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Abstract. The earth’s crust presents two dissimilar rheolog-1 Introduction
ical behaviors depending on the in situ stress-temperature
conditions. The upper, cooler part is brittle, while deeper The seismic characterization of the brittle—ductile transition
zones are ductile. Seismic waves may reveal the presend®DT) is essential in earthquake seismology and geother-
of the transition but a proper characterization is required.mal studies, since it plays an important role in determining
We first obtain a stress—strain relation, including the effectsthe nature and nucleation depth of earthquakésigsner
of shear seismic attenuation and ductility due to shear deand Strehlau1982 Zappong1994 Simpson 1999 and the
formations and plastic flow. The anelastic behavior is basechvailability of geothermal energianzella et al.1998. The
on the Burgers mechanical model to describe the effects oBDT in the earth is generally viewed as a transition between
seismic attenuation and steady-state creep flow. The shedwo different constitutive behaviors, viscoelastic and plastic
Lamé constant of the brittle and ductile media depends or{Dragoni 1990. There is evidence that the K horizon in the
the in situ stress and temperature through the shear viscogtpper crust of central Italy corresponds to a shear plane sep-
ity, which is obtained by the Arrhenius equation and the oc-arating the brittle crust from the ductile cru@rogi et al,
tahedral stress criterion. The and S wave velocities de-  2003.
crease as depth and temperature increase due to the geother-The viscosity of the crust is a fundamental factor in defin-
mal gradient, an effect which is more pronounced for shearng the properties of the BDT interface. The contrast in prop-
waves. We then obtain the-S and SH equations of motion  erties at the transition is mainly due to the dissimilar shear
recast in the velocity-stress formulation, including memory rigidity with much lower values in the ductile mediurl&t-
variables to avoid the computation of time convolutions. Thesumoto and Hasegaw&996. The ductile medium mainly
equations correspond to isotropic anelastic and inhomogeﬂOWS when subjected to deviatoric stress, while it does not
neous media and are solved by a direct grid method baseghow major flow under hydrostatic stress. The flow defor-
on the Runge—Kutta time stepping technique and the Fouriefation is then mainly associated with the shear modulus of
pseudospectral method. The algorithm is tested with succed§ie medium. The deviatoric stress is determined by the oc-
against known analytical solutions for different shear viscosi-tahedral stressyo, a scalar that is invariant under coordi-
ties. A realistic example illustrates the computation of sur-nate transformations and whose value determines the char-
face and reverse-VSP synthetic seismograms in the presen@gter of the flow. When the stress vector associated with the
of an abrupt brittle—ductile transition. normal to the octahedral plane is generated, its components
in the principal directions are the eigenstresses (or principal
stresses). Alternatively, it has two components — one normal
to the plane (which has a magnitude equal to the mean stress)
and one tangential to the plane, which has a magnitude equal
to the octahedral stress (and the latter is proportional to the
magnitude of the deviatoric stress). The rock starts to yield
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y7 propagation in heterogeneous media involving the brittle—
ductile transition. The differential equations are solved in the
Mo n W_ )] time domain by using memory variable€grciong 2007).
o) o We assume isotropic media and plane strain conditions and
‘_“—,V\N\_"_ﬂ_" n; obtain the differential equations of motion for 28-S and
il o SH waves. The equations are recast in the velocity-stress for-
2 mulation, requiring eight and four memory variables in the
first and second cases when using one shear relaxation mech-
anism. The equations are solved by a direct grid method
based on the Runge—Kutta and the Fourier methods, corre-
| g | sponding to the time and spatial discretizations (eCgu-
ciong 2007).

