F(ψ̇µ)

]
. Note that

ψ̇µ ∗ χ̇ = δ, where δ is Dirac’s function (e.g., Carcione, 2014). Then, the complex and

frequency-dependent P- and S-wave velocities are

vP (ω) =

√
K + 4µ/3

ρ
, and vS(ω) =

√
µ

ρ
, (37)
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respectively, where the density is given by equation (6).

For homogeneous waves in isotropic media, the phase velocity and attenuation

factors are given by

c =
[
Re
(

1

v

)]−1
(38)

and

α = −ωIm
(

1

v

)
, (39)

and the P- and S-wave quality factors are given by

Q =
Re(v2)

Im(v2)
(40)

(e.g., Carcione 2014), where v represents either vP or vS .

The complex bulk modulus K(ω) (15) is obtained by fitting the generalized White

complex modulus (4).

5 Examples

For geothermal studies, the water properties as a function of pressure and tempera-

ture can be obtained from the fluid thermo-physical database provided in the website

of the National Institute of Standards and Technology (NIST), collected from labora-

tory measurements by Lemmon et al. (2005). In “Thermophysical Properties of Fluid

Systems”, we choose water (1) and isothermal Properties (3). The range of allowable

values are [0, 1000] oC and [0, 1000] MPa. Figure 1 shows typical values of the acoustic

properties. The bulk modulus is given by Kf = ρwc
2
w, where ρw and cw are the water

density and sound velocity.

Table 1 shows the properties of the fluid patches and permeability heterogeneities

that affect the background values (lower table). First, we consider the properties for

partial saturation (upper table) to illustrate how to approximate the White modulus

with Zener elements. Figure 2 shows the normal and Rayleigh distributions and Figure

3 displays the phase velocity and dissipation factor obtained with different PDF: “1

radius” correspond to a value a = 0.5 cm, “3 radii” corresponds to a uniform distri-

bution of a = 0.1, 0.5 and 0.9 cm, and “J radii” is the uniform distribution with J

= 100 radii. The results of the Rayleigh and uniform PDF are similar. Let us obtain

the generalized Zener parameters to represent the 3-radii bulk modulus. The high-

frequency limit modulus is KU = K∞ (see equations (15), (27) and (45)). Figure 4

shows the fit to K (equation (4)) (dots), where (a) is the associated phase velocity and

(b) is the dissipation factor, Re(K)/Im(K). We have used three Zener elements with

parameters f01 = 0.44 Hz, f02 = 1.43 Hz, f03 = 35.7 Hz, Q01 = 13, Q02 = 6, Q03 =

5.9 and K0 = 3.14 GPa, according to the parameterization (10), where f0 = 1/(2πτ0).

Since the Zener peaks resemble the White peaks we have not attempted a fit using a

minimization algorithm, which could further improve the match.

Now, let us consider a constant a radius and describe the gas saturation S1 (Sg)

with a normal PDF distribution. In this case a = S1/b
1/3 (see first paragraph in

Appendix A.1). We assume a mean value S10 = 0.4 (it plays the role of a0 in equation

(2)), a variance σ = 0.1 and ∆S1 = 0.4. Figure 5 shows the normal PDF (a) and the

phase velocity (b) and dissipation factor associated to the White bulk modulus. The
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Zener approximation uses two elements with f01 = 13 Hz, f02 = 3.8 Hz, Q01 = 7.8,

Q02 = 9 and K0 = 8.5 GPa.

Next, we analyze the effects of permeability using equation (50) and the properties

of Table 1. The period of the stratification is L = 1 m. The grain properties of phases

1 (heterogeneities) and 2 (background) are the same, i.e, those of the background

medium. On the basis of a normal distribution of the proportion p1 (p10 = 0.5, ∆p1 =

0.4, σ = 0.1 and J =100), Figure 6 shows the phase velocity and quality factor and the

Zener approximation with two elements (f01 = 9.9 Hz, f02 = 3.9 Hz, Q01 = 16, Q02 =

16 and K0 = 9.66 GPa. ) Now, we vary the permeability of the heterogeneities using a

uniform distribution and keep the size constant and equal to 0.5 m. The permeability

varies uniformly from 10−9 m2 to 10−15 m2, i.e. from 1000 to 10−3 darcy (J = 100).

Figure 7 shows the phase velocity (a) and dissipation factor (b) associated with the

White P-wave modulus. The red line corresponds to κ1 = 1 darcy.

