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Abstract—The upper part of the crust shows generally brittle

behaviour while deeper zones, including the mantle, may present

ductile behaviour, depending on the pressure–temperature condi-

tions; moreover, some parts are melted. Seismic waves can be used

to detect these conditions on the basis of reflection and transmis-

sion events. Basically, from the elastic–plastic point of view the

seismic properties (seismic velocity and density) depend on

effective pressure and temperature. Confining and pore pressures

have opposite effects on these properties, such that very small

effective pressures (the presence of overpressured fluids) may

substantially decrease the P- and S-wave velocities, mainly the

latter, by opening of cracks and weakening of grain contacts.

Similarly, high temperatures induce the same effect by partial

melting. To model these effects, we consider a poro-viscoelastic

model based on Gassmann equations and Burgers mechanical

model to represent the properties of the rock frame and describe

ductility in which deformation takes place by shear plastic flow.

The Burgers elements allow us to model the effects of seismic

attenuation, velocity dispersion and steady-state creep flow,

respectively. The stiffness components of the brittle and ductile

media depend on stress and temperature through the shear vis-

cosity, which is obtained by the Arrhenius equation and the

octahedral stress criterion. Effective pressure effects are taken into

account in the dry-rock moduli using exponential functions whose

parameters are obtained by fitting experimental data as a function

of confining pressure. Since fluid effects are important, the density

and bulk modulus of the saturating fluids (water and steam) are

modeled using the equations provided by the NIST website,

including supercritical behaviour. The theory allows us to obtain

the phase velocity and quality factor as a function of depth and

geological pressure and temperature as well as time frequency. We

then obtain the PS and SH equations of motion recast in the

velocity–stress formulation, including memory variables to avoid

the computation of time convolutions. The equations correspond to

isotropic anelastic and inhomogeneous media and are solved by a

direct grid method based on the Runge–Kutta time stepping tech-

nique and the Fourier pseudospectral method. The algorithm is

tested with success against known analytical solutions for different

shear viscosities. An example shows how anomalous conditions of

pressure and temperature can in principle be detected with seismic

waves.

Key words: Brittle, ductile, Burgers model, Gassmann theory,

seismic-wave simulation, attenuation, Fourier method.

1. Introduction

The seismic characterization of the brittle and

ductile parts of the crust and mantle is essential in

earthquake seismology and geothermal exploration,

since it plays an important role in determining the

nucleation depth of earthquakes (Meissner and

Strehlau 1982) and the availability of geothermal

energy (Manzella et al. 1998). Carcione and Poletto

(2013) introduced an elastic–plastic rheology to

model ductile behaviour on the basis of variations of

the shear modulus as a function of temperature. The

ductile medium mainly flows when subject to devi-

atoric stress, while it does not show major flow under

hydrostatic stress, such that the deformation is mainly

associated with the shear modulus of the medium.

The criterion by which the shear modulus is affected

is based on the octahedral stress, a scalar quantity that

is invariant under coordinate transformations. The

flow viscosity is a function of temperature and con-

fining pressure, determined by the geothermal

gradient and the tectonic stresses. Carcione and

Poletto (2013) have also modeled the effects of ani-

sotropy and seismic attenuation, based on the Burgers

model (see Fig. 1) (the Maxwell and Zener model are

particular cases of this model) [see Mainardi and

Spada (2011)]. The Zener part of the model is used to

model the viscoelastic motion with no plastic flow,

obtained as the limit of infinite plastic viscosity.

Seismic losses are solely due to shear deformations.

Carcione et al. (2014) implement the previous

model to simulate wave propagation in isotropic and

anelastic inhomogeneous media and compute
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synthetic seismograms. They obtain the PS and SH

equations of motion recast in the velocity–stress

formulation, including memory variables to avoid the

computation of time convolutions. The equations are

based on a generalization of the Lamé constants to

the viscoelastic case. The equations are solved by a

direct grid method based on the Runge–Kutta time

stepping technique and the Fourier pseudospectral

method. A realistic example illustrates the computa-

tion of surface and reverse-VSP synthetic

seismograms in the presence of an abrupt brittle–

ductile transition.

The poroelastic case has been studied by Jaya

et al. (2010), who performed laboratory measure-

ments and used Gassmann equation as a predictive

model, which assumes that the grain and dry-rock

moduli are independent of temperature. Hence, their

model is restricted to a range of temperatures where

melting does not occur, contrary to the model

developed by Carcione and Poletto (2013). Jaya et al.

