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Abstract
The simulation of a stacked radargram requires the calculation of a set of common-source experiments and
application of the standard processing sequence. To reduce computing time, a zero-offset stacked section can be
obtained with a single simulation, by using the exploding-reflector concept and the so-called non-reflecting
wave equation. This non-physical modification of the wave equation implies a constant impedance model to
avoid multiple reflections, which are, in principle, absent from stacked sections and constitute unwanted artifacts
in migration processes. Magnetic permeability is used as a free parameter to obtain a constant impedance model
and avoid multiple reflections. The reflection strength is then implicit in the source strength. Moreover, the
method generates normal-incidence reflections, i.e. those having identical downgoing and upgoing wave paths.
Exploding reflector experiments provide correct travel times of diffraction and reflection events, in contrast to
the plane-wave method.
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1.  Introduction

The computation of synthetic seismograms
for simulating zero-offset (stacked) seismic
sections, and the reverse time migration of these
sections, requires the use of the exploding-
reflector concept (Loewenthal et al., 1976;
Carcione et al., 1994) and the so-called non-
reflecting wave equation (Baysal et al., 1984).
This non-physical modification of the wave
equation implies a constant impedance model
to avoid multiple reflections, which are, in
principle, absent from stacked sections and

constitute unwanted artifacts in migration
processes (Baysal et al., 1983).

The increasing use of Ground-Penetrating
Radar (GPR) for solving a wide range of en-
gineering and environmental problems has been
facilitated by the application of standard seismic
techniques, such as multi-fold coverage and
processing (Fisher et al., 1992; Pipan et al.,
1996). Modeling, as an interpretation tool, and
migration methods are two of the most impor-
tant processing techniques. In particular, it is
necessary to migrate events generated by near-
surface dipping reflectors and buried elements,
such as boulders and localized inhomogeneities.
In many cases, the radargrams can also be
contaminated by surface events generated by
trees and metallic objects. Therefore, it is
important to develop the concepts of exploding
reflector and non-reflecting wave equations for
GPR applications.

There are two efficient ways for simulating
a zero-offset synthetic survey avoiding cal-
culation of common-shot records: the plane-
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wave method and the exploding reflector
method. Both approaches involve a single
calculation with a time-domain modeling
algorithm. The first consists in sending a
horizontal localized plane-wave front down from
the surface and recording the response of the
subsurface model back at the surface. The travel
times obtained with this method are not those
obtained with the standard processing sequence.
Asimple example is given by a single diffraction
point at (0, z). If v is the phase velocity of the
medium, the travel time at offset (x, 0) is

while a source and a receiver at (x, 0) imply a
travel time

The method is also approximate for dipping
layers.

In the exploding-reflector method (Baysal
et al., 1984; Carcione et al., 1994), each reflec-
tion point in the subsurface explodes at t = 0
with a magnitude proportional to the normal-
incidence reflection coefficient. The equation is
a modification of the wave equation, where the
impedance is constant over the whole model
space. In this way, non-physical multiple re-
flections are avoided and the recorded events
are primary reflections. Moreover, the method
generates normal-incidence reflections, i.e. those
having identical downgoing and upgoing wave
paths. In order to obtain the two-way travel time,
the phase velocities are halved. Due to sampling
constraints, halving the velocities implies
doubling the number of grid points. Therefore,
the method is less efficient than the plane-wave
approach.

In the seismic case, the density is used as a
free parameter to obtain a constant impedance
model and avoid multiple reflections. From the
analogy between acoustic and electromagnetic
waves (Carcione and Cavallini, 1995), the
density is mathematically analogous to the
magnetic permeability. We scale this property
by a factor depending on the permittivity, to
obtain a model where all the media have the
same electromagnetic impedance. In addition,

the condition that the phase velocity remains
unchanged also requires the scaling of the
permittivity and the conductivity. In an example,
we consider the Transverse-Magnetic (TM)
wave equations and compare synthetic radar-
grams computed with both the plane-wave and
the exploding-reflector methods. The numerical
solver used here consists of the pseudospectral
Fourier method for computing the spatial
derivatives, and a Runge-Kutta method for time
integration (Carcione, 1996). However, any
other full-wave equations method, finite-
differences, pseudospectral, or finite-elements,
can be used.

