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S U M M A R Y
Fractures are common in the Earth’s crust due to different factors, for instance, tectonic stresses
and natural or artificial hydraulic fracturing caused by a pressurized fluid. A dense set of frac-
tures behaves as an effective long-wavelength anisotropic medium, leading to azimuthally
varying velocity and attenuation of seismic waves. Effective in this case means that the pre-
dominant wavelength is much longer than the fracture spacing. Here, fractures are represented
by surface discontinuities in the displacement u and particle velocity v as [κ · u +η · v], where
the brackets denote the discontinuity across the surface, κ is a fracture stiffness and η is a
fracture viscosity.

We consider an isotropic background medium, where a set of fractures are embedded.
There exists an analytical solution—with five stiffness components—for equispaced plane
fractures and an homogeneous background medium. The theory predicts that the equivalent
medium is transversely isotropic and viscoelastic. We then perform harmonic numerical ex-
periments to compute the stiffness components as a function of frequency, by using a Galerkin
finite-element procedure, and obtain the complex velocities of the medium as a function of
frequency and propagation direction, which provide the phase velocities, energy velocities
(wavefronts) and quality factors. The algorithm is tested with the analytical solution and
then used to obtain the stiffness components for general heterogeneous cases, where fractal
variations of the fracture compliances and background stiffnesses are considered.

Key words: Numerical solutions; Seismic anisotropy; Seismic attenuation; Wave propaga-
tion; Fractures and faults.

1 I N T RO D U C T I O N

Seismic wave propagation through fractures and cracks is an important subject in exploration and production geophysics, earthquake
seismology and mining (Steen et al. 1998; Nelson 2001). Fractures constitute the sources of earthquakes (Daub & Carlson 2010) and
hydrocarbon and geothermal reservoirs are mainly composed of fractured rocks (Xu & Pruess 2001). This makes characterizing the seismic
properties of fractures essential in those fields of research. For instance, aligned vertical fractures can lead to an azimuthal anisotropy
(Schoenberg et al. 1999; Gray & Head 2000), particularly azimuthal dependence of velocity and attenuation, which is sensitive to key
properties of the reservoir, such as fluid type, flow direction, porosity, permeability, etc.

Seismic anisotropy and attenuation are frequency dependent. Carcione (1992) obtained the first model for Q-anisotropy based on Backus
averaging (see Carcione 2007). This model has been further studied by Picotti et al. (2010, 2012), who have shown how to compute the
stiffness components of the effective transversely isotropic and viscoelastic (TIV) medium with quasi-static numerical experiments. These
models are based on viscoelastic layers and do not consider fractures explicitly.

Modelling fractures requires a suitable interface model. Schoenberg (1980, 1983) proposes the so-called linear-slip model, based
on the discontinuity of the displacement across the interface (Schoenberg’s model). A generalization (Carcione 1996) states that the
stress components are proportional to the displacement and velocity discontinuities through the specific stiffnesses and specific viscosities,
respectively. Displacement discontinuities conserve energy and yield frequency-dependent reflection and transmission coefficients, while
velocity discontinuities generate energy loss at the interface. The specific viscosity accounts for the presence of a liquid. Chichinina et al.
(2009) and Carcione et al. (2012) obtained analytical solutions for the TIV and more general anisotropic cases, respectively, i.e. the complex
and frequency-dependent stiffness components.
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Schoenberg’s model, generalized to the viscoelastic case, has been introduced into the wave equation and solved numerically by Carcione
(1996, 2007). He used pseudo-spectral methods and domain decomposition (two grids) to model wave propagation and attenuation through a
fracture. Carcione (1998) generalized the method to the anisotropic case. Recently, Zhang (2005), Zhang & Gao (2009) and De Basabe et al.
(2011) implemented Schoenberg’s model (purely elastic) by using finite-volume and finite-element methods, respectively. All these schemes
treat a single fracture as a non-welded interface that satisfies the linear-slip displacement-discontinuity conditions instead of using equivalent
medium theories or layers as, for instance, in Coates & Schoenberg (1995).