(2010) show that P-wave velocity decreases with

increasing temperature and that at higher tempera-

tures bubbles and thermal microfractures occur. The

measurements also show that at low temperatures

seismic attenuation decreases with temperature due to

the rapid decrease in the fluid viscosity, and that at

high temperatures the attenuation increases because

of the generation of bubbles and microfractures. The

presence of bubbles is required to fit the velocities at

a pore pressure of 80 bar and high temperatures (150

to 250 �C), using the Wood model to obtain the

effective fluid bulk modulus. On the other hand, the

quality factor of the P wave varies from 300 at 125 �C
to 25 at 250 �C at a frequency of 400 kHz, explained

by the authors due to a decrease in fluid viscosity of

one order of magnitude.

In this work, we extend the theory and modeling

algorithm to the poro-viscoelasticity case to model

explicitly the effects of the saturating fluids, generally

water and steam at different pressure–temperature

conditions, including supercritical behaviour. More-

over, the new theory allows us to model the effects of

the confining and pore pressures on the stiffness

moduli of the medium. Pressure effects are intro-

duced using an effective stress law of exponential

form (e.g. Kaselow and Shapiro 2004; Carcione

2015), by which at constant effective pressure the

acoustic (and transport) properties of the rock remain

constant. The effective pressure depends on the dif-

ference between the confining and pore pressures.

Seismic waves are useful to study the structure of

the Earth on the basis of forward modeling, inversion

and interpretation (Poletto and Miranda 2004). To

this purpose, proper computational-geophysics tech-

niques are essential (e.g. Carcione et al. 2002, 2010).

In this work, we simulate seismic wave propagation

in heterogeneous media using a direct grid method (a

full-wave solver). The differential equations are

solved in the time domain using memory variables

(Carcione 2015) and generalising the bulk and shear

moduli, other than the Lamé constants as in Carcione

et al. (2014). This new approach is more physical

since those moduli are the fundamental deformations

of the medium. We assume isotropic media and plane

strain conditions and obtain the differential equations

of motion for 2-D PS and SH waves. The equations

are recast in the velocity–stress formulation and

solved with the Runge–Kutta and the Fourier meth-

ods, regarding the time and spatial discretizations

(e.g. Carcione 2015).

2. Mean and Octahedral Stresses

We use the octahedral-stress theory to describe

the deformation of the ductile layer. In Cartesian

coordinates (x, y, z), we define the octahedral stress

as:

Figure 1
Mechanical representation of the Burgers viscoelastic model for

shear deformations (e.g. Carcione 2015). r, �, l and g represent

stress, strain, shear modulus and viscosity, respectively, where g1

describes seismic relaxation while g is related to plastic flow and

processes such as dislocation creep

J. M. Carcione et al. Pure Appl. Geophys.



ro ¼ 1

3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðrv � rhÞ2 þ ðrv � rHÞ2 þ ðrh � rHÞ2
q

;

ð1Þ

where the r’s are the stress components in the prin-

cipal system, corresponding to the vertical

(v) lithostatic stress, and the maximum (H) and

minimum (h) horizontal tectonic stresses (see

Fig. 2a). Figure 2b shows the octahedral stress as a

function of the octahedral strain. When the stress

vector associated with the normal to the octahedral

plane is generated, its components in the principal

directions are the eigenstresses (or principal stresses).

Alternatively, it has two components—one normal to

the plane (which has a magnitude equal to the mean

stress) and one tangential to the plane which has a

magnitude equal to the octahedral stress (the latter is

proportional to the magnitude of the deviatoric

stress).

The rock starts to yield when ro exceeds the

elastic octahedral-stress limit roe. Below this limit,

there is gradual creep deformation when constant

stress is applied. Then, if ro is lower than the elastic

limit roe, the material follows a viscoelastic stress–

strain relation. If ro lies between roe and the plastic

limit rop, steady-state flow occurs. Beyond rop failure

is likely to occur.

3. The Gassmann–Burgers Mechanical Model

The constitutive equation, including both the

viscoelastic and ductile behaviour, can be written as a

generalization of stress–strain relation reported in

Carcione and Poletto (2013) to the poroelastic case.

The Burgers model is a series connection of a dashpot

and a Zener model as can be seen in Fig. 1. The usual

expression in the time domain is the creep function

v ¼ t

g
þ 1

l0

1 � 1 � sr
s�

� �

expð�t=s�Þ
� �� �

HðtÞ

ð2Þ

(Carcione et al. 2006; Carcione 2015), where t is time

and H(t) is the Heaviside function. The quantities sr
and s� are seismic relaxation times, l0 is the relaxed

shear modulus (see below) and g is the flow viscosity

describing the ductile behaviour related to shear

deformations. The frequency-domain shear modulus

l can be obtained as lB ¼ Fð _vÞ½ ��1
, where F

denotes time Fourier transform and a dot above a

variable denotes time derivative. It gives

lB ¼ l0ð1 þ ixs�Þ

1 þ ixsr �
il0

xg
ð1 þ ixs�Þ

; ð3Þ

where i ¼
ffiffiffiffiffiffiffi

�1
p

and x is the angular frequency. The

relaxation times can be expressed as:

s� ¼
s0

Q0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Q0
2 þ 1

q

þ 1

� �

; sr ¼ s� �
2s0

Q0

; ð4Þ

where s0 is a relaxation time such that x0 ¼ 1=s0 is

the center frequency of the relaxation peak and Q0 is

the minimum quality factor.
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Figure 2
Mean and octahedral stresses (a) versus octahedral (effective)

strain (b). The octahedral-stress vector, which is a measure of the

shear deformation, lies on the octahedral plane. The normal to this

surface makes the same angle with the direction of the three

principal stresses rv, rh and rH
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The limit g ! 1 in Eq. (3) recovers the Zener

kernel to describe the behaviour of the brittle mate-

rial, while sr ! 0 and s� ! 0 yield the Maxwell

model used by Dragoni (1990) and Dragoni and

Pondrelli (1991):

lB ¼ l0 1 � il0

xg

� ��1

ð5Þ

(e.g. Carcione 2015). For g ! 0, lB ! 0 and the

medium becomes a fluid. Moreover, if x ! 1,

lB ! l0s�=sr, and l0 is the relaxed (x = 0) shear

modulus of the Zener element (g ¼ 1).

The viscosity g can be expressed by the Arrhenius

equation (e.g. Carcione et al. 2006; Montesi 2007). It

is related to the steady-state creep rate _� by

g ¼ ro

2 _�
; ð6Þ

where ro is the octahedral stress. The strain rate can

be expressed as:

_� ¼ Arn
o expð�E=RTÞ ð7Þ

(e.g. Gangi 1981, 1983; Carcione et al. 2006; Car-

cione and Poletto 2013), where A and n are constants,

E is the activation energy, R = 8.3144 J/mol/oK is

the gas constant and T is the absolute temperature.

The form of the empirical relation (7) is determined

by performing experiments at different strain rates,

temperatures and/or stresses (e.g. Gangi 1983; Carter

and Hansen 1983).

To obtain the equation of motion to describe wave

propagation in poroelastic media, we express the dry-

rock bulk moduli as:

Km ¼ K0g1ðpeÞ; and lm ¼ lBg2ðpeÞ; ð8Þ

where grðpeÞ; r ¼ 1; 2 defines the dependence of the

moduli on the effective pressure pe ¼ pc � np, where

pc is the confining pressure, p is the pore (fluid)

pressure, n is the effective stress coefficient, and K0

and l0 are the bulk and shear moduli at infinite

effective pressure and g ¼ 1 (or x ¼ 1).

Laboratory experiments show that under hydrostatic

pore pressure, confining stress and differential pressure

dependences of elastic moduli are phenomenologically

described by the following relationship:

grðpeÞ ¼ ar þ brpe � cr expð�pe=p�
r Þ; r ¼ 1; 2

ð9Þ

(Kaselow and Shapiro 2004; Carcione 2015), where

ar, br, cr and p�
r are fitting parameters for a given set

of measurements. If nr = 1, pe ¼ pd ¼ pc � p, the

differential pressure.

The simplest form of function g, in good agree-

ment with experimental data, is obtained for ar ¼ 1,

br = 0, cr ¼ 1 � dr and nr ¼ 1, i. e.,

grðpdÞ ¼ 1 � ð1 � drÞ expð�pd=p�
r Þ; r ¼ 1; 2;

ð10Þ

where gr = 1 for pd ! 1 (e.g. very high confining

pressure) and gr ¼ dr for pd ! 0 (pore pressure equal

to the confining pressure).

The wet-rock Gassmann–Burgers poroelasticity

bulk and shear moduli are given by

K ¼ Km þ a2M and lðxÞ ¼ lmðxÞ ð11Þ

and

a ¼ 1 � Km

Ks

and M ¼ Ks

1 �/� Km=Ks þ /Ks=Kf

;

ð12Þ

where / is the rock porosity and Ks and Kf are the

solid and fluid bulk moduli, respectively (e.g. Car-

cione 2015). In particular, Kf depends on pressure

and temperature.

The bulk density is

q ¼ ð1 � /Þqs þ /qf ; ð13Þ

where qs and qf are the grain and fluid densities,

respectively.

4. Equations of Motion

To obtain the equations of motion to describe

wave propagation, it is convenient to consider the

Burgers relaxation function

wðtÞ ¼ ½A1 expð�t=s1Þ � A2 expð�t=s2Þ�HðtÞ;
ð14Þ

(Carcione 2015; Carcione and Poletto 2013), where

we have redefined l0 such that the pressure depen-

dence has been incorporated, for simplicity, into this

stiffness, i.e.

