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We investigate the problem of wave propagation in & porous medium, in the framework of Biot's
theory, computing the numerical solution of the differential equations by a grid method. The
problems posed by the stiffness of the cquations are circumvented by using a partition (or aplitting)
time integrator which allows for an efficient explicit solution as in the case of nonstiff differential
equations. The resulting algorithm possesses fourth-order accuracy in time and “infinite” (spectral)
accuracy in space. Alternatively, a second-order algorithm, based on a Crank Nicolson method,
provides similar stability properties, although lower accuracy. The simulations correctly reproduce
the wave forms of the fast and slow compressional waves and their relative amplitudes. Moreover,
we observe the static slow mode, particularly strong when the source is a bulk perturbation or a
(lnid volume injection. The anmerical results arc confirmed by the analytical solution.

1. Introduction

The acoustics of porous media arise in a variety of geophysical contexts and engineering
applications.™® The most popular theory was developed by Biot?™ who obtained the dy-
namical equations for wave propagation in a saturated medium. The theory assumes that
the anelastic effects arise from viscous interaction between the fluid and the solid and
predicts two compressional waves and one shear wave. The fast compressional wave has
solid and fluid displacement in phase, and the slow compressional wave has out of phase
displacements. At low frequencies, the medium does not support the slow wave, which
becomes diffusive, since the fluid viscosity cffects dominate over the inertial effects. At high
frequencies, the incrtial effects are predominant and the slow mode is activated.

The dynamical equation has the form V = MV, where V is the wave field vector and M
is the propagation matrix (the dot denotes time differentiation). All the eigenvalues of M
have negative real part. While the eigenvalues of the fast wave have a small real part, the
cigenvalnes of the slow wave (in the diffusive regime) have a large real part. The presence
of this diffusive mode makes Biot's differential equations stiff.!* This condition practically
precludes the use of standard explicit time integration techniques since they require a very
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small time step to satisfy the stability condition. In this work, we suggest two explicit
integration algorithms that possess the efficiency of implicit methods in terms of numerical
stability. The first algorithm is based on a staggered second-order Crank-Nicolson method
and the second is a splitting techrique that yields the analytical solution of the stiff part,
and the solution of the nonstiff part by a high-order scheme.

Since the presence of the shear wave is not relevant to this work, we consider the poroa-
coustic version of Biot’s equations, i.e., with the rigidity of the matrix equal to zero. They
describe wave motion in a colloid that can be considered as an emulsion or a gel.13 It is an
emulsion since shear waves do not propagate. On the other hand, since the “frame” modu-
lus is different from zero, the “solid” component provides a sufficient structural framework
for rigidity, and therefore can be considered as a gel. The results reveal the presence of the
static slow mode, particularly strong in the fluid pressure, when the source is a Auid volume
injection.

Previous works dealing with the simulation of Biot waves with direct grid methods are
relatively scarce. Garg et al.'® computed 1-D Green’s functions (artificially damped) with
a finite difference method. Hassanzadeh!! and Zhu and McMechan!® used standacd (ex-
plicit) finite differences methods to solve the poroacoustic and poroelastic Biot’s equations,
respectively. On the other hand, Dai et al® use a McCormack scheme, second-order in
time, fourth-order in space, based on a dimensional splitting technique. All these works do
not report the presence of the slow static mode, and obtain stable solutions deapite the fact
that some of them use standard explicit schemes with coarse time steps.

This paper is organized as follows. The following scction introdnces the velocity-pressure
formulation of Biot’s poroacoustic equations. ‘Then, Sec. 3 analyzes the eigenvalues of the
propagation matrix in order to quantify the stiffness of the problem. Section 4 presents
the two explicit algorithms for time integrating the equations, Finally, Sec. 5 presents the
simulations, which are verified with the analytical transient solution. Special emphasis is
given to the static mode which is particularly strong in the fluid pressure wave field.