&3 & &l

Figure 1. Mechanical representation of the Burgers viscoelastic

model for shear deformations (e.§arcione 2007). o, €, 1 and .

n represent stress, strain, shear modulus and viscosity, respectivelg, The Burgers mechanical model
wherenq describes seismic relaxation, whijes related to plastic

flow and processes such as dislocation creep. The constitutive equation, including both the viscoelastic and

ductile behavior, can be written as a generalization of the 1-D
stress—strain relation reported Byagoni(1990 andDrag-

oni and Pondrell{1991]) to the 3-D anelastic case, replacing
the Maxwell model by the Burgers modeldrcione et aJ.
t2006 Carcione 2007 Carcione and Poletf@013.

when o, exceeds the elastic octahedral-stress limit. Below
this limit, there is gradual creep deformation when constan

;t]ress LS ‘f"plgl'ﬁd' Theq, ko 'IS I(i\./vert than trt1e .elasltm;. “mlﬁ‘ The Burgers model is a series connection of a dashpot and
€ material follows a viscoelaslic stress—strain relalion a Zener model as can be seen in Fig. 1. The usual expression

gxceeds this limit, steady-state flow and failure occurs (Car—in the time domain is the creep function
cione and Poletto, 2013).

The flow viscosity is a function of temperature and pres-_ _ (1 1 To
sure, determined by the geothermal gradient and the litho” — (H + o [1_ <1_ Z) eXp(_t/Té)D ") (1)
static stress, respectively. An alternative constitutive eqUaicarcione et a). 200§ Chauveau and Kaminski2008,

tion is proposed byueckel et al(1994), based on athermo-  \herey is time andH (1) is the Heaviside function. The quan-
plasticity theory, where the elastic domain is postulatedyjsies ;. andq, are seismic relaxation timesy is the relaxed

as temperature dependent, shrinking with temperature._Oghear modulus (see below) ands the flow viscosity de-
the other handArcay (2019 proposes a thermomechani-  gciping the ductile behavior related to shear deformations.

cal model based on a non-Newtonian viscous rheology angq frequency-domain shear modujusan be obtained as

a ps.eud.o-brittle rheology. . ) . . w=[FG)]~L, whereF denotes time Fourier transform and
Itis widely accepted that linear viscoelastic-plastic models, ot above a variable denotes time derivative. It is formu-
are appropriate to describe the behavior of ductile and britthated as

media.Gangi(1981, 1983 used this type of model to fit data

for synthetic and natural rock salt. The viscoelastic creep ofy, = - ,
salt has been described with a Burgers modelClaycione 1+iot, — wL,?(lJriwfe)
et al. (2006. Carcione and Polett(?013 used the Burgers ) — .

model to describe the BDT transition, including the presencevﬁher? =v-1 ﬁndw Is the Sngular frequency. The relax-
of anisotropy and seismic attenuation. The Burgers model iGHon imes can be expressed as

shown in Fig. 1 (the Maxwell and Zener model are particular w0 ( /5 _ 210

cases of this model). The simulations presented here considéf — Qo Qo +1+1), to=1— 00’ ©)
both media, ductile and brittle, with the Zener model usedwherero is a relaxation time such that = 1/70 is the cen-

to describe the viscoelastic motion with no plastic flow, ob- ter frequency of the relaxation peak agg is the minimum

tained as the limit of infinite plastic viscosity. Seismic wave , ;
X quality factor. The dependence of the quality factor as a func-
losses are solely due to shear deformations. k L .
tion of frequency is given below in Eq24).

Computational geophys!cs IS e.sse_ntlal to study th? stryc- The limit n — oo in Eq. ) recovers the Zener kernel to
ture of the earth on the basis of seismic forward modeling, in- : . : . ;
version and interpretatiorZ&ppone 1994 Long and Silve describe the behavior of the brittle material, while— 0
. P ppone 9 4 andr. — 0yield the Maxwell model used yragoni(1990
2009 Juhlin and Lung2011). In particular, grid methods are . .
. : . T2 andDragoni and Pondrel(j1991):
required for simulating wave propagation in heterogeneous
realistic models (e.gCarcione et a).2002 Seriani et al. ) -1
1992. In this work, we propose to simulate seismic wave # = 10 1- w_n

no(l+iwte)

)

4
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(e.g.,Carciong 2007). For n — 0, u — 0 and the medium
becomes a fluid. Moreover,d — oo, u — pote /T, andug

1003

(e.g., Carcione 2007, where is a Lamé constanty are
stress components,are particle-velocity component,in-

is the relaxed¢ = 0) shear modulus of the Zener element dicates a spatial derivative with respect to the variaple

(1 =00).