The concept of fluid mobility (permeability divided by the fluid viscosity),

M =
κ

ηf
,

is widely used to define the frequency dependence of seismic velocity and attenuation

(e.g., Batzle et al., 2006). High fluid mobility permits pore-pressure equilibrium between

heterogeneous regions, resulting in a low-frequency state where Gassmann equation is

valid. On the contrary, low fluid mobility implies strong dispersion, even within the

seismic band. Here, the low-frequency assumption fails. The velocity dispersion and

attenuation (mesoscopic loss) is due to the presence of the Biot slow wave. Consider the

case of fine layers (equation (50)). The diffusivity constant is d = κKE/ηf . The critical

fluid-diffusion relaxation length is L =
√
d/ω. The fluid pressures will be equilibrated

if L is comparable to the period of the stratification. For smaller diffusion lengths (e.g.,

higher frequencies) the pressures will not be equilibrated, causing strong attenuation

and velocity dispersion. Notice that the reference frequency (52) is obtained for a

diffusion length L = l1/4. Actually, the key quantity defining the relaxation peaks is

fluid mobility. It can easily be seen that permeability and viscosity are involved as a

ratio in the equations of Appendices A.1 and A.2. However changes in permeability are

more significant since its range is wider than that of viscosity (orders of magnitudes

from sandstones to shales).

In the following, we illustrate how the seismic velocity varies with saturation and

permeability (the frequency is 10 Hz). Figure 8 displays the P-wave phase velocity (38)

(a) and dissipation factor (40) (b) as a function of steam saturation predicted by the

generalized White model based on the Rayleigh PDF (a0 = 0.5 m, J = 100). Velocity

clearly decreases with increasing steam saturation while the dissipation factor has a

maximum at approximately 30 % saturation. Figure 9 shows the phase velocity (a) and

dissipation factor (b) as a function of the background permeability. The permeability

heterogeneities follow a uniform PDF and the size is 0.5 m. There is a relaxation peak

similar to the frequency peaks. The maximum occurs at κ2 = 10−12.74 m2 = 0.18

darcy (the operation 1012−p converts to darcy). A plot as a function of fluid mobility

(M2 = κ2/η2) is identical, but with the abscissa values scaled by 1/η2.

First, we test the numerical code against the 3D analytical solution for P-S waves

in homogeneous media (Appendix B). To compute the transient responses, we use a

Ricker wavelet of the form:

w(t) =
(
a− 1

2

)
exp(−a), a =

[
π(t− ts)

tp

]2
, (41)
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where tp is the period of the wave (the distance between the side peaks is
√

6tp/π) and

we take ts = 1.4tp. Its frequency spectrum is

W (ω) =

(
tp√
π

)
ā exp(−ā− iωts), ā =

(
ω

ωp

)2

, ωp =
2π

tp
. (42)

The peak frequency is fp = 1/tp.

We consider the case given in Figure 5, and two values of the Burgers viscosity,

namely ηB = 1020 Pa s and ηB = 2 × 108 Pa s. In the second case, the S wave is

highly attenuated due to melting (extreme ductility). The shear seismic quality factor

is assumed to be infinite. The numerical mesh (a cube) has 813 grid points and a grid

spacing of dx = dy = dz = 20 m. The source is a vertical force (sx = sy = 0 and

sz = w(t)), with fp = 15 Hz and the receiver is located at x = 200 m, y = 0 m and z =

300 m from the source. The solution is computed using a time step dt = 2 ms. Figure

10 shows the comparison between the numerical and analytical solutions for the two

values of ηB , where (a) and (c) correspond to v1 and (b) and (d) to v3. The agreement

is excellent is all the cases.

In order to illustrate the effect of attenuation, Figure 11 shows the comparison

between the solutions without and with the mesoscopic loss for ηB = 1020 Pa s. We

show the P wave since the S wave is not affected. As can be seen, there is attenuation

and strong velocity dispersion due to the effects caused by the saturation distribution

(Figure 5a). The lossless wavefield is slower than the lossy wavefield due to the fact

that the lossless case has been chosen in the low-frequency limit (K → K0 in equation

(15). What is relevant is that different frequency windows travel with a different phase

velocity (Figure 5b).

The modeling algorithm allows us to compute snapshots of the wavefield, which

are useful for the interpretation of the seismograms. Snapshots at the (x, z)-plane are

shown in Figure 12, where (a) and (b) correspond to the vx-component for ηB = 1020

Pa s, with (a) and without (b) mesoscopic-loss. As in the seismograms shown in Figure

11, there is a strong attenuation of the P wave and the S wave (inner wavefront) is not

affected.