2. Wave Equation

The dynamical equations describing wave propagation in a hetcrogeneous porous media are
given by Biot™* who, generalizing a previous work,? considers variations of the POrosity.
Therefore, the nmmerical modeling based on a heterogencous approach shonld not use Biot’s
equations given in Ref. 2, since they are formulated in the coutext of uniform porosity. By
taking the solid rigidity equal to zero, we only model dilatational deformations, i.c., the
compresaional waves. The 2-D velocity-pressure formulation of Biot’s (low-frecuency range)
poroacoustic equations, in the (z, y)-plane, is

. 7
by = B110p + B120:p5 + éﬁqu ) (2.1}
. ) , 7

Uy = BLidyp + Pradyps + ;?'ﬂll‘.'?y , (2.2)

) ) , 7
G = —P2182p ~ Boaupy ~ ;}ﬁzm, (2.3)
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§y = —B00yp — Pndyps — Eﬂﬂﬁ'y; (2.4)
D = —H{Bpv, + Oyvy) — C(Ozqs + Oyay) + 8, (2.5)
pr = —C(devz + Syvy) = M(82qz + Oyqy) + 8y, (2.6)

where the v's and the ¢'s are the solid and fluid (relative to the solid} particle velocities,
and p and p; are the bulk and fluid pressures, respectively. Here,

1 1 1 1 1
p-lm-g (g w) x &0
1 1 1
C= (K—m‘z) X' (28)
1 1
M="_-—:; (2.9)
with
. 1 1 1 1 1 1
I‘"¢§Z(';_RZ)+K(Km"E)‘ (210

where K, K, and K¢ are the bulk moduli of the solid, matrix and fluid, respectively, and
$ is the effective porosity. Moreover, n is the dynamic fluid viscosity and x is the global

permeability. Finally,

i B2 _ 1 m  ~—py
[ﬁ?l ;('322] B p‘zf - pm |:pf -p ] ’ (211)

where p = (1 —¢)ps + Ppy is the composite density, with p, and p; being the solid and fluid
densities respectively, and m = apy/¢ where a ig the tortuosity, a dimensionless parameter

that depends on the pore geometry.
The application of the source considers three cases (Carcione and Quiroga-Goode, 1994):

(i) bulk source: this case assumes that the energy is partitioned between the two phases. In
this case (Hassanzadeh, 1991), the relation between the solid and fluid source strengths
is equal to {1/¢)—1. In the above velocity-pressure formulation this means that ¢ = s5.

(ii) solid source: in this case, s; = 0.

(iii) fluid volume injection: in this case, § = ¢sy.

3. Eigenvalues of the Propagation Matrix
The system of equations (2.1)—(2.6) can be written in matrix form as

%:MV+S, (3.12)

where

V == ['U;;-:: Vyy s Gy By Pf] v (313)
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is the unknown vector, M is the propagation matrix, which contains the spatial derivative,
and material parameters of the medium, and

S=100,0,0,0,34 57 (314

is the source vector. Let us consider the 1-D version of Eq. (3.12) with § = 0. The plane
wave

V= VQ exp[z'(wct — km)], (515)

where we s the complex frequency and k is the wave number, is a solution of Fq. {3.12)
and gives an eigenvalue equation for the eigenvalues A = iwe.” When using the Fourier
pseudospectral method {e.g., Ref. 6) for computing the spatial derivatives, the wave numbers
supported by the numerical mesh span from k = 0 to the Nyquist wave number § = 7/Dx,
where Dy is the grid spacing. Figure 1 represents the eigenvalues of matrix M in the
complex A-plane, where (a) & = 7/Dx and 5 = 0, (b) £ =0 and 5 + 0, and () k=n/Dy
and n # 0.

iaplane 2 KHz) 9 lwplane (2 7 KHzy |3 lw-plane 2 KHy 3
Jast | o fost
2 -3 -2
1 1 -1
slow
stow fast slow
»
r—7 =7 — 0 I o— —40 e e e e N
3 2 1 { 3 -2 1 a 2 1
-1 A -1
-2 2 2
p [
{a) _.3 (b) A © 3

Fig. 1. Eigenvalues of the prapagation matrix M in the iwg-plane, whers (a) k=7/Dx any n=0,(h)k =0 and
7#0, and () k = 7/Dx and # # 0. The grid apacing is Dy = 5 cm and the tnaterial parameters are given in
Table 1.