=1,2,3 (1 =x, x2 =y andxz = z), and %" denotes time

The viscosityn can be expressed by the Arrhenius equa-convolution.

tion (e.g.,Carcione et a).2006 Montesj 2007). It is related
to the steady-state creep réatby

The convolutions have the forgh « 9; v; and can be over-
come by introducing memory variables. We obtain

Jxdv; = A1 +el)) — Ap@vj+el), i j =13 (13)

Oo
=, 5
=5 (5)
whereaoy, is the octahedral stress. The creep rate can be €Xihere
pressed as
é = Aoy exp(—E/RT) (6)

(e.g.,Gangi 1983 Carcione et aJ.2006 Carcione and Po-
letto, 2013, whereA andn are constants; is the activation
energy,R = 8.3144 Jmot1 K1 s the gas constant arfdis

the absolute temperature. The form of the empirical relation

(Eq. 6) is determined by performing experiments at different ;m _ _i(al. v+ elﬂ;"))_
Tm

strain rates, temperatures and/or stresses @angi 1983
Carter and Hansei983.

In order to obtain the equations of motion to describe wave

propagation it is convenient to consider the Burgers relax-dxx — (L + 241 — 242)0, vy + 1.0,

ation function
Y (1) = [Ar1exp(—t/T11) — Azexp(—t/T2)1H (t) (7)
(Carciong 2007, where

1 +ow
o= — and Aqp= nip2 + w1 2m1 /L2 (8)
1,2 ni(w1 — w2)

and

(2nnDwi2 = —b £/b? — A ponny, (9)

b= (n1+ p2)n+ poni.
In terms of the relaxation times ang, it is
10T

T
1= . M2=p0—, N1=iTe. (10)
Te — To To
The complex shear modulus is
i A1my Az12
= F(y) = - . 11
n=F lw(l—l—iwtl 1+ia)12) (11)

It can be verified that Eqs2) and (L1) coincide.

3 2-D propagation of P-S waves

Let us consider plane-strain conditions and propagation in

1
eg‘n)zgmH*aina gmz__c_exlx_t/fm)v (14)
m
m=1,2,
which satisfies
ij (15)
The stress—strain relation becomes
(16)
+ 2(1“16&2 — Azegc)),
62 = (A+ 241 — 2A2)0.0; + A0y Uy (17)
+2(A1elD — Aze@),
6xz = (A1 — A2)(Byv; + 0;v2) + Arel? (18)

— Age)(czz) + Aleg) — Azeg).
On the other hand, the dynamical equations of motion are

Uy = %(axaxx +0,0x;) + sy,
(19)
vy = %(3x(fxz +09;0:7) + s2

(Carcione 2007, where p is the mass density and are
source components.

The equations of motion are given by Eqgs5), (16) and
(19) in the unknown vecton = (vy, v;, Oy, 02z, Oxz, eg.”))T.
In matrix notation
V=M.v+s, (20)
whereM is a 13x 13 matrix containing the material proper-
ties and spatial derivatives.

In view of the correspondence principle (e.Garcione

the (x, z) plane. The simplesk-S stress—strain relation, with 2007, the complex and frequency-depend@nand S wave

shear loss and flow, are
Gux = AM(Bx vy + 0.0.) + 20 % vy,
G2z = M0y Uy + 0-0;) + 207 % 0, v;, (12)
Oxz = lﬁ * (0x vz + 0zux)

www.solid-earth.net/5/1001/2014/

velocities are

vp(w)=‘lw, and vg(w) = %’

respectively.

(21)
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For homogeneous waves in isotropic media, the phase vewhere exrM) is the evolution operator of the system. The

locity and attenuation factors are given by

1 -1
cp(s) = [Re( >:| (22)
VP(S)
and
ap(s) =—w|m< ), (23)
UP(S)
and theP andS wave quality factors are given by
Rew? ()
Ops) = # (24)
Im(vP(S))

(e.g.,Carcione 2007).