Schoenberg’s model for a dense set of fractures has never been simulated with a numerical method. In order to test the theory and develop
a novel numerical solver that can be used in more general situations, e.g. when analytical solutions do no exist, we use a frequency-domain
finite-element method (FEM) to determine the complex stiffness coefficients of the TIV equivalent medium. The methodology consists in
applying time-harmonic oscillatory tests at a finite number of frequencies on a sample containing a dense set of viscoelastic fractures. It is
based on the wave equation of motion, with the explicit introduction of the linear-slip boundary conditions into the FEM. Similar tests have
been successfully performed for a dense set of layers (Picotti et al. 2010, 2012; Carcione et al. 2011; Santos et al. 2012).

2 T H E I N T E R FA C E ( F R A C T U R E ) M O D E L

Let us consider a planar anelastic fracture. The boundary conditions at the interface are

κ · [u] + η · [v] = σ · n, (1)

(Pyrak-Nolte et al. 1990; Carcione 1996), where u and v are the displacement and particle-velocity components, respectively, σ is the 3 × 3
stress tensor, n is the unit normal to the fracture, κ is the specific stiffness matrix, and η is the specific viscosity matrix (both of dimension
3 × 3). They have dimensions of stiffness and viscosity per unit length, respectively. Moreover, the symbol ‘·’ indicates scalar product and
the brackets denote discontinuities across the interface, such that for a field variable φ, it is [φ] = φ2 − φ1, where 1 and 2 indicate the two
sides of the fracture and n points from 2 to 1.

The particle velocity is given by v = u̇, where a dot above a variable indicates time differentiation. In the Fourier domain, v = iωu,
where ω is the angular frequency and i = √−1. Eq. (1) then becomes

[u] = Z · (σ · n), (2)

where

Z = (κ + iωη)−1 (3)

is a fracture compliance matrix, whose dimension is length/stress. This approach is equivalent to the linear-slip model introduced by
Schoenberg (1980). In fact, eq. (3), with η = 0, is given in Coates & Schoenberg (1995). Three models have been studied by Liu et al. (2000)
to obtain the expression of Z for different fracture models.

The compliance matrix Z of the set of fractures is diagonal with positive definite real and imaginary parts

Z =

⎛
⎜⎜⎝

Z1 0 0

0 Z2 0

0 0 Z3

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝

(κ1 + iωη1)−1 0 0

0 (κ2 + iωη2)−1 0

0 0 (κ3 + iωη3)−1

⎞
⎟⎟⎠ , (4)

where Z1 is the normal compliance, Z2 is the horizontal tangential compliance and Z3 is the vertical tangential compliance. The fact that there
are no off-diagonal components means that, across the fractures, the normal motion is uncoupled from the tangential motion.

A common situation in the Earth’s crust is to have a set of parallel fractures. The mechanical representation of the fracture boundary
condition is given by a Kelvin-Voigt model, according to the stress-displacement relation

σ · n = (κ + iωη) · [u]. (5)

The quantity κ + iωη is the complex modulus per unit length of the Kelvin-Voigt element (e.g. Carcione 2007).
A displacement discontinuity yields compliance, while a discontinuity in the particle velocity implies an energy loss at the interface

(Carcione 1996, 1998, 2007); κ = 0 gives the particle-velocity discontinuity model and η = 0 gives the displacement discontinuity model.
On the other hand, if κ → ∞ or η → ∞, the model gives a welded interface.

3 T H E E Q U I VA L E N T A N I S O T RO P I C M E D I U M . A NA LY T I C A L S O LU T I O N

We consider a set of horizontal and parallel fractures. Let us introduce

Z N = Z1

L
, Z H = Z2

L
, ZV = Z3

L
, (6)

where L is a characteristic length, such that these quantities have dimensions of compliance, and

κN = Lκ1, κH = Lκ2, κV = Lκ3,

ηN = Lη1, ηH = Lη2, ηV = Lη3,
(7)
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have dimensions of stiffness and viscosity, respectively. The quantity L, called h in Grechka et al. (2003) (see their eq. 3), is the average
fracture spacing, which has to be much smaller than the dominant wavelength of the pulse. Thus,

Z N = 1

κN + iωηN
, Z H = 1

κH + iωηH
, ZV = 1

κV + iωηV
. (8)