6 Conclusions

Geothermal reservoirs behave brittle and ductile depending on the in-situ temperature

and pressure conditions and show strong mesoscopic-type anelasticity due to zones

of high permeability (high porosity) and partial fluid saturation. These factors affect

seismic waves (phase velocity and attenuation) to the extent that the seismic properties

can be good indicators for ductility (partial melting), reservoir permeability and fluid

content. The critical frequency at which the peak of attenuation and maximum velocity

dispersion occur is an additional indicator.

We present a methodology to model the seismic properties of geothermal reser-

voirs, including ductility, by using a poro-viscoelastic description, based on White

mesoscopic-loss theory and the Burgers mechanical model. Losses due to dilatational

deformations are described by a generalization of the White model to the case of a

distribution of heterogeneities based on different distribution functions. The rheolog-

ical equation is implemented in seismic numerical modeling by means of a general-

ized Zener model and memory variables, where the governing equations are solve with
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a pseudospectral method. The Burgers model describes seismic attenuation due to

shear deformations. Moreover, the theory can model variations of the properties due

to changes in temperature and confining and pore pressure. The wet-rock seismic ve-

locities can explicitly be obtained as a function of the water properties at critical and

supercritical conditions. We show how a distribution of saturation and permeability

heterogeneities affect the amplitude and attenuation of the wavefield. The numerical

solution is tested against and analytical solution obtained with the correspondence

principle. The agreement between solution is excellent. Future research will consider

the presence of anisotropy due to oriented fractures.

Acknowledgments: This work was partially supported by the MATER (WP4

MATER-GEO) project.

References

Ba, J., Carcione, J. M., Du, O., Zhao, H., and Müller, T. M., 2015, Seismic ex-

ploration of hydrocarbons in heterogeneous reservoirs, New theories, meth-

ods and applications, Elsevier Science.

Batzle, M. L., Han, D.-H., and Hofmann, R., 2006, Fluid mobility and frequency-

dependent seismic velocity – Direct measurements, Geophysics, 71, N1-N9.

Carcione, J. M., 2014, Wave fields in real media: Wave propagation in anisotropic,

anelastic, porous and electromagnetic media. Handbook of Geophysical Ex-

ploration, vol. 38, Elsevier (3nd edition, revised and extended).

Carcione, J. M., Helle, H. B., and Pham, N. H., 2003. White’s model for wave

propagation in partially saturated rocks: Comparison with poroelastic nu-

merical experiments, Geophysics, 68, 1389–1398.

Carcione, J. M., Helle, H. B., and Gangi, A. F., 2006, Theory of borehole

stability when drilling through salt formations, Geophysics, 71, F31–F47.

Carcione, J. M., and Poletto, F., 2013, Seismic rheological model and reflection

coefficients of the brittle-ductile transition, Pure and Applied Geophysics,

170, 2021–2035.

Carcione, J. M., and Poletto, F., and Farina, B., 2017, The Burgers/squirt-flow

seismic model of the crust and mantle, Physics of the Earth and Planetary

Interiors, accepted.

Carter, N. L., and Hansen, F. D., 1983 Creep of rocksalt, Tectonophysics, 92,

275–333.

Man, C.-S., and Huang, M., 2011, A simple explicit formula for the Voigt-

Reuss-Hill average of elastic polycrystals with arbitrary crystal and texture

symmetries, J. Elast., 105, 29–48.

den Engelsen, C. W., Isarin, J. C., Gooijer, H., Warmoeskerken, M. M. C. G.,

and Groot Wassink, J., 2002, Bubble size distribution of foam, AUTEX

Research J., 2.

Dragoni, M., and Pondrelli, S., 1991, Depth of the brittle-ductile transition in

a transcurrent boundary zone, Pure and Applied Geophysics, 135, 447–461.



14

Feng, T., and Mannseth, T., 2010, Impact of time-lapse seismic data for per-

meability estimation, Comput. Geosci., 14, 705–719.

Gangi, A.F., 1983, Transient and steady-state deformation of synthetic rocksalt,

Tectonophysics, 91, 137–156.

Grab, M., Quintal, B., Caspari, E., Maurer, H., and Greenhalgh, S., 2017, Nu-

merical modeling of fluid effects on seismic properties of fractured magmatic

geothermal reservoirs, Solid Earth, 8, 255–279.