4 Propagation of SH waves

numerical solution is based on a Taylor expansion of this op-
erator up to the fourth order, and the Runge—Kutta algorithm
is used Jain 1984 Carcione 2007).

The spatial derivatives are calculated with the Fourier
pseudospectral metholdsloff and Baysal1982 Carcione
2007. This method consists of a spatial discretization and
calculation of spatial derivatives using the fast Fourier trans-
form. It is a collocation technique in which a continuous
function is approximated by a truncated series of trigonomet-
ric functions, wherein the spectral (expansion) coefficients
are chosen such that the approximate solution coincides with
the exact solution at the discrete set of sampling or colloca-
tion points. The collocation points are defined by equidistant
sampling points. Since the expansion functions are periodic,
the Fourier method is appropriate for problems with periodic
boundary conditions. The method is infinitely accurate up to
the maximum wavenumber of the mesh, that corresponds to

The stress—strain relations describing shear motion in thé Spatial wavelength of two grid points.

(x,z) plane are
Oyy = w * Oy Uy,
, (25)
Gry =¥ * 0,0y

(Carciong 2007).

On the other hand, the dynamical equation of motion is
. 1
Uy = ;(axoxy +0;0,) + 5, (26)

wheres is the source@arciong 2007).
Applying the same procedure as in theS case we obtain

. 1 2
Gry = (A1 — A2)dy vy + Arel) — Azel?),

(27)
. 1 2
Guy = (A1 — A2)D,vy + Arely — Age?,
with
e =~ L@y +el),
. (28)
e = —L @0y +el),
m=1,2.

The stability condition of the Runge—Kutta method is
cmaxdt /dmin < 2.79, wherecmax is the maximum phase ve-
locity, dr is the time step andm;, is the minimum grid spac-
ing.

6 Examples

First, we test the numerical code against an analytical solu-
tion for P-S waves in homogeneous media (Appendix A). To
compute the transient responses, we use a Ricker wavelet of
the form

2
n(t—ts)] 7 (30)

1
w(t) = (a — E) exp(—a), a= |: .

wherety, is the period of the wave (the distance between the

side peaks is/Etp/n) and we takes = 1L.41p. Its frequency
spectrum is

W(w) = (t—p>c"zexp(—& —iwts), (31)

N

_ o \? 2
a=(—], wp=—.
®p Ip

The equations of motion are given by Egs. (15-19) in the un-The peak frequency i = 1/1p.

Known vectore = (vy, 0y, 05y, eln’, e) T and can be re-

cast as Eq.20) with matrix M of dimension 7x 7.

5 Numerical solution
The formal solution to Eq20) with zero initial conditions is
given by
t
v(t) = fexp(tM) -s(t —1)dr,
0

(29)

Solid Earth, 5, 10014010 2014

The rock is described by an unrelaxed P-wave velocity of
cp = 6kms 1. Considering a Poisson medium, we obtain an
S-wave velocity ofcg = 3.464kmst. We havex + 2u0 =
pc? anduo = pc. Assuming a density f = 2700 kg nt3,
we havei = o =324 GPa. The seismic quality factor is
Qo = 40 andwg = 27 fp. The numerical mesh has 23231
grid points and a grid spacing okd dz =30 m. The source
is a vertical force withf, = 10 Hz and the receiver is located
atx = z = 1.2km from the source. The solution is computed
using a time steptd= 1 ms. Figure 2 shows the comparison
between the numerical and analyti€wave solutions for

www.solid-earth.net/5/1001/2014/
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Figure 2. Comparison between the analytical (solid line) and numerical (symbols) PS-wave solutions. The fields are normalized. The
amplitude in(c) and(d) are much lower than ita) and(b) due to attenuation arising from the plastic viscosity. Fheave has disappeared
for n = 10° Pas.