If the background medium is isotropic, with elasticity components (Lamé constants) c12 and c55, and the fracture set is rotationally
invariant, we have ZH = ZV ≡ ZT , and the equivalent medium is TIV with a vertical symmetry axis (VTIV), whose stiffness matrix is

P =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

c11 − c2
12 Z N cN c12 − c2

12 Z N cN c12cN 0 0 0

c12 − c2
12 Z N cN c11 − c2

12 Z N cN c12cN 0 0 0

c12cN c12cN c11cN 0 0 0

0 0 0 c55cT 0 0

0 0 0 0 c55cT 0

0 0 0 0 0 c55

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(9)

(Schoenberg 1983; Chichinina et al. 2009; Carcione et al. 2012), where c11 = c12 + 2c55,

cN = (1 + c11 Z N )−1 and cT = (1 + c55 ZT )−1. (10)

The stiffness matrix in Coates & Schoenberg (1995) is equivalent to P of eq. (9) considering the lossless case (η = 0). If η �= 0, eq. (9) is
equivalent to the medium studied by Chichinina et al. (2009).

Eq. (9) represents an equivalent medium corresponding to a set of highly permeable fractures and it is obtained as a limit case of a
layered medium, where one of the layers is very soft, thin and viscoelastic. In particular, the components pIJ of matrix P are obtained by
assuming a periodic medium composed of two layers, where one of the layers has the Lamé constants λ and μ (the background medium) and
the other, representing the fracture, is very thin with Lamé constants μf = pLβ = p/ZT and Ef = λf + 2μf = pLα = p/ZN , where p � 1 is the
volume proportion of fractures, and L is the fracture spacing (constant). The displacement discontinuities (boundary conditions) associated
with the fractures are [u3] = LZNσ 33 and [u1] = LZTσ 13 along the x3- and x1-directions, respectively (Schoenberg 1983, eqs 21–23; Carcione
et al. 2012).

Denoting by eij and τ ij the strain and stress tensors of the equivalent TIV medium at the macroscale, the stress–strain relations are

τ11 = p11e11 + p12e22 + p13e33,

τ22 = p12e11 + p11e22 + p13e33,

τ33 = p13e11 + p13e22 + p33e33,

τ23 = 2p55e23,

τ13 = 2p55e13,

τ12 = 2p66e12,

(11)

where p66 = (p11 − p12)/2. In the next section we present a numerical procedure to determine the components pIJ in (11) and the corresponding
phase velocities and quality factors. These properties, which depend on frequency and propagation direction, are given in the Appendix. We
show that for this purpose it is sufficient to perform a collection of oscillatory tests on representative 2-D samples of the material.

4 T H E M E T H O D O L O G Y

Let u, εij(u) and σ ij(u) denote the frequency-domain displacement vector, strain components and stress components of the background
medium. The stress–strain relations and equation of motion are

σi j = c12εkkδi j + 2c55εi j (12)

and

ρω2u(x, z, ω) + ∇ · σ (u(x, z, ω)) = 0, (13)

(Ben-Menahem & Singh 1981), respectively, where implicit summation of repeated indices is assumed.

4.1 FE implementation

We consider a rectangular sample � and set the boundaries as � = �L ∪ �R ∪ �B ∪ �T , where

�L = {(x, z) ∈ � : x = 0}, �R = {(x, z) ∈ � : x = L},
�B = {(x, z) ∈ � : z = 0}, �T = {(x, z) ∈ � : z = L}.
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are the left (L), right (R), bottom (B), and top (T) boundaries of the sample, respectively. Denote by n the unit outer normal on � and let m
be a unit tangent on � so that {n, m} is an orthonormal system on �.

Let us assume that we have a set of J (f ) horizontal fractures �(f ,l), l = 1, ···, J (f ) each one of length L in the domain �. This set of
fractures divides the domain in a collection of non-overlapping rectangles R(l), l = 1, ···, J (f ) + 1, so that

� = ∪J ( f )+1
l=1 R(l).

Consider a fracture �(f ,l) and the two rectangles R(l) and R(l +1) having as a common side �(f ,l). Let nl,l +1, ml,l +1 be the unit outer normal and
a unit tangent (oriented counterclockwise) on �(f ,l) from R(l) to R(l +1) , such that {nl,l +1, ml,l +1} is an orthonormal system on �(f ,l).