J. M. Carcione et al. Pure Appl. Geophys.



l0 ! l0g2ðpdÞ;

s1;2 ¼ � 1

x1;2
and A1;2 ¼ l1l2 þ x1;2g1l2

g1ðx1 � x2Þ
:

ð15Þ

and

ð2gg1Þx1;2 ¼ �b �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

b2 � 4l1l2gg1

p

;

b ¼ ðl1 þ l2Þgþ l2g1:
ð16Þ

In terms of the relaxation times and l0, it is

l1 ¼ l0s�
s� � sr

; l2 ¼ l0

s�
sr

; g1 ¼ l1s�: ð17Þ

The complex shear modulus is

l ¼ Fð _wÞ ¼ ix
A1s1

1 þ ixs1

� A2s2

1 þ ixs2

� �

: ð18Þ

It can be verified that Eqs. (3) and (18) coincide.

4.1. 2D Propagation of PS waves

The stress–strain relation is given by

rij ¼ K#dij þ 2w � _�ij �
1

3
_�kkdij

� �

; ð19Þ

where r are stress components, � are strain compo-

nents, # ¼ �ii is the dilatation, oi indicates a spatial

derivative with respect to the variable xi, i = 1, 2, 3

(x1 ¼ x, x2 ¼ y and x3 = z), d is Kronecker delta and

‘‘�’’ denotes time convolution.

The velocity–stress formulation requires

_rij ¼ Kokvkdij þ _w � oivj þ ojvi �
2

3
okvkdij

� �

;

ð20Þ

where v are particle-velocity components and we

have used the displacement–strain relations (e.g.

Carcione 2015).

All the convolutions have the form _w � oivj and

can be avoided by introducing memory variables. We

obtain

_w � oivj ¼ A1ðoivj þ e
ð1Þ
ij Þ � A2ðoivj þ e

ð2Þ
ij Þ; i; j ¼ 1; 3;

ð21Þ

where

e
ðlÞ
ij ¼ ulH � oivj; ul ¼ � 1

sl

expð�t=slÞ; l ¼ 1; 2;

ð22Þ

which satisfy

_e
ðlÞ
ij ¼ � 1

sl

ðoivj þ e
ðlÞ
ij Þ: ð23Þ

4.2. Propagation of PS Waves

Let us consider plane-strain conditions with

propagation in the (x, z)-plane. The stress–strain

relation (20) becomes

_rxx ¼ Kðoxvx þ ozvzÞ þ
2

3
_w � ð2oxvx � ozvzÞ;

_rzz ¼ Kðoxvx þ ozvzÞ þ
2

3
_w � ð2ozvz � oxvxÞ;

_rxz ¼ _w � ðoxvz þ ozvxÞ

ð24Þ

Substituting the memory variables according to

Eq. (21), we obtain

3 _rxx ¼ ½3K þ 4ðA1 � A2Þ�oxvx þ ½3K � 2ðA1 � A2Þ�ozvz

þ 2ð2A1eð1Þxx � 2A2eð2Þxx � A1eð1Þzz þ A2eð2Þzz Þ;
3 _rzz ¼ ½3K þ 4ðA1 � A2Þ�ozvz þ ½3K � 2ðA1 � A2Þ�oxvx

þ 2ð2A1eð1Þzz � 2A2eð2Þzz � A1eð1Þxx þ A2eð2Þxx Þ;
_rxz ¼ ðA1 � A2Þðoxvz þ ozvxÞ þ A1ðeð1Þxz þ eð1Þzx Þ

� A2ðeð2Þxz þ eð2Þzx Þ:
ð25Þ

On the other hand, the dynamical equations of motion

are

_vx ¼
1

q
ðoxrxx þ ozrxzÞ þ sx;

_vz ¼
1

q
ðoxrxz þ ozrzzÞ þ sz

ð26Þ

(e.g. Carcione 2015), where si are source

components.

The equations of motion are given by Eqs. (23),

(25) and (26) in the unknown vector

v ¼ ðvx; vz; rxx; rzz; rxz; e
ðlÞ
ij Þ

>
. In matrix notation

_v ¼ M � vþ s; ð27Þ

where M is a 13 � 13 matrix containing the material

properties and spatial derivatives.

The Gassmann–Burgers Model to Simulate Seismic Waves...



4.3. Propagation of SH Waves

The stress–strain relations describing pure shear

motion in the (x, z)-plane are

_rxy ¼ _w � oxvy and _rzy ¼ _w � ozvy: ð28Þ

Applying the same procedure as in the PS case, we

obtain

_rxy ¼ ðA1 � A2Þoxvy þ A1e
ð1Þ
xy � A2e

ð2Þ
xy ;

_rzy ¼ ðA1 � A2Þozvy þ A1e
ð1Þ
zy � A2e

ð2Þ
zy ;

ð29Þ

with

_e
ðlÞ
xy ¼ � 1

sl

ðoxvy þ eðlÞxy Þ;

_e
ðlÞ
zy ¼ � 1

sl

ðozvy þ eðlÞzy Þ; l ¼ 1; 2:

ð30Þ

The dynamical equation of motion is

_vy ¼
1

q
ðoxrxy þ ozrzyÞ þ s; ð31Þ

where s is the source (e.g. Carcione 2015).