n = 107%°Pas (a—b) and = 10° Pas (c—d), where (a) and (c) ples (GBF) Violay et al, 201Q 2012, in agreement with
correspond te, and (b) and (d) te,. At the source peak fre- the results oHacker and Christi€1992. In the absence of
quency, the P- and S-wave quality factors foe= 10?°°Pas  glass (silica) — which strongly influences the ductile behav-
are 60 and 40, while those corresponding te 10° Pas are ior of the basaltic rock at lower temperatures — the glassy-
2.9 and 1.8, respectively, i.e., very strong attenuation. The refree basalt presents rapid BDT variation at high temperatures.
sults for the SH wave are displayed in Fig. 3. In this case, weFigure 4 shows the temperature profile used in the calcula-
assumeDp = oo, i.e., attenuation is solely due to the plastic tion, with a steep gradient at depth, similar to that reported in
viscosity. The quality factor fon = 2 x 101°Pas is 39. Foulger(1995.

Next, we present examples showing the capabilities of the The purpose of the numerical experiment is to predict P-
full-waveform simulation algorithm for the seismic charac- and S-wave propagation with dispersion and attenuation at
terization of crustal rocks at very high temperatures, as thosdigh temperaturesQarcione and Poletfd®?013, and study
encountered at depths where hydrothermal fluids are presetiie observability of the BDT by seismic reflection methods.
at supercritical conditiong{bertsson et a)2003. Thetem-  This issue poses the problem of evaluating suitable transi-
perature dependence is expressed by the Arrhenius steadiien zones and gradients for the crustal rock properties to
state power law, e.g., Eq. (15)@arcione and Polett@013. get reflections in the frequency range typical of seismic ex-
We use realistic Arrhenius constamts= 1030 MPa " s71, ploration. In the following examples, we assume propaga-
n = 3.5 and activation energif = 990 kJ/mol for the rheol-  tion in a uniform, isotropic medium, under lithostatic pres-
ogy of the Icelandic crustMjolay et al, 201Q 2012. These sure in the absence of tectonic stress. Figures 5 and 6 show
parameters were determined by mechanical observations ithe phase velocities calculated at a frequency of 10 Hz using
laboratory stress-deformation experiments performed at difthe approach o€arcione and Polett(?013, with an aver-
ferent confining pressures with glass-free basaltic rock samage lithostatic confining pressure of approximately 95 MPa

www.solid-earth.net/5/1001/2014/ Solid Earth, 5, 1001010 2014
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Figure 3. Comparison between the analytical (solid line) and nu- Figure 5. Phase-velocity profiles as a function of temperature at
merical (symbols) SH-wave solutions. The fields are normalized10 Hz.
with respect to the amplitude of the higher viscosity.

6
P
@ 5
€
<
24r
8
O pm=mm———— ~ S
g >3 .
X [0}
< b \
£ s A
o L \
) o2
a) “.
Y
1 AN
~ ~ -
0 L I T e
3.5 3.55 3.6 3.65 3.7
Depth (km)

Figure 6. Phase-velocity profiles as a function of depth at 10 Hz for

0 500 1000 1500 the GBF, based on the temperature profile of Fig. 4.

Temperature (°C)

Figure 4. Temperature profile with a sharp increase at about 3.5 km
depth. qguency of 50 Hz. The source is assumed to be located at the
free surface and the grid spacing of the numerical mesh is
10 m. The signals are recorded by a horizontal line of re-
for a Poisson medium with unrelaxe®l wave velocity of  ceivers at the surface (shot gather) and by a vertical array of
6kms1, S wave velocity of 3.464 kms! and densityp = receivers. The latter experiment simulates a seismic-while-
2600 kg n3. The transition in the GBF velocity functions is  drilling reverse-VSP experimer6letto and Mirand&@004
quite rapid at approximately 3.55km in Fig. 6, correspond-Poletto et al.2011). Figure 9 shows the synthetic common-
ing to T =1120°C. Complete melting is obtained above shots, where (a) corresponds to the vertical component and
1300°C. The sharp variation of the velocity in the transition (b) to the horizontal component. In both shot gathers, we
zone (Fig. 7) is due to the combined effect of the rapid ve-can see the reflections of the transition interfaceHavaves
locity variation in the BDT zone (Fig. 5) and to the steep (RP) (a) andS waves (RS) (b). We remark the fact that the
temperature gradient (Fig. 4). Figure 8 shows the dispersiomnly change in the model is the temperature profile. Figure
of the P-wave velocity calculated at frequencies of 3, 10 andlL0 shows the VSP recorded at zero offset, from 0.2 km depth
30Hz. to the bottom of the model. We can observe the direct trans-
The full-waveform synthetic data are calculated using amitted arrival (TP) in the deeper melted zone below 3.5 km,
vertical source with a Ricker wavelet with maximum fre- and the reflection of the P wave (RP) at approximately 3.5 km