The boundary conditions at fracture �(f ,l) are given by eq. (5). More precisely, if u(l) = u|R(l) denotes the restriction of u to R(l), we
impose

σ (u(l))nl,l+1 = σ (u(l+1))nl,l+1, (x1, x3) ∈ �( f,l), l = 1, . . . , J ( f ),(
σ (u(l))nl,l+1 · nl,l+1, σ (u(l))nl,l+1 · ml,l+1

)�
B(l)(ω) = ([u] · nl,l+1, [u] · ml,l+1)� , (x1, x3) ∈ �( f,l), l = 1, . . . , J ( f ),

(14)

where � indicates the transpose, [u] denotes the jump at �(f ,l) of displacement vector u, i.e.

[u] = (u(l) − u(l+1))|�( f,l)

and

B(l)(ω) = L

(
Z N

(l) 0

0 ZT
(l)

)
(15)

where ZN
(l) and ZT

(l) have the form (8), with Z (l)
V = Z (l)

H = Z (l)
T .

The FE variational formulation is explained in detail in Santos et al. (2011, 2012), where a priori error estimates which are optimal for
the regularity of the solution are given. The error is of the order of h in the L2-norm and of the order of

√
h both in the interior energy norm

and in the L2 norm on the set of fractures, where h is the size of the elements. The results on the existence and uniqueness of the solution of
the continuous and discrete problems presented in that references apply to the cases analyzed here. The FE algorithms were implemented and
validated in Fortran language, and were used to perform the numerical experiments presented in the next section.

4.2 Numerical experiments

The sample is subjected to time-harmonic compressions �Pexp (iωt), where P denotes pressure, and time-harmonic tangential forces
�Gexp (iωt), where G is the shear stress (see Fig. 1). ( � denotes a variation of the field variable). In the following we establish the boundary
conditions to be used at the sides of the sample to obtain the stiffness components. Then, we solve eq. (13) with those conditions together
with equations (14) at the interior of the grid (fracture interfaces).

(i) p33: The boundary conditions are

[σ (u) · n] · n = −�P, (x1, x3) ∈ �T ,

[σ (u) · n] · m = 0, (x1, x3) ∈ �,

u · n = 0, (x1, x3) ∈ �L ∪ �R ∪ �B .

(16)

In this experiment e11 = e22 = 0 and from the stress–strain relations (11) this experiment determines p33 as follows. Denoting by V the
original volume of the sample and by �V (ω) its (complex) oscillatory volume change, we note that

�V (ω)

V
= − �P

p33(ω)
, (17)

valid in the quasistatic case. After solving eqs (12) and (13) with the boundary conditions (16), the vertical displacements u3(x1,L, ω) on �T

allow us to obtain an average vertical displacement uT
3 (ω) at the boundary �T . Then, for each frequency ω, the volume change produced by

the compressibility test can be approximated by �V (ω) ≈ LuT
3 (ω), which enable us to compute p33(ω) by using the relation (17).

(ii) p11: The boundary conditions are:

[σ (u) · n] · n = −�P, (x1, x3) ∈ �R,

[σ (u) · n] · m = 0, (x1, x3) ∈ �,

u · n = 0, (x1, x3) ∈ �L ∪ �B ∪ �T .

(18)

In this experiment, e33 = e22 = 0 and this experiment determines p11 in the same way indicated for p33.
(iii) p55: The boundary conditions are:

σ · m = g, (x1, x3) ∈ �T ∪ �L ∪ �R,

u = 0, (x1, x3) ∈ �B,
(19)

C© 2012 The Authors, GJI, 191, 1179–1191

Geophysical Journal International C© 2012 RAS



Fracture-induced velocity 1183

Figure 1. Oscillatory tests performed to obtain p33 (a), p11 (b), p55 (c), p13 (d) and p66 (e). The orientation of the layers and the directions of the applied
stresses are indicated. The thick black lines at the edges indicate rigid boundary conditions (zero displacements).

where

g =

⎧⎪⎪⎨
⎪⎪⎩

(0,�G), (x1, x3) ∈ �R,

(0,−�G), (x1, x3) ∈ �L ,

(�G, 0), (x1, x3) ∈ �T .