The cigenvalues come in complex conjugate pairs. When the fluid viscosity is zero, they
lie in the imaginary axis, and describe propagating modes without dissipation. For a viscous
fluid, the eigenvalues have a negative real part meaning that the waves are attenuated, in
particular the slow wave. Precisely, the largest negative cigenvalue corresponds to the glow
wave for & == O

Ay = -(7?/’5);322 . (3'16)

With the values in Table 1, Ay = ~110301 s, [p order to have numerical stahility,
the domain of convergence of the time integration scheme should include this eigenvalue.
For instance, an explicit fourth-order Runge-Kutta method (Ref. 14, p. 71) requires
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Tabla 1. Material properties for a brine aaturated

sandstone, .

Solid bulk modulus, K, 40 GPa
density, p, 2500  kg/m®

Matrix porosity, ¢ 0.2
permaability, & &00 mD

Fluid bulk modulus, Ky 2.5 GPo
density, py 1040 kg/m?
viscosity, % 1 p

lep=10"3 Pa sl mD= 10=18 m?

dth, > —2.78, implying a very small time step d. Then, the method is restricted by
numerical stability rather than by accuracy. The presence of this large eigenvalue, together
with small eigenvalues, indicates that the problem is stiff (Ref. 14, p. 72). In other words,
the eigenvalues have negative real parts and differ greatly in magnitude. In stiff problems,
the solution to be computed is slowly varying but perturbations exist that are rapidly
damped. In this case, the perturbation is the slow wave, which, in the presence of fluid
viscosity, presents a diffusive character.

4. Numerical Algorithms

As mentioned in the previous section, the spatial derivatives in Egs. (2.1)-(2.6) are calcu-
lated with the Fourier method by using the FFT.!® This approximation is infinitely accurate
for band-limited periodic functions with cutoff spatial wave numbers which are smaller than
the cutoff wave numbers of the mesh.

The stability problem posed by the eigenvalue A; can be solved if an A-stable method is
used (Ref. 14, p. 73}, implying stability in the open left-half-plane. To illustrate this prob-
lem, we first present a simple second-order method that possesess the stability properties of
implicit algorithms but the solution can be obtained explicitly. Then, the high-order time
gplitting method is presented.

4.1. Crank—Nicolson (2,00) acheme

The so-called A-stable methods include implicit integration schemes and therefore the so-
lution of linear systems with its corresponding drawbacks. However, for Biot poroacoustic
equations it is possible to obtain the solution ezplicitly even though the method is classified
as implicit. The following time discretization of Eqgs. (2.1)-(2.6):

Dy = f110:p™ + Br28eps™ + Eﬁnﬁll’(z%, (4.17)
D20, = Buudyp™ + fudyp," + LA g, (4.18)

DY%q, = —Ba10:p™ — B22Baps™ — EﬁQQAUQQEm (4.19)
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D2gy = By 8,p™ - Baa8yps™ - EﬁzzAmqy, (4.20)
Dlp = —H(8,4'%, + 8,4 v,) — (8,42, + 8,4Y%q,) + D1s, (4.21)
D'ps = -C(3,4Y%, + B8y AM u,y — M (8,4, + 0,A"?q,) + D's, | (4.22)
where ¢n+j ¢n ') ¢n+j ¢n 7
13 — - . + Mo
J o o= Jdh = - .
Dig @ ad A 5 : (4.23)

are the central differences and mean value operators, is based on g Crank-Nicolson (stag-
gered) implicit scheme (Ref. 14, p. 269) for the particle velocities. In this three-
particle velocities variables at time (r+1/2)dt and pressures at time (n + 1)d¢ are com-
puted explicitly from particle velocities at time (n —1/2)dt and pressures at time ndt and
(n ~ 1)dt. The explicit formulation requires first to compute g,"*+1/2 ang a2 from
(4.19) and (4.20), then compute v,"+1/2 and 4, 7+1/2 419 finally, the pressures p™! and