Solid Earth, 5, 1001401Q 2014 www.solid-earth.net/5/1001/2014/
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Figure 7. Vertical gradient of theP and S wave velocities in the
transition zone at 10 Hz.
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depth. Finally, Fig. 11 shows the—k plot of the VSP signal  Figure 10.Synthetic VSP in the melted zone due to a vertical source
calculated every 10 m in depth. This plot confirms that thelocated at the surface (vertical component). RP indicates the re-
dispersion in this example is moderate due to the thinness ofected wave and TP the transmittédvave.

the GBF transient zone (cf. Fig. 7). Higher dispersion can be
expected in glassy basalt (GBJi¢lay et al, 201Q 2012.

tion is believed to be the lower limit of seismicity and may
be an indication of geothermal activity, since its reflectivity
7 Conclusions may reveal the presence of partial melting and/or overpres-
sured fluids.
The upper — cooler — part of the crust is brittle, while deeper The method uses the Burgers viscoelastic model and the
zones present ductile behavior. In some cases, this brittleArrhenius equation to calculate the flow viscosity. Existing
ductile transition is a single seismic reflector with an asso-viscoelastic codes, based on the Maxwell, Kelvin—Voigt and
ciated reflection coefficient. The stress—strain relation and it&Zener models, cannot be used, because they fail to model
physical implications have been analyzed in a previous workboth the brittle and ductile behaviors.
Here, we have developed a full-waveform algorithm to simu-  The time convolutions appearing in the stress—strain rela-
late temperature-dependent propagation of seismic waves itions are circumvented by introducing memory variables, and
geothermal and magmatic crustal rheologies in general anthe numerical algorithm is based on the Fourier pseudospec-
the brittle—ductile transition in particular. This abrupt transi- tral method to compute the spatial derivatives. The modeling

www.solid-earth.net/5/1001/2014/ Solid Earth, 5, 1001010 2014
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Figure 11.An f —k plot of the VSP. The ellipses indicate the trans-
mitted P wave and direc§ wave (solid line) and the reflected wave
(dashed line). In the upper part of the model, the melting is negligi-
ble. The velocity dispersion effects are moderate; however, they are
not clearly evident because of wave superposition in the first ellipse.

technique, developed for P-SV and SH waves, is successfully
tested against known analytical solutions.

The examples demonstrate the observability of the brittle—
ductile transition using surface-seismic and VSP methods
under appropriate conditions. Similar simulations, using this
forward modeling technique, can be performed, including
estimations ofP /S velocity relations, dispersion and atten-
uation related to temperature profiles, temperature-gradient
variations, pressure conditions and many aspects of rock
physics in hot geothermal reservoirs with hydrothermal flu-
ids and inhomogeneous media.

Solid Earth, 5, 1001401Q 2014
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Appendix A: Analytical solution in 2-D
homogeneous media

The P-S Green’s function corresponding to the wave field
generated by an impulsive vertical force of strengtb)(is