The change in shape of the rock sample allow us to compute p55(ω) by using the relation

tan[ϑ(ω)] = �G

p55(ω)
, (20)

where ϑ(ω) is the angle between the original positions of the lateral boundaries and the location after applying the shear stresses.
The horizontal displacements u1(x1,L, ω) at the top boundary �T are used to obtain, for each frequency, an average horizontal displacement
uT

1 (ω) at the boundary �T . This average value allows us to approximate the change in shape suffered by the sample, given by tan[ϑ(ω)] ≈
uT

1 (ω)/L, which from eq. (20) yields p55(ω).
(iv) p66: Since this stiffness is associated with shear waves travelling in the (x1, x2)-plane, we take the layered sample, rotate it 90◦ and

apply the shear test as indicated for p55.
(v) p13: The boundary conditions are

[σ (u) · n] · n = −�P, (x1, x3) ∈ �R ∪ �T ,

[σ (u) · n] · m = 0, (x1, x3) ∈ �,

u · n = 0, (x1, x3) ∈ �L ∪ �B .

(21)

Thus, in this experiment e22 = 0, and from the stress–strain relations (11) we obtain

τ11 = p11e11 + p13e33,

τ33 = p13e11 + p33e33,
(22)

where e11 and e33 are the (macroscopic) strain components at the right lateral side and top side of the sample, respectively. Then from eq. (22)
and using τ 11 = τ 33 = −�P [c.f. eq. (21)], we obtain

p13(ω) = p11e11 − p33e33

e11 − e33
. (23)
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5 E X A M P L E S

To verify that the FE implementation of the fractured medium is correct, we consider the data provided by the laboratory experiments of
Chichinina et al. (2009). They consider an isotropic background medium defined by c12 = 10 GPa, c55 = 3.9 GPa (c11 = 17.8 GPa) and ρ =
2300 kg m−3. Using their notation, they report �N = 1 − cN = (0.28, − 0.134 ) and �T = 1 − cT = (0.15, − 0.087 ) for a wet (oil-saturated)
sample. Since

Z N = 1

c11

(
1

�N
− 1

)−1

and ZT = 1

c55

(
1

�T
− 1

)−1

,

we obtain Z−1
N = (34, 24.7) GPa and Z−1

T = (15.5, 11.3) GPa. Similarly, we obtain the values for the dry sample: Z−1
N = (9.6, 4.8) GPa and

Z−1
T = (3.1, 0.12) GPa. The frequency of the signal is f 0 = 100 kHz and the distance between fractures is L = 1 cm. Rewriting eq. (8) at the

frequency f 0 as Z−1
q = κq + 2π i f0ηq , q = N , T , we obtain

κq = Re

(
1

Zq

)
ηq = 1

2π f0
Im

(
1

Zq

)
. (24)

Now, we set

Zq = 1

κq + iωηq
. (25)

The following simulations have L =1 cm, a grid spacing dz = 0.5 cm and f 0 = 25 Hz. To obtain p11, p13 and p33, we consider 29 equally
spaced fractures and a FE mesh size of 60 × 60. On the other hand, p55 and p66 are obtained with 14 fractures and a mesh size of 30 × 30
grid points. The calculation of p66 requires an alternative treatment due to the fact that the sample is finite along the fracture planes which do

Figure 2. Phase velocities (a and b) and dissipation factors (c and d) as function of frequency corresponding to dry fractures. ‘11’ and ‘66’ refer to qP- and
SH-waves travelling along the fracture plane and ‘33’ refers to qP-waves travelling perpendicular the fracture plane, respectively, while ‘55’ corresponds to
the qS waves along and perpendicular to the fracture planes and to SH waves perpendicular to the fracture planes. The solid lines and symbols indicate the
theoretical and numerical values, respectively.

C© 2012 The Authors, GJI, 191, 1179–1191
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Fracture-induced velocity 1185

Figure 3. Phase velocities (a and b) and dissipation factors (c and d) as function of frequency corresponding to wet fractures. The solid lines and symbols
indicate the theoretical and numerical values, respectively (see caption of Fig. 2).

not remain parallel after the deformation. In this case, we set to zero the displacement perpendicular to those planes. This constraint has no
effect on the calculation since this component is uncoupled from the motion related to p66.