2.  Maxwell’s equations

Maxwell’s equations for isotropic media
and time harmonic fields with time dependence
exp (i t ), where is the angular frequency,
read

× = +E H Mi µ0 (2.1)

and

(2.2)

where the symbol × denotes the vector product,
E is the electric field, H is the magnetic field, Js

is the electric source, M is the magnetic source,
µ0 is the magnetic permeability of vacuum
(appropriate for GPR applications), is the
dielectric permittivity, is the con-ductivity, and

(2.3)

is the complex permittivity (Chew, 1990).

3.  The exploding reflector

Implementation of the exploding reflector
method in GPR modeling implies the following:

1)  A source is placed at every point on the
subsurface interface of interest.

2)  The phase velocity of each medium is
halved, to obtain the correct two-way travel time

t v x z v= +/  +   /z 2 2

t x z v= + 2  / .2 2

× = + + = +H E E J E Ji is s
*

*( ) =
i
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given by

(3.5)

where

(3.6)

is the electromagnetic impedance (Chew, 1990,
p. 48), with µ = µ 0 here. Equation (3.5) is the
reflection coefficient for the electric field of the
TE or TM waves. The corresponding normal-
incidence reflection coefficient for the magnetic
field of the TE or TM waves has the opposite
sign. The source strength should be proportional
to |R |. Since R depends on the frequency ,
this requirement cannot be satisfied for all
frequencies when using a time-domain solver.
In this case, we consider the source strength to
be proportional to |R ( d ) |, where d is the do-
minant frequency of the source.

4)  We can avoid normal-incidence multi-
ple reflections if all the media have the same
electromagnetic impedance. This is evident
from eq. (3.5). In order to do this we must
scale the material properties accordingly, that
is, substitute µ0, and with new properties
µ, and . The complex impedance can be
made constant by using the Perfectly Matched
Layer (PML) method introduced by Berenguer
(1994); i.e. using a complex magnetic per-
meability. However, this approach gives a
different complex velocity compared to eq.
(3.2). We may impose that the  «instantaneous»
impedance is the same for all the media. The
instantaneous impedance is defined as

(3.7)

which corresponds to the unrelaxed response of
the medium (t = 0). In this limit / 0, in
general. Then, we assume

(3.8)

with k a real constant. Moreover, we must
impose that the complex velocity (3.2) remains
unchanged after introduction of the scaled pro-

and amplitude decay for every diffraction and
reflection event.

3)  The source strength is proportional to the
normal-incidence reflection coefficient at each
point on the interface (a zero-offset raypath is
normal to the reflecting interface).

4) We require that the electromagnetic
impedance be the same for all media. Because the
algorithm generates non-physical events (the
downgoing waves) and approximates a zero-offset
stacked section, we must avoid multiple reflections.

We propose the following approximations to
meet requirements (2.1) to (3.1):

1) The algorithm used here solves the
electromagnetic equations in the time domain,
and it is based on a grid method for computing
the spatial derivatives. This implies a discre-
tization of the model space. Then, at every grid
point of each interface a source with the same
time history is initiated at time t = 0.

2)  The phase velocity is given by

(3.1)

where  is the real-part operator, and

(3.2)

is the complex velocity (Carcione, 1996).
Halving the phase velocity can be achieved by
the following substitution:

(3.3)

Since the attenuation factor is

(3.4)

(Carcione, 1996), where is the imaginary-part
operator, eq. (3.3) ensures that the amplitude decay
corresponds to that of the two-way travel path.