Pt A similar sequence of computations is implemented by Virieux!” to solve the SH
wave equation.

level scheme,

The following is the Von Neumann stability analysis (Ref. 14, p. 418) based on the
eigenvalues of the amplification matrix G defined below. Let us consider the 1-D case in
the absence of sources. Since we use the Fourier pseudospectral method for computing
the spatial derivatives, the difference operator is 8, = k. Making this substitution in
(4.17)—(4.22), we obtain the following matrix equation:

Vt=gv-, (4.24)
where
V= [/, g g 2" (4.25)
and
V- = [vn—}./Z, qﬂ—1/2, pn—l, pfn—].] . (426)
The von Neumann condition for stability is
max|g;| <1, j=1,...,4, (4.27)
where g; are the eigenvalues of the amplification matrix G. For instance, k = 0 has
[-1 dt(n/k)pbyz ]
l+a
l1—g
G=|0 T 0 o), {4.28)
0 1 0
0 0 0 1]

where, by (3.16),
a= -%dm, = —;-dt(n/m)ﬁzg.

2rE e b e e e mmem e e
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Then, the eigenvalues are: 1, with multiplicity three, and

1— adt

T a>o, (4.29)

This leads to an unconditionally stable scheme {e.g., Ref. 16, p. 253). The use of the
above implicit technique, although second-order, allows time steps of more than one order
of magnitude larger than the explicit fourth-order Runge-Kutta and Taylor methods.

4.2. Partition (4, oo) scheme

A better time integration technique can be achieved by using a partition method (Ref. 12,
p. 171). The stiff system (2.1-2.6) can be partitioned into two set of differential equations,
one stiff and the other nonstiff, such that they can be treated by two different methods, one
implicit and the other explicit, respectively. In this case, the stiff equations

i = Lh120a (4.30)
vy = Eﬁm%: (4.31)
gz = “'Eﬁzzqz, (4.32)
gy = “E‘ﬁzz%, {4.33)

can be solved analytically, giving

* n ﬁlz n # ™ 512 ]
vy =y — E[exp(,\,dt) -1z, vy=uv; - -fi—g-;[exp()\,dt) - 1)gy, (4.34)
gz = exp(A,dt)qy, gy = exp(A,dt)qy . (4.35)

with X, given by Eq. (3.16). Note that, when 9 = 0, is ¢+* = ¢™ and ¢* = ¢", giving the
purely elastic problem. As noted by Garg et al.,!® strong viscous coupling leads to a single
phase medium. This can be verified from Eqs. (4.32) and (4.33) by taking the limit n — o0.
In this case, the relative fluid-solid motion vanishes, since g, — 0 and g, — 0.

The intermediate vector

V' =[, v, ¢l g5, P 2317 (4.36)

is the input for an explicit high-order scheme that solves Eq. (3.12) with # = 0 to give
V*+1, We use the fourth-order Runge-Kutta algorithm (Ref. 14, p. 68):

VA=V S(AL+ 280 4285 + A, (437)
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where
A =MV* + 8", (4.38)
Ay=M (V* + %Al) + 8 Hi/2 (4.39)
Az=M (V* + %EAQ) + g2, (4.40)
Ag = M(V* +dtAz) + 8511, (4.41)

‘This method is used in the next section to compute the simulations. These are verified by
the analytical solution given in Appendix A, and are in agreement with the second-order
scheme based on the Crank~Nicolson method. Appendix B presents the discrete dispersion
equation of the partition scheme.

