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SUMMARY
We analyze how intrinsic attenuation and bedrock elasticity affect the amplitude and frequency
of the resonance peaks of the S-wave amplification function. The Zener model (with a single
relaxation peak) and the constant-Q model are used to describe attenuation. We consider two
different cases, namely, the soil is softer than the bedrock (the usual situation, that is, a sediment
overlying a stiff formation) and the upper layer is stiffer than the lower half space (e.g., basalt
over sediment). The presence of Zener loss in the upper layer causes a shift of the fundamental
peak towards the low frequencies, while no shift is observed due to the non-rigid (viscoelas-
tic) character of the half space. In the constant-Q case, the shift to the low frequencies is not
significant implying that it is difficult to estimate the attenuation parameters on the basis of
the location of the resonance peaks. However, attenuation affects the amplitude of the higher
modes, while these modes have the same amplitude of the fundamental mode no matter the
degree of elasticity of the half space. Attenuation of the layer and non-rigidity of the half space
affect the peaks, with the latter having a stronger effect. Examples are given, where we con-
sider two real cases representing a glacier and an ice stream in Northern Italy and the Antarctic
continent, respectively.
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1 INTRODUCTION

We analyse the effects of soil and bedrock anelasticity on the S-wave amplification function, i.e., how anelasticity affects the amplitude
and frequency of the resonance peaks. The amplification function is an essential concept in the horizontal to vertical spectral ratio (HVSR)
method, originally introduced by Nogoshi and Igarashi (1971). The method is based on the frequency spectrum obtained by dividing the
horizontal component by the vertical component (H/V ratio), either displacement, particle velocity or acceleration, since the results are
equivalent. The source can be ambient noise, earthquakes or active sources of different nature. It has been shown that for shear and Rayleigh
waves propagating in a layer over a half space, the methods yields the fundamental resonance frequency and the related amplitude (Lermo
and Chávez Garcı́a, 1993; Lunedei and Malischewsky, 2015).The investigations suggest that the H/V ratio provides a reliable approximation
of the site S-wave transfer function. If the ratio is controlled by the fundamental Rayleigh waves, there is only an indirect correlation between
the H/V peak amplitude and the site amplification (Bonnefoy-Claudet et al., 2006). A more detailed study of the influence of surface and
body waves by varying several parameters is given in Albarello and Lunedei (2011). A case study is proposed in D’Amico et al. (2008),
where a first-order reconstruction of the seismic bedrock topography shows a good consistency with available geological/log data.

The first significant and detailed theoretical tests of the method have been performed by Konno and Ohmachi (1998) who show that the
H/V ratio is related to the fundamental-mode Rayleigh wave regarding its resonant frequency and to the S-wave amplification function. More
detailed viscoelastic numerical tests regard the SESAME project, whose results can mainly be found in Bonnefoy-Claudet et al. (2006). They
have considered 1D plane-layered models and sources randomly distributed near the surface, i.e., impulsive and continuous (machines). The
H/V ratio predicts the resonance frequency of the 1D transfer function corresponding to a vertically incident S-wave. Van der Baan (2009)
explains the resonances obtained from the H/V ratio as due to SH and Love waves but in general these depend on several factors, such as the
type of source, medium properties, interface geometry, etc.

The equation used to obtain the amplification function is usually based on a lossless soil overlying a rigid bedrock. Here, we study the
effects of soil and bedrock anelasticity on the amplification function of shear waves, i.e., the presence of attenuation in the layer and half
space and the fact the latter is deformable, i.e, viscoelastic and not rigid. Kramer (1996) provides the relevant equations of the amplification
function, which is the ratio of the free surface motion amplitude to the bedrock motion amplitude, where viscoelasticity is described by a
Kelvin-Voigt solid. Here, we use the Zener and constant-Q models to describe attenuation (e.g., Carcione, 2014), a more realistic description
for rocks than the Kelvin-Voigt solid, which gives an infinite velocity at high frequencies. More complex models could be used, such as
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that of Albarello and Lunedei (2015), which considers the whole wavefield or the diffusive wavefield theory (Kawase et al., 2011; Sánchez-
Sesma et al., 2011; Garcı́a Jerez et al., 2013; Kawase et al., 2015). However, Kramer’s equation satisfactory explains the physics involved in
the examples presented here, namely, two real cases representing a glacier and an ice stream in Northern Italy and the Antarctic continent,
respectively (Picotti et al., 2016). Although the theory is applied to glaciers, it can be used for other environments, where the geology can be
represented by a flat layer over a half-space, both isotropic and anelastic.