Johnson, D.L., 2001, Theory of frequency dependent acoustics in patchy-saturated

porous media, Journal of the Acoustical Society of America, 110, 682–694.

Kaselow, A., and Shapiro, S. A., 2004, Stress sensitivity of elastic moduli and

electrical resistivity in porous rocks, J. Geophys. Eng., 1, 1–11.

Lemmon, E. W., McLinden, M. O., Friend, D. G., 2005, Thermophysical prop-

erties of fluid systems. In: Lindstrom, P.J., Mallard, W.G. (eds.), NIST

Chemistry Webbook 69, NIST Standard Reference Database, Gaithersburg,

MD, USA, http://webbook.nist.gov/chemistry/.

Mainardi, F., and Spada, G., 2011, Creep, relaxation and viscosity properties

for basic fractional models in rheology, The European Physical Journal,

Special Topics, 193, 133–160.

Manning, C.E., and Ingebritsen, S. E., 1999, Permeability of the continental

crust: the implications of geothermal data and metamorphic systems, Re-

views of Geophysics, 37, 127–50.

Mavko, G., Mukerji, T., and Dvorkin, J., 2009. The rock physics handbook:

tools for seismic analysis in porous media, Cambridge Univ. Press.

Meissner, R., and Strehlau, J., 1982, Limits of stresses in continental crusts and

their relation to the depth-frequency distribution of shallow earthquakes,

Tectonics, 1, 73–89.

Müller, T. M., Toms-Stewart, J., Wenzlau, F., 2008, Velocity-saturation relation

for partially saturated rocks with fractal pore fluid distribution, 35, L09306,

doi:10.1029/2007GL033074, 2008

Picotti, S., Carcione, J. M., Rubino, G., Santos, J. E., and Cavallini, F., 2010, A

viscoelastic representation of wave attenuation in porous media, Computer

& Geosciences, 36, 44–53.

Pilant, W. L., 1979, Elastic waves in the earth. North-Holland Amsterdam.

Poletto, F., Farina, B., and Carcione, J. M., 2017, Sensitivity of seismic prop-

erties to temperature variations in a geothermal reservoir, submitted to

Geothermics.

Shapiro, S. A., and Müller T., 1999, Seismic signatures of permeability in het-

erogeneous porous media, Geophysics, 64, 99–103.

Toms, J., Müller, T. M., and Gurevich, B, 2007, Seismic attenuation in porous

rocks with random patchy saturation, Geophys. Prospect., 55(5), 671–678.

White, J. E., 1975. Computed seismic speeds and attenuation in rocks with

partial gas saturation, Geophysics 40, 224–232.

White, J. E., Mikhaylova, N. G., and Lyakhovitskiy, F. M., 1975, Low-frequency

seismic waves in fluid saturated layered rocks, Izvestija Academy of Sciences

USSR, Phys. Solid Earth, 11, 654–659.



15

A White’s model for mesoscopic loss

A.1 Gas patches. Partial saturation

White (1975) has assumed spherical gas pockets much larger than the grains but much smaller
than the wavelength. He developed the theory for a gas-filled sphere of porous medium of radius
a located inside a water-filled cube of porous medium. For simplicity in the calculations, White
considers an outer sphere of radius b (b > a), instead of a cube. Thus, the system consists of
two concentric spheres, where the volume of the outer sphere is the same as the volume of the
original cube. In 3-D space, the outer radius is b = l/(4π/3)1/3, where l is the size of the cube.
In 2-D space, the outer radius is b = l/

√
π, where l is the size of the square. The distance

between pockets is l. Let us denote the saturation of gas and water by S1(Sg) and S2(Sw),
respectively, such that S1+S2 = 1. Then S1 = a3/b3 in 3-D space and S1 = a2/b2 in 2-D space.
When a = l/2 the gas pockets touch each other. This happens when S1 = π/6 = 0.52 in 3-D
space. Therefore, for values of the gas saturation higher than these critical value, or values of
the water saturation between 0 and 0.48, the theory is not rigorously valid. Another limitation
to consider is that the size of gas pockets should be much smaller than the wavelength, i.e.,
a� cr/f , where cr is a reference velocity and f is the frequency.