3) The normal-incidence reflection co-
efficient between medium 1 and medium 2 is

V
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are computed in the space-time domain. Let us
denote by E and H and J and M the cor-
responding time-domain electric and magnetic
fields and sources, and for convenience, the
medium properties are indicated by the same
symbols, in both, the time and the frequency
domains. Under these conditions, Ex, Ez and Hy are
decoupled from Ey, Hx and Hz, and the first three
fields obey the TM wave differential equations

(4.1)

(4.2)

(4.3)

The set of properties (µ, , ) is equal to (µ 0, ,
) for the plane-wave method, and to (µ 0, , )

for the exploding-reflector method.
Let us consider the model shown in fig. 1.

The ray-paths represented with solid lines are

perties, i.e.

(3.9)

The choice

(3.10)

(the impedance of vacuum) implies

(3.11)

where

(3.12)

Then, I  = I0 and eq. (3.9) is satisfied.

4.  Example

We assume an isotropic medium, propaga-
tion in the (x, z)-plane, and that the material
properties and source characteristics are constant
with respect to the y-coordinate. The radargrams

Fig.  1. Model and electromagnetic properties. The ray-paths represented with solid lines are the direct arrivals.
The dotted line is a physical multiple. The dashed lines represent non-physical multiple events due to the
presence of down-going waves in the exploding-reflector experiment (Carcione et al., 1994).
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the synthetic radargrams because the medium is
electromagnetically «transparent» due to the
requirement (3.1). The quality factor is given by

(4.4)

(Carcione and Cavallini, 1995). Using 0 = 8.85
10 12 F/m, the quality factors at 100 MHz of the
media in fig. 1 are Q1 = , Q2 = 28 and Q3 = 11.
The numerical mesh for the plane-wave
experiment has NX = NZ = 125 grid points, with
a grid spacing DX = DZ = 15 cm. The source is a
horizontal electric current (Jsx), whose time
history is a Ricker-type wavelet with a central
frequency fc = 100 MHz and a cut-off frequency
of 200 MHz. The Nyquist criterion implies

(4.5)

where Dmax is the maximum allowed grid size,
and Vpmin is the minimum phase velocity. The
minimum phase velocity is that of medium 3
(see fig. 1), with an unrelaxed (optical) value of
6.7 cm/ns. Note that a maximum spacing of
16.77 cm is allowed. Because the velocities are
halved in the exploding-reflector method, we use
DX = DZ = 7.5 cm, and NX = NZ = 243. The
algorithm, similar to that developed by Carcione
(1996), is based on the Fourier method for
computing the spatial derivatives and a Runge-
Kutta algorithm for the time evolution of the
wave field. We use a time step of 0.05 ns. Figure
2a,b shows the synthetic radargrams of the
magnetic-field component, obtained with the
plane-wave method and the exploding-reflector
method, respectively (the pictures have been
scaled to obtain comparable amplitudes for the
step-interface response). The differences in
travel times of the diffraction hyperbolae are
evident. The exploding-reflector travel times are
greater than the plane-wave travel times, as
indicated in the Section 1. Moreover, there is a
change of polarity in the plane-wave response
of the step. The weak event that peaks at 162 ns
in fig. 2a is the multiple indicated by a dotted
line in fig. 1. Note that the non-physical multi-
ples (dashed lines in fig. 1) are absent in fig. 2b.

the direct arrivals. The dotted line is a physical
multiple, present in the plane-wave response (at
150 ns). The dashed lines represent non-physical
multiple events due to the presence of down-
going waves in the exploding-reflector ex-
periment (with arrival times of 148 and 194 ns,
respectively). The latter events do not appear in

Fig.  2a,b. Synthetic radargrams of magnetic field
component, computed with the plane-wave method
(a) and the exploding-reflector method (b) (Carcione
et al., 1994).
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5.  Conclusions

We have developed the exploding-reflector
method for GPR applications. It provides the

correct travel times of diffraction and reflection
events, in contrast to the plane-wave method.
Moreover, unlike one-way equations, the
method can simulate ray-paths which turn
around via refraction in the presence of large
velocity gradients. The use of a nearly constant
impedance condition avoids the non-physical
multiple events caused by the presence of
down-going waves. The method can be used to
approximate stacked radargrams with a single
calculation, and in migration algorithms, where
it is necessary to avoid interlayer reverbe-
rations.
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