The advantage of the partition method is that the time step is determined by the algo-
rithm that solves the nonstiff equations. As far as we are aware, time-splitting schemes have
yet not been applied to elastodynamic problems. They are, however, standard practice in
fluid dynamics (Ref. 6, p. 222).

5. Simulations

‘The material properties of the porous medium are given in Table 1, where the porosity -

corresponds to a typical reservoir sandstone. We consider that K, =~ K,(1 — ¢) and
a = (1 + 1/¢)/2, which corresponds to spherical grains.® Figures 2(a) and 2(b) represent
the phase velocities and attenuation curves of the compressional modes versus frequency,
corresponding to the medium defined in Table 1. Here, we should keep in mind that the
low-frequency Biot theory is valid for frequencies less than n¢/(2maxp;), which for the
medium defined in Table 1 is approximately 17 kHz. As can be seen, the slow wave has a
diffusive character at low frequencies. We note that the higher the frequency, the higher the
dissipation, at least in the range where the low-frequency theory applies. This phenomenon,
and the diffusive behavior of the slow wave at the low frequencies, makes it difficult to
detect this wave experimentally over the whole frequency range. The performance of the
numerical algorithm is verified with the analytical trangient solution given in Appendix A.
The modeling allows the calculation of the dilatational field in the solid and in the fuid. If
we define the solid dilatation by e, and the fluid dilatation (relative to the solid) by ¢, we

have '
. é
E=|.|=dv| V|. (5.42)
§ ~q
Then, it can be shown that, at every grid point, the dilatational vector can be computed as
E=B"!p, (5.43)

where P and B are given by Eqa. {A.2) and (A.3) of Appendix A, respectively, In this case,
B can be space-dependent.
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Fig. 2. Phase velocities (a) and attenuation (b) curves versus frequency
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The numerical mesh has Ny = Ny = 225 points, and the simulations are carried out
in two different frequency ranges. In the seismic range we take a grid spacing of Dx =
Dy = 10 m, and a source central frequency of f. = 22 Hz, while in the sonic range,
Dx = Dy = 5 cm and f, = 4.5 kHz. Therefore, the size of the meshes are 2240 m and
11.2 m for the seismic and sonic ranges, respectively. The source terms s and s; consist of

10 (&) Analytic

= v ¢ + Numeric

0.5

0.0

Bulk pressure
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0.0 f

Fluid pressure

0.5~

1.0 T T ] T i T T |
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Fig. 3. Comparison between numerical and analytical time histories at a distance of 1 m fram the scurce, where:

(») bulk pressure (n = 0}, (b) finid pressure (7 = 0}, (¢} bulk pressurs (n # 0) and {d) fluid pressure (7 # 0) are
considered. The source ia in the aclid phase and has a central frequency of 4.5 kHsz.
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a discrete spatial delta function multiplied by the time function
1
f{t) = exp [_E Fe— to)z] cos[mfo(t — t,)], (5.44)
where t, = 3/ f,.
Numerical and analytical (sonic) time histories are compared in Fig. 3, where (a) and
:e::; ! (b) correspond to the bulk and fluid pressures for 7 = 0, respectively, ard (c) and (d) are

the bulk and fluid pressures for n 5 0, respectively. The source is in the solid phase, and
the receiver is located 1 m apart. The matching between solutions is virtually perfect.
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The source is in the bulk material and the propagation time is 1.5 ms. As can be
seen, the modeling results coincide with the analytical solutions. When the fluid is viscous,
the slow wave becomes diffusive and appears as a static mode at the source location. In

i this case, the numerical and analytical solutions differ slightly. The fact that the Hankel
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Fig. 5. Snapshots of the pressures and dilatations in the seismic range (Dx = Dy = 10 m and f, = 32 Hz), for a