2 SITE AMPLIFICATION FUNCTION

The body S-wave transfer function for a lossy sediment layer (soil) of thicknessh over a viscoelastic bedrock describes the ratio of displace-
ment amplitudes between the top and bottom of the layer due to horizontal harmonic motions of the bedrock. Let us define the layer (i = 1)
and half space (i = 2) complex (Zener) shear-wave velocities asvi, where

v = cR

√

1 + iωτa

1 + iωτ/a
= cU

√

iωτ + 1/a

iωτ + a
, a =

cU
cR

≥ 1, (1)

wherecR andcU are the low (relaxed)- and high (unrelaxed)-frequency limit velocities,ω is the angular frequency,f = 1/(2πτ ) is the
centre frequency of the relaxation peak andi =

√
−1. The peak quality factor is given byQ = 2(1− 1/a)−1. Therefore, the propertiesf ,

cU andQ define the media, wherea = Q−1 +
√

1 +Q−2 (e.g., Carcione, 2014). WhencR = cU we have the lossless case, i.e.,a = 1,
Q = ∞ andv = cU . We define the lossless case forω → ∞, whenv → cU . If ω = 0 we havev = cR = cU/a.

The transfer function is

F (ω) =

[
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)
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(
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v1

)

]

−1

(2)

(Takahashi and Hirano 1941; Kramer, 1996, eq. 7.26), whereρi denotes the mass density. The site amplification function is merely|F |. A
rigid bedrock is obtained forρ2v2 → ∞. In this case and in the absence of loss, we have the following resonance frequencies when the
cosine vanishes,

fn = (2n+ 1)f0, n = 0, 1, 2, . . . , f0 =
cU1

4h
. (3)

Infinite amplitude values are obtained at these resonance frequencies. An analysis of the transfer function at the fundamental frequency is
given in Appendix A.

3 RESULTS

We consider two main cases and study the location and amplitude of the fundamental mode (n = 0). The cases are:
Case 1: The layer (sediment) is softer than the half space (bedrock) (e.g., sediment over hard rock). 1.1: The impedance contrast is

constant and we vary the loss properties. 1.2: The loss properties are constant and we vary the impedance contrast.
Case 2: The layer (hard rock) is stiffer than the half space (sediment) (e.g., basalt over sediment). 2.1: The impedance contrast is constant

and we vary the loss properties. 2.2: The loss properties are constant and we vary the impedance contrast.
Let us consider a sediment withcU1 = 1 km/s,ρ1 = 2 g/cm3, Q1 = 10 andh = 1 km. The impedance contrast is defined as

α =
ρ1cU1

ρ2cU2

, (4)

i.e.,α = 0 yields maximum impedance contrast andα = 1 yields no contrast. Note that equation (2) depends on the lower medium through
the impedanceI2 = ρ2cU2. All the calculations considerτ = 1/(2π), i.e., the relaxation peak is centered at a frequency of 1 Hz. In the
lossless-rigid case (Q1 = ∞ andα = 0), we havefn = 0.25 Hz, 0.75 Hz, 1.25 Hz, 1.75 Hz,. . .. Generally, the spectra are compared to that
of the lossless-rigid case, which is the case mostly used to interpret H/V seismic responses.

3.1 Case 1. Soft layer over stiff half space

Case 1.1: Let us assumeα = 0.3 andQ2 = 50. The solid and dashed lines in Figure 1 correspond to the lossless-elastic and lossless-rigid
cases, respectively (in this case,Q2 = ∞). The peak in the second case is truncated since it reaches infinite values. The location of the peak
is the same in both cases.