White’s equations are given in Mavko et al (2009) and reported in the following for com-
pleteness. Assuming that the dry-rock and grain moduli and permeability, κ, of the different
regions are the same, the complex bulk modulus as a function of frequency is given by

K[single patch size] =
K∞

1−K∞W
, (43)

where

W =
3a2(R1 −R2)(Q2 −Q1)

b3iω(Z1 + Z2)
,

αR1 =
(K1 −Km)(3K2 + 4µm)

K2(3K1 + 4µm) + 4µm(K1 −K2)S1
,

αR2 =
(K2 −Km)(3K1 + 4µm)

K2(3K1 + 4µm) + 4µm(K1 −K2)S1
,

(κ/η1a)Z1 =
1− exp(−2γ1a)

(γ1a− 1) + (γ1a+ 1) exp(−2γ1a)
,

−(κ/η2a)Z2 =
(γ2b+ 1) + (γ2b− 1) exp[2γ2(b− a)]

(γ2b+ 1)(γ2a− 1)− (γ2b− 1)(γ2a+ 1) exp[2γ2(b− a)]
,

γn =
√

iωηn/(κKEn),

KEn =

[
1−

αKfn(1−Kn/Ks)
φKn(1−Kfn/Ks)

]
Mn,

Mn =

[
φ

Kfn
+

1

Ks
(α− φ)

]−1

,

α = 1−
Km

Ks
,

Qn =
αMn

Kn
;

(44)

K∞ =
K2(3K1 + 4µm) + 4µm(K1 −K2)S1

(3K1 + 4µm)− 3(K1 −K2)S1
(45)
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is the – high frequency – bulk modulus when there is no fluid flow between the gas pockets.
K1 and K2 are the – low frequency – Gassmann moduli, which are given by

Kn =
Ks −Km + φKm

(
Ks/Kfn − 1

)
1− φ−Km/Ks + φKs/Kfn

, n = 1, 2. (46)

At the low-frequency limit, we have the Reuss average of the fluid moduli and the value is

K0 ≈
K2(K1 −Km) + S1Km(K2 −K1)

(K1 −Km) + S1(K2 −K1)
, (47)

according to Mavko et al. (2009).
The peak relaxation frequency is approximately given by

fp =
κKE2

πη2(b− a)2
. (48)

The density is obtained as an arithmetic average:

ρ = (1− φ)ρs + φ[(ρf1 − ρf2)S1 + ρf2]. (49)

A.2 Heterogeneous permeability

In this case, we consider a model that assumes different frame properties of the two frames
and the same fluid. The model is given by a stack of two thin alternating porous layers of
thickness l1 and l2, such that the period of the stratification is L = l1 + l2 and the proportion
if medium 1 and medium 2 are p1 = l1/L (the permeability heterogeneities) and p2 = l2/L
(the background medium in Table 1). Omitting the subindex j for clarity, the complex and
frequency dependent P-wave stiffness is given by

E =

[
1

EG
+

2(r2 − r1)2

iω(l1 + l2)(I1 + I2)

]−1

, (50)

where

r =
αM

EG
, I =

η

κs
coth

(
aL

2

)
, s =

√
iωηEG

κMEm
, (51)

for each single layer (White et al., 1975; Carcione and Picotti 2006) [see also Carcione (2014),
eq. (7.453)], where EG = (p1/EG1 + p2/EG2)−1, EGj = Kj + (4/3)µmj and Emj = Kmj +
(4/3)µmj , with j =1 and 2 being the heterogeneities and background media, respectively.

The peak relaxation frequency is approximately given by

fp =
8κ2KE2

πη2l22
. (52)

The composite shear modulus is given by the Voigt-Reuss-Hill average, i.e,

µU =
1

2
(µR + µV ), µ−1

R = p1µ
−1
m1 + p2µ

−1
m2, and µV = p1µm1 + p2µm2, (53)

where the subscript“U ” means unrelaxed (high frequency limit).
The density is obtained as

ρ = [(1− φ1)ρs + φ1ρf ]p1 + [(1− φ2)ρs + φ2ρf ](1− p1), (54)

where we have assumed that the medium has the same mineral.
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B Analytical solution

The 3D viscoelastic Green’s function can be obtained by generalising the elastic solution using
the correspondence principle (e.g., Carcione, 2014). The elastic solution for a vertical force is
given in Pilant (1979, p. 69). Here the sign of ω is reversed, since we use the opposite Fourier
convention. The displacement Green function in spherical coordinates corresponding to the
wave field generated by an impulsive vertical force of strength F0 is given by

Gr(r, ω, vP , vS , ρ) =
F0 cos θ

4πρ

[
1

r
exp

(
−

iωr

vP

)(
1

v2P
−

2i

ωrvP
−

2

ω2r2

)

+
2

ωr2
exp

(
−

iωr

vS

)(
i

vS
+

1

ωr

)]
(55)

Gθ(r, ω, vP , vS , ρ) =
F0 sin θ

4πρ

[
−

1

ωr2
exp

(
−

iωr

vP

)(
i

vP
+

1

ωr

)

−
1

r
exp

(
−

iωr

vS

)(
1

v2S
−

i

ωrvS
−

1

ω2r2

)]
(56)

where r =
√
x2 + y2 + z2 and θ is the angle between the position vector and the vertical axis.