The compliances ZN and ZT have the experimental values obtained above, but now the model has been scaled to seismic frequencies,
i.e. Z−1

N = [34 + i(f /f 0) 24.7] GPa and Z−1
T = [15.5 + i(f /f 0) 11.3] GPa for the wet rock, and Z−1

N = [9.6 + i(f /f 0) 4.8] GPa and Z−1
T = [3.1 +

i(f /f 0) 0.12] GPa for the dry rock. Actually, the determination of reliable fracture parameters requires measurements at the seismic range.
Figs 2 and 3 show the phase velocities and dissipation factors of the three wave modes along principal axes of the equivalent medium. The

solid lines and symbols indicate the theoretical and numerical values, respectively. The dissipation factor associated to the ‘66’ component
is zero since p66 = c55 is real (see eq. 9). The velocity dispersion of the qP wave is more pronounced in the dry case than in the wet case,
while the opposite occurs for the qS wave. In both cases, the waves travel faster and attenuation is weaker for propagation along the fracture
plane.

Fig. 4 shows the energy velocities and dissipations factors as a function of the angle (energy and phase angles, respectively). The
frequency is 53 Hz. The dry case shows more anisotropy and attenuation. The qP wave is strongly attenuated along the direction perpendicular
to the fractures (θ = 0◦), while the qS wave has higher loss at approximately 50◦ in the dry case but shows the opposite behaviour in the wet
case, where attenuation has a minimum at about 40◦. The SH wave has no loss in the direction parallel to the fractures since p66 is real.

These features are in qualitative agreement with the experimental data (phase velocity and dissipation factor) reported by Chichinina
et al. (2009) in their Figs 2 and 3, providing a confirmation of the linear-slip theory. Strong shear-wave splitting is observed at all frequencies
in the dry case along the fracture plane, while P-wave anisotropy occurs at low frequencies. Q anisotropy is more pronounced than velocity
anisotropy, and stronger attenuation characterizes the fluid-filled fractures. Moreover, as can be seen in the wet case, velocity anisotropy is
small but attenuation anisotropy can be high. It is evident the strong frequency dependence of the wave properties. For instance, the stiffness

C© 2012 The Authors, GJI, 191, 1179–1191
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1186 J.M. Carcione, S. Picotti and J.E. Santos

Figure 4. Energy velocity (a and b) and dissipation factors (c and d) as a function of angle for dry (a and c) and wet (b an d) fractures. The frequency is 53
Hz. The solid lines and symbols indicate the theoretical and numerical values, respectively.

related to the ‘33’ direction is p33 = c11(κN + iωηN )/(κN + iωηN + c11), with p33 = c11/(1 + c11/κN ) at ω = 0 and p33 = c11 at ω = ∞,
both lossless limits. Then, the factor

√
1 + c11/κN quantifies the amount of velocity dispersion. There is no dispersion and loss for κN = ∞,

corresponding to a welded interface.
Next we consider non-equispaced fractures and compare numerical and analytical solutions. According to Schoenberg (1983), the

requirement of equally spaced fractures can be relaxed as long as ZN and ZT are the same for all the fractures. Using our notation, he states:
‘It should be noted here that we can relax the requirement that we have equally spaced identical cracks. As the slip is manifest in the two
dimensionless compliances c55ZT and c55ZN , a homogeneous material with irregularly spaced parallel slip interfaces behaves identically as
long as ZT = Z2/L and ZN = Z1/L are the same (where Z2 is the total tangential slip of all the cracks in distance L due to unit shear stress, and
Z1 is the total normal slip due to unit normal stress). Thus a rock with arbitrary closely spaced parallel linear slip interfaces can be modelled
as a homogeneous transverse isotropic solid as long as the average slip per distance normal to the system of cracks is independent of x3’.