〈〈 Figure 1〉〉

The lossy case is given in Figure 2, where the higher resonances are damped. The comparison of Figures 1 and 2 shows that the presence
of loss in the soil produces a shift of the peak towards the left side of the spectrum. If the Zener peak is located at frequencies lower than
the fundamental-mode frequency, the shift is smaller, since the resonance peaks “see” the unrelaxed velocitycU (the velocity related to the
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Soil and bedrock anelasticity 3

lossless case by definition), while there is a bigger shift if the Zener peak is located at higher frequencies compared to the fundamental one.
In this case, the resonance peaks “see” the relaxed velocitycR, which is smaller thancU .

〈〈 Figure 2〉〉

The effects of bedrock elasticity and soil attenuation are similar. A stiffer bedrock means greater amplification as well as a less atten-
uating soil has the same effect. Figure 3 compares the lossy and elastic (non-rigid) cases (solid and dashed lines, respectively), where the
amplification factor of the fundamental mode is the same. The effects can be discriminated on the basis of the location of the peak (although
there is a small difference) and mainly on the behaviour of the higher modes.

〈〈 Figure 3〉〉

An elastic bedrock has a significant effect on the amplitude as can be seen in Figure 4, where the curve is compared to the rigid case with
attenuation in the sediment. IfQ1 = 3 the fundamental mode moves to the left compared toQ1 = 10 as expected and the higher resonances
shows a larger shift and stronger attenuation (see Figure 5). However, the amplitude of the fundamental mode is not affected.

〈〈 Figure 4〉〉

〈〈 Figure 5〉〉

If there is no intrinsic loss, the amplification of the fundamental and higher modes is similar, as can be appreciated in Figure 3 (dashed
line), but the elasticity of the bedrock is a more significant damper of the fundamental mode than intrinsic attenuation, which affects mainly
the higher modes.

Case 1.2: Let us consider the lossless case (Q1 = Q2 = ∞) and the lossy case (Q1 = 10,Q2 = 50) and vary the impedance contrast
α between 0 (rigid) and 0.8 (very deformable bedrock) in steps of 0.2. The results are shown in Figure 6. Clearly, the peak location is the
same in the lossless case as the impedance contrast varies, while the presence of attenuation implies a shift of the peaks and attenuation of
the higher modes.

〈〈 Figure 6〉〉

3.2 Case 2. Stiff layer over soft half space

Case 2.1: The layer is a stiff medium with a densityρ1 = 2.5 g/cm3 andQ1 = 50, and the lower half-space has the properties of the soil, i.e.,
cU2 = 1 km/s andρ2 = 2 g/cm3. We assume a constant impedance contrastα = 2, so thatcU1 = 1.6 km/s. Figure 7 shows the amplification
function for the lossless (Q2 = ∞) and lossy cases (dotted and solid lines, respectively). There is damping in the latter case.

〈〈 Figure 7〉〉

Let us assume three values ofQ2, i.e.,Q2 = 10, 5 and 3. The amplification function shown in Figure 8a does not show significant
variations as theQ factor of the half-space decreases. On the other hand, varying theQ factor of the layer and takingQ2 = 10 the curves
show remarkable differences (see Figure 8b).

〈〈 Figure 8〉〉

Case 2.2: The layer is a stiff medium with a densityρ1 = 2.5 g/cm3 andQ1 = 50, and the lower half-space hascU2 = 1 km/s,ρ2 = 2
g/cm3 andQ2 = 10. In this case, we assume the impedance contrastα = 2, 5 and 10, such that the velocity of the layer takes the valuescU1 =
1.6, 4 and 8 km/s, respectively. Figure 9 shows the amplification function for each value ofα. The modes shift to the higher frequencies and
the spectrum stretches as the impedance contrast increases, i.e., the separation between modes increases.