The equations of motion are given by equations

(29), (30) and (31) in the unknown vector r ¼
ðvy; rxy; rzy; e

ðlÞ
xy ; e

ðlÞ
zy Þ> and can be recast as Eq. (27)

with matrix M of dimension 7 � 7. It can be shown

that A1 ¼ l and A2 = 0 yields the lossless case.

This particle-velocity/stress formulation differs

from that given in Carcione et al. (2014); since in the

present work, the bulk and shear moduli are assumed

as basic elasticity constants, instead of the Lamé

constants, to introduce the memory variables.

4.4. Wave Velocities and Attenuation

The wave velocities can be obtained from the

density and Eq. (19), which represent the stress–strain

relations of an isotropic-viscoelastic medium, where

the bulk modulus (K) and shear relaxation function

(w) can be identified. We make use of the frequency-

domain version of the stress–strain relations and

l ¼ Fð _wÞ
h i

. Note that _w � _v ¼ d, where d is Dirac’s

function (e.g. Carcione 2015). Then, from Eq. (11),

the complex and frequency-dependent P- and S-wave

velocities are

vPðxÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

K þ 4lðxÞ=3

q

s

; and vSðxÞ ¼

ffiffiffiffiffiffiffiffiffiffi

lðxÞ
q

s

;

ð32Þ

respectively, where the density is given by Eq. (13).

For homogeneous waves in isotropic media, the

phase velocity and attenuation factors are given by

c ¼ Re
1

v

� �� ��1

ð33Þ

and

a ¼ �xIm
1

v

� �

; ð34Þ

and the P- and S-wave quality factors are given by

Q ¼ Reðv2Þ
Imðv2Þ

ð35Þ

(e.g. Carcione 2015), where v represent either vP or

vS.

5. Examples

We consider sample KTB 61C9b (amphibolite)

reported in Popp and Kern (1994) (their Table II and

Fig. 3). Dry- and wet-rock velocities values are given

in Table 1, where the measurements were performed

at room temperature. Closure of cracks with confin-

ing pressure is reflected in the values of the compliant

porosity given in Table II of Popp and Kern (1994),

ranging from 0.28% at 12 MPa to 0.01% at 200 MPa.

The stiff porosity / is not reported in Popp and Kern

(1994) but can be obtained by fitting the P-wave wet-

rock ultrasonic velocities. Since the experiments of

Popp and Kern (1994) were performed at 2 MHz, the

low-frequency Gassmann Eq. (11) is not valid. At

high frequencies, the squirt flow mechanism is

dominant implying a stiffening of the rock (e.g.

Carcione and Gurevich 2011).

The dry-rock moduli at low frequencies are

Km ¼ ð1 � /Þqs v2
P �

4

3
v2

S

� �

; lm ¼ ð1 � /Þqsv
2
S;

ð36Þ

J. M. Carcione et al. Pure Appl. Geophys.



where vP and vS are the velocities of the dry rock.

Substituting Eqs. (36) into (32), the wet-rock Gass-

mann velocities are

vP ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

K þ 4lm=3

q

s

vS ¼
ffiffiffiffiffiffi

lm

q

r

: ð37Þ

On the other hand, using the squirt-flow theory to

obtain the velocities at high frequencies, the dry-rock

moduli Km and lm are replaced by

1

K 0
m

¼ 1

Kh

þ 1

Km

� 1

Kh

� ��1

þ 1

K�
f

� 1

Ks

� ��1

/�1
c

" #�1

;

1

l0m
¼ 1

lm

� 4

15

1

Km

� 1

K 0
m

� �

;

ð38Þ

in equation (11), where Km and lm are the dry-rock

bulk and shear moduli given by Eq. (36), Kh is the

dry-rock bulk modulus at a confining pressure where

all the compliant pores are closed, i.e. an hypothetical

rock without the soft porosity, and /c is the com-

pliant porosity (see Carcione and Gurevich 2011).

The key quantity in Eq. (38) is the effective bulk

modulus of the fluid saturating the soft pores:

K�
f ¼ ixg�; ð39Þ

where x is the angular frequency,

g� ¼ 3

2

R

h

� �2

gf ; ð40Þ

is an effective viscosity, gf is the fluid viscosity, R is

the radius of the crack and h is its thickness, such that

h/R is the aspect ratio of the cracks (see Carcione and

Gurevich 2011).

We consider qs = 3 g/cm3 (Schön 2011),

qf = 1.04 g/cm3, Ks = 133.45 GPa (this value is

deduced from Table II of Popp and Kern (1994),

intrinsic velocity data at 200 MPa), Kf = 2.34 GPa,

gf = 0.001 Pa s, h/R = 0.003 (see Fig. 7 in Popp and

Kern (1994)), Kh ¼ 0:5Ks and a frequency of 2 MHz.