given by

G )= (Lo
*\X,Z,w,vp,V5) = 27{,0

XZ
r—z[Fl(x, Z,w,vp,vs) + F3(r,w,vp,vs)],

Fo
G;(x,z,w,vp,v5) = 20

1
r_z[ZzFl(X, z,w,vp, vs) — x2F3(r, 0, vp, vs)],

wherer = +/x2 4 72,

Tw 1 2 wr 1
Fl(r,a),UP,US)Z_ _2H0 - +
Vp

2

1
() o ()]
vs wrvp vp

o | 1 o (or 1
F3(r,a),vp,v5)=—7 —Hy” | —

wr 1 wr
2 (55) et (5) ]
vs wrvp vp

The 2-D viscoelastic particle velocities can then be ex-

pressed as
W(w)Gi(x,z,w,vp,vs), >0,
U[(X,Z,O))Z W*(a))G;k(x,Z,—a),vp,vs), (AS)
w<0, i=13
Al (hermiticity), where the superscript™ denotes complex
(AL) conjugate and;, andG, are assumed to be zerosat= 0. A
numerical inversion to the time domain by a discrete Fourier
transform yields the desired time-domain solution.
On the other hand, the SH Green’s function is
(A2)
G(x,z,w,vs) =7noH(§2) (ﬂ> (AB)
v
(Carcione 2007, Section 6.4), and
| WGk, z,0,v5), @=0,
ny T { W @G (r.z,~w,v5), 0<0. 1)
(A4)

andHéz) andHl(z) are the zero- and first-order Hankel func-
tions of the second kindHason et a).1956 Carciong 2007).

www.solid-earth.net/5/1001/2014/

Solid Earth, 5, 100101Q 2014



1010 J. M. Carcione et al.: Wave simulation based on the Burgers model

AcknowledgementsiVe thank Josep de la Puente and an anony-Hacker, B. R. and Christie, J. M.: Experimental deformation of

mous reviewer for useful comments. glassy basalt, Tectonophysics, 200, 79-96, 1992.
Hueckel, T., Peano, A., and Pellegrini, R.: A constitutive law for
Edited by: H. Igel thermo-plastic behaviour of rocks: an analogy with clays, Surv.

Geophys., 15, 643-671, 1994.
Jain, M. K.: Numerical solutions of differential equations, Wiley

References Eastern Ltd., 1984.

Juhlin, C. and Lund, B.: Reflection seismic studies over the end-

Albertsson, A.J., Bjarnason, O., Gunnarsson, T., Balizus, C., and glacial Burtrask fault, Skellefte&, Sweden, Solid Earth, 2, 9-16,
Ingason, K.: Part lll: Fluid Handling and Evaluation, In: Iceland doi:10.5194/se-2-9-2012011.

Deep Drilling Project, Feasibility Report 0S-2003-007, 33 pp., Kosloff, D. and Baysal, E.: Forward modeling by the Fourier
2003. method: Geophysics, 47, 1402-1412, 1982.

Arcay, D.: Dynamics of interplate domain in subduction zones: in- | ong, M. D. and Silver, P. G.: Shear Wave Splitting and Mantle
fluence of rheological parameters and subducting plate age, Solid Anisotropy: Measurements, Interpretations, and New Directions,
Earth, 3, 467-488, 2012. Surv. Geophys., 30, 407461, 2009.

Brogi, A., Lazzarotto, A., Liotta, D., and Ranalli, G.: Extensional Manzella, A., Ruggieri, G., Gianelli, G., and Puxeddu, M.: Plutonic-
shear zones as imaged by reflection seismic lines: the Larderello geotherma| systems of southern Tuscany: a review of the crustal
geothermal field (central Italy), Tectonophysics, 363, 127-139, models, Mem. Soc. Geol. It., 52, 283-294, 1998.

2003. Matsumoto, S. and Hasegawa, A.: Distinct S-wave reflector in

Carcione, J. M.: Wave fields in real media: Wave propagation in  the midcrust beneath Nikko-Shirane volcano in the northeastern
anisotropic, anelastic, porous and electromagnetic media. Hand- Japan arc, J. Geophys. Res., 101, 3067-3083, 1996.
book of Geophysical Exploration, vol. 38, Elsevier (2nd edition, Meissner, R. and Strehlau, J.: Limits of stresses in continental crusts
revised and extended), 2007. and their relation to the depth-frequency distribution of shallow

Carcione, J. M. and Poletto, F.: Seismic rheological model and re- earthquakes, Tectonics, 1, 73-89, 1982.
flection coefficients of the brittle-ductile transition, Pure Appl. Montesi, L. G. J.: A constitutive model for layer development in
Geophys., 170, 2021-2035, di).1007/s00024-013-0643-4 shear zones near the brittle-ductile transition, Geophys. Res.