〈〈 Figure 9〉〉

All these cases show a minimum of the transfer function at the fundamental frequency, as explained in Appendix A.
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3.3 Effects of the attenuation model

The effect of the frequency dependence of the attenuation is analyzed by assuming a constant-Q model. This model has a simple expression of
the complex velocityv = cU

√

1 + i/Q, such that the phase velocity and quality factor are frequency independent and equal to1/Re(1/v) >
cU andRe(v2)/Im(v2) = Q over the whole frequency range. Since this velocity is greater than the lossless velocitycU , it is expected a
shift of the resonance peaks towards the high frequencies, i.e., the opposite effect compared to the Zener model. However, no significant shift
is observed with respect to the ideal lossless-rigid case, as can be seen in Figure 10, corresponding to the lossy-elastic case represented in
Figure 2 (we assume the same values forQ, i.e.,Q1 = 10 andQ2 = 50). We can see that the modes have been attenuated compared to the
Zener model.

〈〈 Figure 10〉〉

As stated above, the location of the Zener relaxation peak affects the location of the fundamental mode. Figure 11 displays the amplifi-
cation function for the Zener relaxation peaks located at 0.05 Hz and 1 Hz, to the left and right of the fundamental mode in the lossless-rigid
case. As can be seen, when the Zener relaxation peak is located at the left side, the shift is minimal, since the resonance modes “see” the
lossless velocitycU .

〈〈 Figure 11〉〉

It can be shown that in this case (rigid bedrock) there is no shift with respect to the ideal lossless-rigid case. Summarizing, the frequency
dependence of the attenuation factor affects the amplitude and location of the modes, so that each case needs a specific calculation.

3.4 Real cases: Alpine glacier and Antarctic ice stream

We consider two real cases, with attenuation described by the constant-Q model (use of the Zener model yields similar results). Picotti et
al. (2016) applied active seismics, radio echo sounding and geoelectric methods to verify the HVSR technique on Alpine glaciers and on
a fast flowing ice stream of West Antarctica. In that work, the passive seismic measurements were carried out using different broadband
seismometers, i.e., a Guralp, a Lennartz and a Trillium. The H/V spectra were obtained by performing a statistical analysis of the recorded
wavefields in the frequency domain using the free software GEOPSY (http://www.geopsy.org – SESAME Project), whose details can be
found in Picotti et al. (2016). The software computes the amplitude spectra of the three components in selected time windows, whose width
depends on the target frequency band and on the record length. The window selection criterion is based on the quasi-stationarity of the signal
amplitude. For the computation of the H/V ratio, the amplitude spectra of the horizontal components are combined using vector summation.
Picotti et al. (2016) compared the results obtained from different geophysical methods, showing that the resonance frequency in the H/V
spectra can be well correlated with the ice thickness at the site, in a wide range from tens of meters to over 800 m. However, a theoretical
interpretation of these results is required to understand how the H/V spectra change in the presence of a deformable basement. Here we
consider two of the experiments of Picotti et al. (2016), carried out on the Pian di Neve glacier (Italy) and on the Whillans Ice Stream (WIS
- West Antarctica).

The Pian di Neve glacier occupies a high altitude 18 km2 plateau in the Lombardy side of the Adamello massif. In October 2014, a
1-km active multichannel seismic survey has been carried out on this glacier (Picotti et al., 2016) to image the bedrock and the basal moraine
and obtain the ice thickness profile. The imaging shows a smooth basement and the average thickness obtained from active seismic data is
approximatelyh = 250 m. Picotti et al. (2016) also carried out several passive seismic experiments using different sensors in different periods,
reporting a good stability of the measured fundamental resonant frequency in the H/V spectra. Under the hypothesis of an underlying rigid
bedrock, they show a good correspondence between the thickness obtained from the resonance frequency and that obtained from the imaging.
Here we want to verify, in this case, the reliability of the lossless-rigid assumption.
The average P-wave velocity of the bedrock (4500 m/s) obtained from the imaging is consistent with the in-situ types of rocks, which consist
mainly of granitoid plutons compatible with the quartz-diorite (Blundy and Sparks, 1992). Typical values of the P- to S-wave velocity ratio
Rv for such fractured crystalline basins is around1.6 (Moos and Zoback, 1983), which yields an S-wave velocity for the bedrock of about
cU2 = 2812 m/s. Moreover, the average density and quality factor of the bedrock can be assumed to be about 2700 kg/m3 (Hughes, 1982) and
Q2 = 150 (Lay and Wallace, 1995), respectively. The average ice density isρ1 = 917 kg/m3, while the average ice S-wave velocity obtained
from the imaging iscU1 = 1860 m/s (Picotti et al., 2015; 2016). A reliable approximation of the ice S-wave quality factor can be computed
using the following relationship