bulk source. The propagation time is 0.3 s and the medium ia defined in Table 1. The amplitudes are scaled with
respect to the maximum bulk pressure and maxtmum solid dilatation.
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function is singular for w = 0 and at the source location (r = 0) may introduce errors
in the calculation of the analytical solution. On the other hand, the choice Dx = 5 ¢m
in the numerical modeling, together with the very low velocities of the slow mode (see
Fig. 3), violates the sampling theorem. This could produce aliasing of the static mode (al-
though numerical experiments with smaller grid spacing yield the same results ag in Figs. 4
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and 5). Figure 6 represents snapshots of the pressures and dilatations in the seismic range,
at 0.3 s propagation time. The source is in the bulk material. The amplitudes are scaled
with respect to the maximum bulk pressure and maximum solid dilatation. We observe two
events, the fast wave and the static slow wave at the location of the source (the latter is
clipped when exceeding the frame of the snapshot). Figure 2(a) indicates that the phase

Bulk prassure p (sonic range) Fluid pressura p,
i A

s A 7
W il ” | (

Max=1. Max=0,34

Solid dilatation e
l I' LS

e

Fig. 6. Snapshots of the pressures and dilatations in the sonic range (Dx = Dy = § cm and f, = 4.5 kHz), for &
bulk source. The propagation time is 1.5 ma and the medium is deflned in Table 1, The amplitudes are scaled with
respsct to the maximum bulk pressure and maximum solid dilatation.
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velocity of the static mode for 22 Hz is close to zero, implying a diffusive behavior. The static
mode is stronger in the fluid pressure and relative fluid dilatation. It can be shown that a
fluid source generates a stronger static mode than a bulk source. Moreover, dilatations are
more sensitive to this mode than pressures. The amplitudes are scaled with respect to the
maximum bulk pressure and maximum solid dilatation. The main differences are that, in ‘
the sonic range, this mode is relatively weaker and spatially broader. ‘

Fluid pressure p, Time=0.68 ms Time=1 ms

——

l.

e
i il

Fig: 7. Succeaai pshots of the fluid pres re in the sonic range (Dx = Dy =5 cm and fo = = 4.5 kHz) showing
the damping of thu slow atatic mode, The perturbation is & bulk source. :
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We see in Fig. 2(a) that the phase velocity of the slow wave at the central frequency of
the source (4.5 kHz) is about 300 m/s. This could suggest that the behavior of the slow
mode i3 propagative. In fact, the pulse is broader than in the seismic case, however, as can
be geen in Fig. 2(b}), the high attenuation at that frequency precludes the propagation.

Figure 6 represents snapshots of the pressures and dilatation in the sonic range, at 1.5 ms
propagation time. The source is in the bulk material.

The temporal dissipation of the slow mode can be seen in Fig. 7, where snapshots of
the fluid pressure at different propagation times are represented. The source is a bulk
perturbation with a duratien of 0.68 ma. The amplitude of the static mode is determined
by the factor exp{A,t} where A, is given by Eq. (3.186).

6. Conclusions

The differential equations describing wave propagation in a porous medium are stiff. There-
fore, the super stability of the equations turns out to be disadvantageous for the error prop-
agation of classical explicit time integration methods. The partition (or splitting) method,
proposed in this work, solves the stiff part analytically, and the nonstiff part by using a
high-order explicit scheme, allowing the use of a coarse time step. The modeling correctly
reproduces the amplitude and propagation of the fast and slow compressional modes, in-
cluding the static slow mode when the fluid viscosity is different from zero. The results
are confirmed by the analytical solution and are in agreement with a second-order time
integration scheme based on the implicit Crank-Nicolson method. The simulations indicate
that the slow compressional wave and the static slow mode are stronger in the fluid and
when a fluid volume injection is used as source.
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Appendix A. Poroacoustic Analytical Solution

Carcione and Quiroga-Goode® obtained the transient solution for wave propagation in 2-D
and 3-D homogeneous viscoelastic porous media, valid at the low and high frequency ranges.
Here, we outline the 2-D low-frequency elastic solution assuming an acoustic frame.