The crack porosity /c follows the trend given in that

Table II as a function of the confining pressure (see

above). Since the new P-wave velocity, v, is complex,

we compute the phase velocity in the usual way as

1=Reð1=vÞ, where ‘‘Re’’ takes real part (e.g. Carcione

2015). The fit of the wet-rock velocity yields a stiff

porosity / = 5%. Figure 3 shows the fit and the low-

frequency (seismic) Gassmann velocity.

Having the stiff porosity, we obtain the dry-rock

bulk and shear moduli at seismic frequencies from

Eqs. (8) and (10) using Eq. (36),

g1 ¼ 1 � ð1 � 0:39Þ expð�pd=65Þ;
g2 ¼ 1 � ð1 � 0:52Þ expð�pd=62Þ;

ð41Þ

where K0 = 69.84 GPa, l0 = 43.57 GPa and pd is

given in MPa. This fit corresponds to g ¼ 1, i.e.

Figure 3
Experimental and theoretical wet-rock P-wave velocities as a

function of confining pressure

Table 1

Wave velocities versus confining pressure

Pressure vP (dry) vS (dry) vP (wet) vS (wet)

(MPa) (km/s) (km/s) (km/s) (km/s)

0.1 4.50 2.82 5.90 3

12 4.91 3.13 6.21 3.35

20 5.30 3.25 6.30 3.45

35 5.60 3.35 6.45 3.55

50 5.84 3.45 6.51 3.60

100 6.25 3.65 6.62 3.70

125 6.40 3.75 6.68 3.75

150 6.50 3.80 6.70 3.78

200 6.62 3.86 6.78 3.82

250 6.66 3.90 6.80 3.85

300 6.70 3.91 6.82 3.86

350 6.75 3.92 – –

400 6.80 3.93 – –

450 6.82 3.93 – –

500 6.85 3.94 – –

550 6.88 3.95 – –

600 6.90 3.95 – –
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lB ¼ l0. Figure 4 shows the fit of the stiffness

moduli.

Next, we obtain the wave velocities and quality

factors at different temperature–pressure conditions.

The shear seismic loss parameter is obtained from

empirical equations derived by Castro et al. (2008)

for the crust in Southern Italy. They report Q0 = 18.8

f 1:7 for the upper crust and up to a frequency of 10

Hz. In the examples, we consider a frequency of

f = 3 Hz, with x0 = 2 pf , which gives Q0 = 122.

The temperature is a function of depth through the

geothermal gradient G as T ¼ zG, where z is depth

and G = 60 �C/km in our calculations. The lithostatic

stress is rv ¼ ��qgz ¼ �pc, where �q = 2400 kg/m3 is

the average density and g = 9.81 m/s2 is the gravity

constant. To obtain the octahedral stress (1), we

consider a simple model based on the gravity con-

tribution at depth z. The horizontal stresses can be

estimated as:

rH ¼ mrv

1 � m
; and rh ¼ nrH ð42Þ

where

m ¼ 3K0 � 2l0

2ð3K0 þ l0Þ
ð43Þ

is the Poisson ratio. The factor m=ð1 � mÞ lies between

0.25 and 1 for m ranging from 0.2 to 0.5, with the

latter value corresponding to a liquid (hydrostatic

stress). The parameter n� 1 has been introduced to

model additional effects due to tectonic activity

(anisotropic tectonic stress). Furthermore, we con-

sider A1 = 100 (MPa)�n s�1, E = 134 kJ/mol and

n = 2, and take n = 0.8. The above degree of stress

anisotropy is consistent with values at prospective

depths provided by Hegret (1987) for the Canadian

Shield, and in agreement with data reported in

Engelder (1993, p. 91).

The water properties as a function of pressure and

temperature are obtained from the fluid thermo-

physical database provided in the website of the

National Institute of Standards and Technology

(NIST), collected from laboratory measurements by

Lemmon et al. (2005). In ‘‘Thermophysical Proper-

ties of Fluid Systems’’, we choose water (1) and

Isothermal Properties (3). The range of allowable

values is [0, 1000] �C and [0, 1000] MPa. To analyse

the seismic properties in the presence of overpressure

Figure 4
Fit of the dry-rock bulk and shear moduli as a function of confining

pressure

(a)

(b)

Figure 5
Water density (a) and sound velocity (b) for a wide range of

pressures and temperatures (data taken from the NIST website)

J. M. Carcione et al. Pure Appl. Geophys.



and anomalous temperatures, we extract the water

density, qw and sound velocity, cw, from the NIST

website for the range [0, 900] �C and [0, 200] MPa. A

3D plot is shown in Fig. 5. The blue zone in the

density surface corresponds to the vapor phase. The

bulk modulus is then given by Kf ¼ qwc2
w.