20.13. o Lett., 34, L0O8307, doi0.1029/ 2007GL02925@007.
Carcione, J. M., Herman, G., and ten Kroode, F.P.E.: Seismic modpoletto, F. and Miranda, F.: Seismic while drilling. Fundamentals of
eling, Geophysics, 67, 1304-1325, 2002. drill-bit seismic for exploration, Pergamon, Amsterdam, 2004.

Carcione, J. M., Helle, H. B., and Gangi, A. F.: Theory of borehole poletto, F., Corubolo, P., Schleifer, A., Farina, B., Pollard, J., and
stability when drilling through salt formations, Geophysics, 71,  Grozdanich, B.: Seismic while drilling for geophysical explo-

F31-F47, 2006. ration in geothermal wells, GRC Transactions, 35, 1737-1741,
Carter, N. L. and Hansen, F. D.: Creep of rocksalt, Tectonophysics, 2011.
92, 275-333, 1983. Seriani, G., Priolo, E., Carcione, J. M., and Padovani, E.: High-order

Chauveau, B. and Kaminski, E.: Porous compaction in tran- spectral element method for elastic wave modeling, 62nd Ann.

sient creep regime and implications for melt, petroleum, |nternat. Mtg., Soc. Expl. Geophys., Expanded Abstracts, 1285—
and CQ circulation, J. Geophys. Res, 113, B09406, 1288, 1992.

doi:10.1029/2007JB005082008. . . Simpson, F.: Stress and seismicity in the lower crust: a challenge
Dragoni, M.: Stress relaxation at the lower dislocation edge of great o simple ductility and implications for electrical conductivity
shallow earthquakes, Tectonophysics, 179, 113-119, 1990. mechanisms, Surv. Geophys., 20, 201-227, 1999.

Dragoni, M. and Pondrelli, S.: Depth of the brittle-ductile transition Violay, M., Gibert, B., Mainprice, D., Evans, B., Pezard, P. A.,
in a transcurrent boundary zone, Pure Appl. Geophys., 135, 447— Flgvenz, O. G., and Asmundsson, R.: The brittle-ductile tran-
461, 1991. sition in experimentally deformed basalt under oceanic crust

Eason, G., Fulton, J., and Sneddon, I. N.: The generation of waves conditions: Evidences for presence of permeable reservoirs at
in an infinite elastic solid by variable body forces, Phil. Trans.  supercritical temperatures and pressures in the Icelandic crust,
Roy. Soc. London, Ser. A, 248, 575-607, 1956. Proceeding World Geothermal Congress, Bali, Indonesia, 25-29

Foulger, G. R.: The Hengill geothermal area, Iceland — variation April, 2010.
of temperature gradients deduced from the maximum depth Of\ﬁ0|ay, M., Gibert, B., Mainprice, D., Evans, B., Dautria, J. M.,
seismogenesis, J. Volc. Geotherm. Res., 65, 119-133, 1995. Azais, P., and Pezard, P. A.: An experimental study of the brittle-

Gangi, A. F.: A constitutive equation for one-dimensional transient ductile transition of basalt at oceanic crust pressure and temper-
and steady-state flow of solids. Mechanical Behavior of Crustal  ature conditions, Geophys. Res., 117, 1-23, 2012.

Rocks, Geophys. Monogr. AGU, 24, 275-285, 1981. Zappone, A.: Calculated and observed seismic behaviour of ex-

Gangi, A. F.: Transient and steady-state deformation of synthetic posed upper mantle, Surv. Geophys., 5, 629-642, 1994.
rocksalt, Tectonophysics, 91, 137-156, 1983.

Solid Earth, 5, 1001401Q 2014 www.solid-earth.net/5/1001/2014/


http://dx.doi.org/10.1007/s00024-013-0643-4
http://dx.doi.org/10.1029/2007JB005088
http://dx.doi.org/10.5194/se-2-9-2011
http://dx.doi.org/10.1029/ 2007GL029250