We consider a periodic system where the vertical location of the fractures is given by the array of grid points [(4, 6), (10, 12), (16, 18),
(22, 24), . . .] dz, where the parentheses indicate a pair separated by a distance 2dz. For each pair is Z1 = (a, b)LZN and Z2 = (c, d)LZT , with
a + b = c + d = 1, such that the total normal and tangential displacement discontinuities per unit stress in one period are LZN and LZT ,
respectively. For instance, eq. (2) for each fracture pair and unit stress is

[uz] = [uz](fracture 1) + [uz](fracture 2) = aL Z N + bL Z N = L Z N ,

[ux ] = [ux ](fracture 1) + [ux ](fracture 2) = cL ZT + d L ZT = L ZT .
(26)

We consider the wet case, a 100 × 100 mesh of 25 cm side length and 32 fractures to compute p11 and p33 and a 64 × 64 mesh of 16 cm side
length and 20 fractures to compute p55. We take dz = 0.25 cm (the period is L = 1.5 cm) and combinations of sets (a, b) and (c, d) equal to
(0.5, 0.5), (1/3, 2/3) and (0.9,0.1). The results indicate that the numerical and analytical solutions coincide and are not shown because they
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Figure 5. Real part of the compliances as a function of effective stress.

are similar to those of Fig. 3. The case (0.5, 0.5) corresponds to considering an effective L being the average fracture spacing (0.75 cm), as
indicated in Grechka et al. (2003).

Next, we use the FE simulations in cases for which no analytical solutions are available. To obtain a set of stiffness coefficients pIJ

representative of the medium it is required the condition of stationarity. That is, in a given length of medium much smaller than the wavelength,
the properties of the background material and fracture stiffnesses are constant on average (periodicity is not required).

Let us now consider fractures at varying pore fluid pressure. Daley et al. (2006) suggest that a reasonable assumption is to take high
values of fracture compliance at low normal effective stress. Then, the fracture compliances approach low values asymptotically as normal
stress increases. They propose

Zq = Zq∞ + (Zq0 − Zq∞) exp(−σ/τq ), (27)

where Zq0, Zq∞ and τ q are constants, and σ = pc − p is the effective normal stress, where pc is the confining pressure and p is the pore
pressure. Following Daley et al. (2006) we consider �N0 = (0.2, − 0.02 ) and �T0 = (0.6, − 0.06), where the imaginary part here has been
chosen as one tenth of the real part, with τN = 4 MPa and τ T = 5 MPa. Moreover, ZN0 = 2ZN∞ and ZT0 = 5ZT∞. For a constant confining
pressure pc = 30 MPa, Fig. 5 shows the real parts of the compliances as a function of the effective stress.

Let us consider two pore pressures 5 and 28 MPa, normal and overpressure values, respectively. We obtain from eq. (27)

p = 5 MPa : Z−1
N = (23.1 + 5.9i) GPa, Z−1

T = (75 + 9.4i) GPa,

p = 28 MPa : Z−1
N = (14.4 + 3.6i) GPa, Z−1

T = (21 + 2.6i) GPa,
(28)

such that these values correspond to f = 25 Hz since we have taken f 0 = 25 Hz. We then consider a set of equispaced fractures with L = 1
cm and 80 per cent binary fractal variations of the compliances ZN and ZT around the mean values given by eq. (28), where binary means
that these compliances take only two values, ± 80 per cent around their mean values. The correlation length is 0.7 (in a scale of 10) and the
fractal dimension is 2.2. We model fractal variations by using a von Kármán autocovariance probability function (von Kármán 1948). The
background medium is that defined above and we have used the same mesh parameters as in Figs 2 and 3. Fig. 6 compares the energy velocity
(a and b) and dissipation factors (c) for the normal and overpressure cases. As expected, increasing pore pressure implies lower velocity and
more anisotropy. This effect can clearly be seen in the wavefronts. On the other hand, attenuation is stronger in the overpressured case and
along the vertical direction.

Finally, we consider the problem solved to obtain Fig. 2 (the dry case) with 50 per cent binary fractal variations of the background Lamé
constants λ and μ, as shown in Figs 7(a) and (b). The correlation length is 0.7 (in a scale of 10), the fractal dimension is 2.2 and we have used
the same mesh parameters as in Figs 2 and 3. Figs 7(c) and (d) show the phase velocity and dissipation factor as a function of frequency. The
velocities in the fractal case are lower than those obtained with the mean values, while only the dissipation factor of the qP wave travelling
along the direction perpendicular to the fractures is affected, showing lower values in the fractal case.