A state of hydrostatic pore pressure is given by

p ¼ �qfgz, where �qf = 1000 kg/m3 is an average fluid

density. We consider a depth range [5, 15] km, where

pore pressure and temperature vary from 50 to 150

MPa and 300 to 900 �C, respectively (the geothermal

gradient is 60 �C/km). The experimental density and

sound velocity of water are shown in Fig. 6, together

with the pressure and temperature profiles, where we

consider a high p-T layer between 9 and 11 km (solid

lines). Compare these values to the ones at ambient

conditions, defined by a temperature of 20 �C and a

pressure of 0.1 MPa: a water density of 998 kg/m3

and a sound velocity of 1482 m/s. Figure 7 shows the

seismic (phase) velocity (a) and quality factor (b) as a

function of depth, where the solid and dashed lines

correspond to the normal and anomalous cases,

respectively. As can be seen, the P-wave velocities

decrease after a given viscosity dictated by a critical

(transition) temperature (ca. 900 K) and the Arrhe-

nius equation. The P-wave attenuation has a

maximum at this transition and at higher tempera-

tures the medium becomes an anisotropic fluid whose

quality factors are solely determined by the dilata-

tional losses. Indeed, the lack of the shear losses

increases the quality factor and the material behaves

fluid like with weaker attenuation. This is consistent

with the fact that a pure solid and a pure liquid have

weak attenuation and partial saturation (melting in

(a) (b)

(c) (d)

Figure 6
Pore pressure (a), temperature (b), water density (c) and water velocity (d) as a function of depth, according to the NIST website. The dashed

and solid lines correspond to normal and anomalous conditions. A layer between 9 and 11 km has high p-T conditions
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(a)

(b)

Figure 7
Seismic velocities (a) and quality factors (b) as a function of depth. The dashed and solid lines correspond to normal and anomalous

conditions. A layer between 9 and 11 km has high p-T conditions

J. M. Carcione et al. Pure Appl. Geophys.



this case) shows lower Q factors, similar to the

behaviour of the mesoscopic-loss mechanism (e.g.

Singh et al. 2000; Carcione 2015). By this mecha-

nism, wave energy is converted to diffusion energy of

the Biot slow-mode type, when the heterogeneities of

the medium are smaller than the seismic wavelength

but greater than a characteristic pore scale.

Figure 8 shows the behaviour of the phase

velocity and quality factor as a function of frequency

for a temperature of 803 �C and normal pore pressure

conditions, according to Fig. 7 (in this case g = 1.6

� 108 Pa s). At this temperature, the S wave behaves

diffusively, as shown in the next example, and the P

wave is very dispersive due to the low Q factor.

Beyond a given temperature, the algorithm becomes

unstable due to diffusive character of the S wave,

since the system of equations becomes hyperbolic (P

wave)-parabolic (S wave) and a suitable solver

should be implemented for this situation. Something

similar occurs with Biot’s equations of poroelasticity,

where the slow P wave is diffusive at seismic fre-

quency. Appropriate solvers are outlined in Carcione

(2015).

We simulate wave propagation with a full-wave

numerical algorithm based on the Fourier pseu-

dospectral method. First, we test the numerical code

against an analytical solution for PS waves in

homogeneous media (see Carcione et al. 2014 for the

expression of the solution). To compute the transient

responses, we use a Ricker wavelet of the form:

hðtÞ ¼ u � 1

2

� �

expð�uÞ; u ¼ pðt � tsÞ
P

� �2

;

ð44Þ

where P is the period of the wave (the distance

between the side peaks is
ffiffiffi

6
p

P=p) and we take

ts ¼ 1:4P. Its frequency spectrum is

HðxÞ ¼ P
ffiffiffi

p
p

� �

�u expð��u � ixtsÞ; �u ¼ x
xp

� �2

;

xp ¼ 2p
P

:

ð45Þ

The peak frequency is fp ¼ 1=tp.

We consider the conditions at two depths to test

the algorithm, namely 5 and 13 km. In the second

case, the S wave disappears. The seismic quality

factor is Q0 = 40 and x0 ¼ 2pfp. The numerical

mesh has 231 � 231 grid points and a grid spacing of

30 m. The source is a vertical force with fp = 10 Hz

and the receiver is located at x = z = 1.2 km from

the source. The solution is computed using a time

step of 1 ms. Figure 9 shows the comparison between

the numerical and analytical PS-wave solutions for

g = 2.3 � 1014 Pa s (a, b) and g = 2.1 � 108 Pa s (c,

d), where (a) and (c) correspond to vx and (b) and (d)

to vz. As can be seen, the agreement is excellent.