It can be shown that the frequency-domain version of Eqs. (2.1)-(2.6) is, in compact
form:

AP -F)+wI'B7P =0, (A1)

where .
P=[pps", F=ls3], (A.2)
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-H C =P Pr
B = ' I = 1 ' A3
[“C M] ["Pf m—lﬂ] &3
(P10 )

Note that the matrix defined in Eq, (2.11) equals I'"}(5 = 0) and that F « iwf(w), with
f(t) defined in Eq. (5.44). The frequency-domain solution is

and

P(x, w) = AG(x, w)F(w), (A4)
where G is the Green’s function given by®
1 - - :
Gw) = yr—yr{(1%)’904) ~ g(R)TB™ + [Vg(Ve) - Vig(V)IL},  (AS)
with

2detB
Ux(U?—4det BdetI')'/?

Vityy = (A8)

U=2p,c-pM-H(m—13) .

WK

defining the complex velocities V; and V; of the fast (+ sign) and slow (— sign) compressional
waves, The corresponding 2-D Green's functions (m = 1, 2) are

. w |
oV = =B (1), 7 =@ +AV, (A7)

m

where H{gz) is the Hankel function of the second kind. Moreover, F = [4, 4;]7, with § and
& frequency dependent only (through the source spectrum). They are related as indicated
at the end of Sec. 2. To compute the Laplacian of the Green’s function we use the property

W 2
Ag(Vim) = - [46(x) +(3) g(vm)] . (A.8)
This gives
2
AG(W) = pz Ty (Wg(V2) ~ Vig(AITB + [o(Vh) - g0} ~ 46(0T.  (A9)

The time-domain solution is obtained by a numerical inverse time Fourier transform.

Appendix B. Diaspersion Equation

In this Appendix, we calculate the dispersion equation of Biot's equations (2.1)-(2.6) after
time discretization with the partition method. Since the stiff part is computed analytically,
we only need to consider the dispersion equation obtained with the Runge-Kutta algorithm
{7 = 0). Let us assume the 1-D case and a plane wave of the form

U™ = Uy expli(wndt — kox)], (B.1)
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where &¢ is the complex wave number, and

U=[v, -¢,2,p] . (B.2)
It can be seen that Eq. (3.12) (with 5 = 0) for the plane wave (B.1) becomes

dU '
— = ikeM'U, (B.3)

where _1
M = [g T ] . (B.4)

with 0 denoting the 2 x 2 zero matrix, and B and T given in Appendix A.
On the other hand, it is easy to show that the Runge-Kutta method yields (Ref. 14,
p. 71): .

1
Urtt = [I + tkeM'dt + E(z‘ch’dt)z + %(ech'd:ﬁ + -;Z(ich’dt)“J U". (B5)
Substitution of Eq. (B.1) into Eq. (B.5) gives the dispersion equation:

det [(1 — exp iwdt)] + ikcM'dt + %(e’kgM’dt)z + %(ikgM‘dt)a + %(z‘ch’dt)“] -0,
(B.6)

where the unknown is the complex wave number k¢ which, in the digcrete case, is complex
and frequency-dependent. The complex velocity can be defined as

vaZ , {B.7)
ke

and the phase velocity V}, as the frequency divided by the real part of the wave number. It

gives )
w=(=7]) 3

The dispersion equation for the continuous case is obtained when dt — 0. Then,
©xp iwdt A& 1 + iwdt, and neglecting second-order terms in dt, we obtain

det{M' — VI) = 0. (B.9)

In this case V is real and frequency-independent, and is given by Eq. (A.6) with 5 = 0.
This can be easily demonstrated from the fact that, if V is an eigenvalue of M’, then V? ig
an eigenvalue of B!,
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