Q1 =
4

3

QP

R2
v

(5)

(Waters, 1978; Udias, 1999), where the ice P-wave quality factorQP ranges from 70 to 200 in temperate environments (Peters et al., 2012).
Considering that the value ofRv for ice determined by Picotti et al. (2016) on the Pian di Neve glacier is about2, the local average ice S-wave
quality factor can be assumedQ1 ≈ 50. Figure 12 shows the experimental H/V response (a) and theoretical amplification function for the
first three modes (b) using the lossy-elastic and lossless-rigid models. The colored curves in Figure 12a represent the H/V spectra obtained
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Soil and bedrock anelasticity 5

in each window selected for the statistical analysis. The black curve represents the H/V spectrum obtained as geometrical average of all the
colored H/V curves. The two dashed lines represent the H/V standard deviation, while the grey areas represent the peak frequency standard
deviation, and quantifies the experimental error associated to the average peak frequency value (located at the limit between the dark grey and
light grey areas). On the other hand, the modeled higher modes shown in Figure 12b are damped with respect to the fundamental mode. The
relevant result is that for both the two considered models the theory agrees, within the experimental errors, with the measured fundamental
resonance frequency given by the H/V peak. Differences can be due to contributions of surface waves and the fact that the H/V response is
not the amplification function in terms of amplitudes. However, the small discrepancy indicates that the fundamental peak is mainly due to S
body waves. Therefore, in this case the lossless-rigid assumption used by Picotti et al. (2016) for the computation of the glacier thickness is
valid. Moreover, the measured data show a second peak at≈ 6 Hz, which corresponds to the first higher mode according to Figure 12b.

〈〈 Figure 12〉〉

The second real example is the WIS, a fast flowing ice stream feeding the Ross Ice Shelf from the interior of the West Antarctic Ice Sheet.
Active seismic experiments (e.g., Blankenship et al., 1986; Picotti et al., 2015), as well as glaciological drilling and recordings (Engelhardt
and Kamb, 1997), show the presence of highly deformable sediments and water beneath the WIS. These experiments also discovered the
presence of Subglacial Lake Whillans (Horgan et al., 2012; Tulaczyk et al., 2014). Picotti et al. (2016) analyzed the H/V spectra obtained from
the three-component seismic data recorded on the WIS by Picotti et al. (2015). The spectra show an average resonance peak at approximately
1.3 Hz. However, contrary to the previous case, the hypothesis of underlying rigid bedrock cannot be used to relate this frequency to the
average ice thickness. Here we want to show that, in this case, the lossless-rigid assumption is actually inappropriate.
The thickness of WIS at the survey location ish = 780 m (Horgan et al., 2012), while the shallow firn layer is about 60 m thick (Picotti et
al., 2015), implying that the average ice thickness below the firn is approximately 720 m. Moreover, the ice stream hascU1 = 1940 m/s,ρ1
= 917 kg/m3 andRv = 1.97 (Picotti et al., 2015). Because in West Antarctica the iceQP ranges from 400 to 700 (Peters et al., 2012), it
follows from equation (5) that the local average S-wave quality factor can be assumedQ1 ≈ 200. Blankenship et al. (1986) show that the
S-wave velocity and density of the sediments below the WIS are approximatelycU2 = 150 m/s andρ2 = 2016 kg/m3, respectively, which
are compatible with a highly dilated and deforming material. The quality factor of such soft sediments can be assumedQ2 ≈ 10 (Lay
and Wallace, 1995). Figure 13 shows the experimental H/V response (a) and theoretical amplification function for the first three modes (b)
using the lossy-elastic and lossless-rigid models. Again, the modeled higher modes are damped with respect to the fundamental mode, but
attenuation does not affect the resonance frequencies (i.e., the peak positions) significantly.