Second, we consider homogeneous media with

three set of properties, namely, those at 8 km depth,

11 km depth (bottom of the high p-T layer) and 13

km depth, where the conditions are normal. We

assume Q0 = 122 at f0 = 3 Hz. In the second case,

the pore pressure is hydrostatic (p = 78 MPa),

(a)

(b)

Figure 8
Phase velocity (a) and quality factor (b) as a function of frequency

for a temperature of 803 �C
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pc = 188 MPa and T = 482 oC. We use the same

mesh and source time history of the previous simu-

lation and a vertical force. Absorbing boundaries of

size 50 grid points are implemented at the sides of the

mesh. The algorithm uses a time step of 1 ms to

propagate the wavefield 500 steps. Figure 10 shows

three snapshots, corresponding to 8 km (a), 11 km

(b) and 13 km (c) depths, where the P and S waves

can be observed in (a) and (b), while it has disap-

peared in (c) due to the very low quality factor (see

Fig. 7b). The snapshot in (c) has been re-scaled with

respect to (a) and (b), since attenuation is stronger.

The amplitude is higher at 8 km, where the Q-factor

for P waves is 97 against 7 at 11 km. This is because

the temperature is lower and the viscosity is higher. A

much lower viscosity has damped the S wave in (c).

Moreover, the P wavefront is smaller, since the

P-wave phase velocity is lower at 13 km (see

Fig. 7a).

Finally, we compute a cross-well seismogram,

corresponding to two vertical wells separated by a

distance of 600 m. This example is an ideal experi-

ment since the wells are very deep, but it is useful to

illustrate the propagation characteristics in very hot

magmatic poro-viscoelastic rocks. Similar configu-

rations could be considered to study wavefields in a

reciprocal sense, i.e. as in seismic while drilling

applications (Aleotti et al. 1999; Poletto and Miranda

2004), interchanging source and receiver, with source

in a deep well and receiver in a shallower one (Po-

letto et al. 2011). A vertical source is located at 8 km

depth, 1 km above a layer with the characteristics

P

S

P P

P
S

5 km 5 km

13 km 13 km

(a) (b)

(c) (d)

Figure 9
Comparison between the analytical (solid line) and numerical (symbols) PS-wave solutions. The fields are normalized. The amplitude in c, d is

much lower than in a and b due to the attenuation caused by the plastic viscosity

J. M. Carcione et al. Pure Appl. Geophys.



shown in Fig. 7, i.e. the layer is horizontal with the

upper interface at 9 km depth and the lower interface

at 11 km depth. The signal is recorded at a set of 100

receivers, where the first upper receiver is located at

the same depth of the source. The properties and

numerical parameters of the simulation are the same

used to compute the snapshots in Fig. 10. The seis-

mogram is displayed in Fig. 11. P and S direct waves

can be observed and reflected waves (R) at the top

and bottom of the layer (relative depths of 1 and 3

km, respectively). The amplitude in the smaller

panels has been enhanced by a factor 100. The signal

amplitude and phase of the direct events are affected

by the presence of anomalous conditions at each

depth and this is the main indicator, while the

reflected waves are much weaker than the direct

waves.

The rheological equation presented here can be

further generalized to include explicitly the squirt-

flow model (Mavko and Nur 1975; Carcione and

Gurevich 2011), and the fractional Burgers model

(Mainardi and Spada 2011), which have the poten-

tial of better characterizing the time dependence of

the relaxation processes involved in wave

propagation.

6. Conclusions

The Earth crust behaves brittle and ductile

depending on the in situ temperature and pressure

conditions. We present a methodology to model the

seismic properties of the crust, including melting,

using a poro-viscoelastic description, based on the

Burgers and Gassmann models. In this way, we can

model variations of the properties not only due to

changes in temperature but also due to confining and

pore pressure changes, through the dry-rock stiffness

moduli. Moreover, since the theory is based on the

Gassmann bulk modulus, variations of the wet-rock

seismic velocities can explicitly be computed as a

function of the water bulk modulus, with water at

normal, critical and supercritical conditions.

bFigure 10

Snapshots at 0.5 s, corresponding to properties at 8 km (a), 11 km

(b) and 13 km (c) depths. The snapshot in (c) has been re-scaled to

view the P wavefront
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Implementing the stress–strain relation into the

equations of momentum conservation yields the wave

equation and the phase velocities and quality factors

as a function of depth, temperature, pressure and

frequency.

We then solve the full-wave equations for P and S

waves numerically to obtain synthetic seismograms.

The time convolutions appearing in the stress–strain

relations are circumvented by introducing memory

variables, and the numerical algorithm is based on the

Fourier pseudospectral method to compute the spatial

derivatives. The modeling technique is successfully

tested against known analytical solutions. The

methodology applies to any situation where there is

melting and to geothermal fields, where water is

present at supercritical conditions. The examples

illustrate how to compute seismic signals in hetero-

geneous media, under different conditions of pore

pressure, temperature and source frequency.
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