Since the source is vertically directed, there is azimuthal symmetry. We choose the (x, z)-
plane and the Cartesian solution is

Gx = sin θGr + cos θGθ,

Gz = cos θGr − sin θGθ.
(57)

The 3D viscoelastic particle velocities can then be expressed as

vi(r, ω) = −iωW (ω)Gi(r, ω), i = x, z, (58)

where −iω represents the time derivative in the frequency domain and W is the Fourier trans-
form of the source time history (see equation (42)). A numerical inversion to the time domain
by a discrete Fourier transform yields the desired time-domain solution.
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Table 1. Poro-elastic properties

Saturation patches

ρf1 = 100 kg/m3

Steam Kf1 = 0.1 GPa
η1 = 3× 10−5 Pa s

Permeability heterogeneities

Km1 = 2 GPa
Frame µm1 = 1 GPa

φ1 = 0.35
κ1 = 1.5 darcy

Background medium

ρs2 = 2650 kg/m3

Grain Ks2 = 35 GPa
µs2 = 32 GPa
Km2 = 7 GPa

Frame µm2 = 9 GPa
φ2 = 0.18
κ2 = 0.1 darcy

ρf2 = 990 kg/m3

water Kf2 = 2.25 MPa
η2 = 0.001 Pa s
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Fig. 1 Water density (a), sound velocity (b) and viscosity (c) for a wide range of pressures
and temperatures (data taken from the NIST website).
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Fig. 3 P-wave phase velocity (38) (a) and dissipation factor (40) (b) versus frequency pre-
dicted by the generalized White model with different patch size distributions. 3 and J radii
correspond to a uniform distribution.
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Fig. 4 Phase velocity (a) and dissipation factor (b) versus frequency associated with White
bulk modulus K corresponding to the 3-radii distribution: (a) exact (solid line); (b) Zener
approximation (dots).
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Fig. 5 Normal PDF (a), phase velocity (b) and dissipation factor (c) versus frequency associ-
ated with White bulk modulus corresponding to partial saturation: (a) exact (solid line); (b)
2-Zener approximation (dots).
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Fig. 6 Phase velocity (a) and dissipation factor (b) versus frequency associated with White
P-wave modulus corresponding to permeability heterogeneities of different size determined by
a normal PDF: (a) exact (solid line); (b) 2-Zener approximation (dots).
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Fig. 7 Phase velocity (a) and dissipation factor (b) versus frequency associated with White
P-wave modulus corresponding to permeability heterogeneities of size 0.5 m, whose values are
determined by a uniform PDF. The red line corresponds to κ1 = 1 darcy.
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Fig. 8 P-wave phase velocity (38) (a) and dissipation factor (40) (b) as a function of steam
saturation predicted by the generalized White model based on a Rayleigh PDF.
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Fig. 9 Phase velocity (a) and dissipation factor (b) as a function of the exponent of the
background permeability, p, (κ2 = 10−p m2) (p =12 refers to 1 darcy), associated with White
P-wave modulus corresponding to permeability heterogeneities of size 0.5 m, whose values are
determined by a uniform PDF.
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Fig. 10 Comparison between the analytical (solid line) and numerical (symbols) solutions for
ηB = 1020 Pa s (a and b) and ηB = 2 × 108 Pa s (c and d). The horizontal (a and c) and
vertical (b and d) particle velocities are shown. The fields are normalised. The amplitude of
the S wave in (c) and (d) are much lower than in (a) and (b) due to attenuation arising from
the plastic viscosity.
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Fig. 11 Comparison between the solutions without (dashed line) and with (solid line) the
mesoscopic loss for ηB = 1020 Pa s. The horizontal (a) and vertical (b) particle velocities are
shown. The fields are normalised.
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Fig. 12 Snapshots of the vx component at 0.34 s. The field has been computed at the (x, z)-
plane for ηB = 1020 Pa s, with (a) and without (b) mesoscopic-loss.