Contrary to the previous case, the theory predicts the measured H/V peak only for the lossy-elastic model. In fact, Figure 13b shows
that adopting the lossless-rigid approximation, the peak frequency is approximately 0.68 Hz, well outside the experimental error bounds. As
explained in Appendix A and shown in subsection 3.2, this is due to the fact that whenα ≥ 1 (stiff over soft medium) we have a minimum
of the transfer function at the fundamental frequencyf0, and the first maximum is atf1 = 2f0. Thus, in this case assumingf0 located at the
H/V peak and using the lossless-rigid approximation will result in a wrong estimation of the glacier thickness.

〈〈 Figure 13〉〉

4 CONCLUSIONS

We study the effects of soil and bedrock anelasticity on the S-wave amplification function, i.e., how attenuation and bedrock deformability
affect the amplitude and frequency of the resonance peaks. The Zener model is used to describe attenuation, with a single relaxation peak.
We consider two different cases to study the location and amplitude of the fundamental mode, namely, the soil is softer than the bedrock
(e.g., sediment over hard rock) and the layer is stiffer than the half space (e.g., basalt over sediment).

In the first case, the presence of loss in the soil causes a shift of the peak towards the low frequencies, where the amount of shift depends
on the location of the Zener relaxation peak compared to the fundamental-mode resonant frequency. Damping is caused either by attenuation
or by elasticity of the bedrock, with the last effect dominating. Damping of the higher modes is noticeable when there is strong attenuation,
mainly that of the layer. However, the half space elasticity affects uniformly all the modes, i.e., their amplitudes are similar. In the second
case (softer bedrock with a given impedance), the modes shift to the higher frequencies and the spectrum stretches as the impedance contrast
increases, i.e., the separation between modes increases. Moreover, the transfer function shows a minimum at the fundamental frequency.

To analyze the effect of the frequency dependence of attenuation, we have considered a constantQmodel. It is shown that the attenuation
model affects the amplitude and location of the modes, so that each case needs an specific calculation. Finally, we consider two real cases
in Northern Italy and the Antarctic continent, where the upper layer is ice, showing the prediction capabilities of the theory. In the latter
case a very soft half space (sediment) below ice yields a minimum at the fundamental frequency and a resonance peak at higher frequencies
compared to a rigid half space. Therefore, attenuation and bedrock elasticity must be considered to obtain reliable estimations of the layer
thickness.
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FIGURE CAPTIONS
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Figure 1. S-wave site amplification in the lossless-elastic (solid line,Q1 = ∞, α = 0.3,Q2 = 50) and lossless-rigid (dashed line,Q1 = ∞, α = 0) cases.

APPENDIX A: ANALYSIS OF THE TRANSFER FUNCTION AT THE FUNDAMENTAL FREQUENCY

Let us consider the transfer function (2) in the lossless case and analyze its behaviour at the fundamental frequency. Its absolute value is

|F | =
(

cos2 β + α2 sin2 β
)

−1/2
, β =

ωh

v1
, (A.1)

whereα is given in equation (4). We have

d|F |
dω

= − h

2v1

(

cos2 β + α2 sin2 β
)

−3/2
(α2 − 1) sin 2β. (A.2)

The location of the fundamental mode is obtained ford|F |/dω = 0, and it is

f0 =
v1
4h

. (A.3)

The 2nd-order derivative atf0 is

d2|F |
dω2

=
(

h

v1

)2 α2 − 1

α3
. (A.4)