6 C O N C LU S I O N S

Schoenberg’s theory predicts that an homogeneous background containing a set of horizontal parallel fractures behaves like a transversely
isotropic medium at long wavelengths. We presented a collection of novel numerical quasi-static harmonic experiments to test and validate
the theory. The proposed experiments are based on a finite-element solution of the equation of motion in the space-frequency domain to
simulate compressibility and shear tests. The fracture behaviour is modelled as discontinuities of the displacements and velocity fields and
continuity of stresses at the fracture interfaces, i.e. the fractures are represented as a set of internal boundaries in the finite-element domain.
The phase, energy and dissipation factors as a function of the propagation and ray (energy) angle are obtained for homogeneous viscoelastic
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Figure 6. Energy velocity (a and b) and dissipation factor (c) versus angle for the normal (open circles) and overpressure (full circles) cases. Fractal variations
of the fracture stiffnesses are modelled. The frequency is 25 Hz.
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Figure 7. Fractal variations of the background Lamé stiffnesses (a and b), phase velocity (c) and dissipation factor (d) as a function of frequency. The solid
lines are the FE results computed with the mean values and the solid lines with symbols correspond to the fractal case.

plane waves (wavenumber and attenuation directions coincide). Attenuation is solely due to fracture viscosity while the background medium
is lossless.

For periodic, non-equispaced fractures the numerical results show a good match with the analytical solution. A medium with arbitrary
closely spaced parallel and horizontal fractures can be modelled as an effective transverse isotropic solid as long as the average displacement
per distance normal to the system of fractures is independent of the vertical coordinate. Then, we apply the method to cases where there is no
analytical solution, such as random variations of the fracture stiffnesses at different pore pressures and fractal variations of the background
elastic properties. In particular, it is shown that attenuation can be an indicator of overpressure with higher values at high pore pressures.

The model can be important in determining the orientation of fractures in the reservoir and the overlying cap rock. This plays an
important role in the oil industry during production, and other applications, such as CO2 injection and monitoring.
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A P P E N D I X : WAV E V E L O C I T I E S A N D Q UA L I T Y FA C T O R S

The complex velocities are required to calculate wave velocities and quality factors of the fractured medium. They are given by

vqP = (2ρ)−1/2
√

p11l2
1 + p33l2

3 + p55 + A,

vqS = (2ρ)−1/2
√

p11l2
1 + p33l2

3 + p55 − A,

vSH = ρ−1/2
√

p66l2
1 + p55l2

3 ,

A =
√

[(p11 − p55)l2
1 + (p55 − p33)l2

3 ]2 + 4[(p13 + p55)l1l3]2,

(A1)

(Carcione 2007), where l1 = sin θ and l3 = cos θ are the directions cosines, θ is the propagation angle between the wavenumber vector and
the symmetry axis, and the three velocities correspond to the qP, qS and SH waves, respectively. The phase velocity is given by

vp =
[

Re

(
1

v

)]−1

, (A2)

where v represents either vqP, vqSV or vSH. The energy-velocity vector of the qP and qS waves is given by

ve

vp
= (l1 + l3 cot ψ)−1ê1 + (l1 tan ψ + l3)−1ê3, (A3)

(Carcione 2007), where

tan ψ = Re(β∗ X + ξ ∗W )

Re(β∗W + ξ ∗ Z )
, (A4)

defines the angle between the energy-velocity vector and the z-axis,

β = √
A ± B,

ξ = ±pv
√

A ∓ B,

B = p11l2
1 − p33l2

3 + p55 cos 2θ,

(A5)
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where the upper and lower signs correspond to the qP and qS waves, respectively. Moreover,

W = p55(ξ l1 + βl3),

X = βp11l1 + ξp13l3,

Z = βp13l1 + ξp33l3,

(A6)

(Carcione 2007), where ‘pv’ denotes the principal value, which has to be chosen according to established criteria.
On the other hand, the energy velocity of the SH wave is

ve = vp

ρRe(v)

[
l1Re

( p66

v

)
ê1 + l3Re

( p55

v

)
ê3

]
. (A7)

Finally, the quality factor is given by

Q = Re(v2)

Im(v2)
. (A8)
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