Then ifα ≤ 1 we have a maximum (soft over stiff medium) andα ≥ 1 gives a minimum (stiff over soft medium). On the other hand, it can
easily be shown that|F | = 1 atf1 = 2f0.
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Soil and bedrock anelasticity 9

Figure 2. S-wave site amplification in the lossy-elastic case (solid line,Q1 = 10,α = 0.3,Q2 = 50) and lossy-rigid case (dashed line,Q1 = 10,α = 0). Panel
(b) shows more details.
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Figure 3. S-wave site amplification in the lossy-elastic case (solid line,Q1 = 10,α = 0.3,Q2 = 50) and lossless-elastic case (dashed line,Q1 = ∞, α = 0.31,
Q2 = ∞).
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Figure 4. Amplification of the fundamental mode in the lossy-rigid case (Q1 = 10,α = 0) and lossless-elastic case (Q1 = ∞, α = 0.3,Q2 = 50). The dashed
line corresponds to the lossless-rigid case.

 at IN
G

V
 on D

ecem
ber 2, 2016

http://gji.oxfordjournals.org/
D

ow
nloaded from

 

http://gji.oxfordjournals.org/


Soil and bedrock anelasticity 11

0,0 0,5 1,0 1,5 2,0
0,0

0,5

1,0

1,5

2,0

2,5

3,0

3,5

|F
|

Frequency (Hz)

Figure 5. Amplification in the lossy-elastic case (α = 0.3) forQ1 = 10 (solid line) andQ1 = 3 (dashed line) (Q2 = 50).
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12 Carcione et al.

Figure 6. Amplification in the lossless (a) and lossy (b) cases for different values of the impedance contrastα (0, 0.2, 0.4, 0.6 and 0.8), corresponding to the
fundamental mode. In (a) it isQ1 = Q2 = ∞, while in (b) it isQ1 = 10 andQ2 = 50.
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Figure 7. Amplification in the lossless case (dashed line,Q1 = 50,Q2 = ∞) and lossy case (solid line,Q1 = 50,Q2 = 10) forα = 2. The lower half-space is
softer than the layer, such thatcU1 = 1.6 km/s,ρ1 = 2.5 g/cm3 , cU2 = 1 km/s andρ2 = 2 g/cm3 .
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14 Carcione et al.

(a)

Figure 8. Amplification in the lossy case (Q1 = 50 in (a) andQ2 = 10 in (b)) forα = 2. The number indicates the quality factor of the half-space (a) and layer
(b), respectively.
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Figure 9. Amplification function in the lossy case forα = 2, 5 and 10 (Q1 = 50 andQ1 = 10).
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Figure 10.Amplification in the lossy-elastic (solid line,Q1 = 10,Q2 = 50,α = 0.3). Attenuation is described by the Zener model and the constant-Q model
(the two solid lines). The dashed line corresponds to the lossless-rigid case (Q1 = ∞, α = 0).
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Figure 11.Amplification in the lossy-rigid (solid lines,Q1 = 10,α = 0) and lossless-rigid (dashed line,Q1 =∞,α = 0) cases, corresponding to the fundamental
mode. The numbers indicate the location of the Zener relaxation peak.
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Figure 12. Experimental H/V response (a) and theoretical amplification functions (b) corresponding to the Pian di Neve glacier (Adamello massif, Northen
Italy). The grey vertical bars quantify the experimental error associated to the resonance frequency of the fundamental (1.85± 0.3 Hz) and first higher mode
(6.54± 0.7 Hz). The theory predicts the measured fundamental-mode resonance frequency both for the lossy-elastic and lossless-rigid models.
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18 Carcione et al.

Figure 13.Experimental H/V response (a) and theoretical amplification functions (b) corresponding to the Whillans Ice Stream (West Antarctica). The grey
vertical bars quantify the experimental error associated to the resonance frequency of the fundamental mode (1.3± 0.2 Hz). The theory predicts the measured
fundamental-mode resonance frequency only for the lossy-elastic model.
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