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Full frequency-range transient solution for
compressional waves in a fluid-saturated
viscoacoustic porous mediuml
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Abstract

An analytical transient solution is obtained for propagation of compressional waves

in a homogeneous porous dissipative medium. The solution, based on a gener-

alization of Biot's poroelastic equations, holds for the low- and high-frequency

ranges, and includes viscoelastic phenomena of a very general nature, besides the

Biot relaxation mechanism. The viscodynamic operator is used to model the

dynamic behaviour associated with the relative motion of the fluid in the pores at

all frequency ranges. Viscoelasticity is introduced through the standard linear solid

which allows the modelling of a general relaxation spectrum. The solution is used

to study the influence of the material properties, such as bulk moduli, porosity,

viscosity, permeability and intrinsic attenuation, on the kinematic and dynamic

characteristics of the two compressional waves supported by the medium. We also

obtain snapshots of the static mode arising from the diffusive behaviour of the slow

wave at low frequencies.

ln t roduct ion

The acoustics of porous media, within the framework of petroleum geophysics,

have been receiving more attention in recent years. Regional exploration seis-

mology aimed at the discovery of hydrocarbon reservoirs is based on simplified

rheological models and ray representations of the wavefield. In the past, these

approximations were sufficient, since the degree of resolution required was not

high. In the present time, when most reservoirs are delimited, the need to increase

the resolution and use not only the traveltimes but also the information contained
in the amplitude and phase of the seismic wavefield has gradually emerged. The

new exploration scenario is confined to reservoir areas and involves the presence of

oil wells and data from seismic logs and well seismics, which have enough

resolution to 'see' the effects of bulk properties, porosity, permeability' fluid

content and fluid-solid interaction on the seismic pulse. In this case, the correct
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100 J.M. Carcione and G. Quiroga-Goode

description of the reservoir response requires the modelling of reservoir rocks by
porous media and the use of the full wavefield solution (e.g. Lumley et al. 1994).

Biot (1956a, b, c, 1962a, b) developed a theory of propagation of elastic waves in
porous media, where the two-phase material is considered as a continuum, ignoring
the microscopic level. $Tithin this context, the macroscopic vriables follow the laws
of continuum mechanics. Basically, thi: theory assumes that anelastic effects arise
from viscous interactions between the fluid and the solid. The following assump-
tions are made in the theory.

1. The wavelength is large in comparison with the dimensions of the pores. This
is a requirement for applying the theory of continuum mechanics, and implies that
scattering dissipation is neglected.
2. Displacements are small, so that the macroscopic strain tensor is related to

them by the nearest second-order approximation.
3. The liquid phase is continuous, such that pores are connected and the discon-

nected pores are part of the matrix frame.
4. Permeability is isotropic and the medium is fully saturated.

Biot demonstrated the existence of two kinds of compressional wave in a porous
medium: the fast wave for which the solid and fluid displacements are in phase,
and the slow wave for which the displacements are out of phase. At low fre-
quencies, the medium does not support the slow wave, which becomes diffusive,
since the fluid viscosity effects dominate (a thick boundary layer compared to the
pore size). At high frequencies, tangential slip takes place (thin boundary layer),
the inertial effects are predominant and the slow wave is activated. This wave con-
tributes to the attenuation of the fast wave by mode conversion at inhomogeneities
(Geerstma and Smit 1961; Turgut and Yamamoto 1988). Biot equations, in the
low- and high-frequency ranges) were rederived by Auriault, Borne and Chambon
(1985), by assuming a periodic pore structure from the microscopic level.

Transient solutions for propagation through ID fluid-saturated porous soils were
obtained by Garg, Nayfey and Good (1974) and Sandhu, Shaw and Hong (1990).
They obtained approximate analytical solutions by Laplace transfrom methods and
finite-difference and finite-element techniques, respectively. In acoustics, Green's
tensors for poroelastic media have been studied by Deresiewicz and Rice (1962),

Burridge and Vargas (1979), Norris (1985) and Boutin, Bonnet and Bard (1987).

The latter applied Auriault et al.'s (1985) theory to compute semi-analytical tran-
sient solutions in a stratified medium. Bonnet (1987) obtained a solution for the
problem by applying the analogy between the poroelastic and thermoelastic equa-
tions, and Kazi-Aoual, Bonnet and Jouanna (1988) extended the solution of Boutin
et al. (1987) to the transversely isotropic case. Most of these works give a detailed
mathematical treatment of the problem but overlook the effects of the different
material properties on the amplitude and phase of the wavefield. In fact, the
Green's functions are rarely represented graphically and discussed. Modelling
waves in porous media for geophysical prospecting is relatively recent: Has-
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sanzadeh (1991), Zhu and McMechan (1991) and Dai, Vafidis and Kanasewich
(1995) solved the 2D problem using finite-differences methods. In particular, Dai

et al. (1995) compared their results with analytical solutions for the poroelastic case

neglecting the Biot mechanism.
However, it is well known that the attenuation values predicted by Biot theory

are much smaller than those measured experimentally (Mochizuki 1982). In fact,

Biot (1962a) states that the model of a purely elastic matrix saturated with a viscous

fluid is only applicable in exceptional cases. Hence, he generalizes the theory to

general dissipation by using the correspondence principle, in this way including

solid and fluid attenuations, dissipation due to non-connected pores (they are part

of the solid), etc. Similarly, the theory can model other more complex mechanisms,

such as thermoelastic dissipation, which produce a relaxation spectrum) or local

flow mechanisms like the 'squirt' flow involving motion of the fluid between the

grains (Murphy, Winkler and Kleinberg 1986; Dvorkin, Nolen-Hoeksema and

Nur 1994). A time-domain formulation based on memory (hidden) variables is

given by Carcione (1993); this time-domain wave equation (with relaxation times)

accounts for the levels of attenuation observed experimentally in porous rocks.

Biot (1962b) introduced the viscodynamic operator to account for the dynamic

properties of the fluid motion in the pores, valid in both the low- and high-

frequency ranges. This operator is the sum of a viscosity term (static Darcy's law)

plus an inertial term. At low frequencies, the fluid flow is of the Poiseuille type and

the inertia forces are negligible in comparison with the effects of the viscosity. At

high frequencies these effects are confined to a thin boundary layer in the vicinity

of the solid and the inertia forces are predominant. Auriault et al. (1985) rederived

the viscodynamic operator from the microscopic level. They refer to this operator

as the generalized Darcy coefficient.

Within this framework, we obtain an arralytical transient solution for propagation

of compressional waves in a homogeneous saturated porous medium, where anelas-

ticity is modelled by standard linear solid elements representing different dissi-

pation mechanisms. The paper is organized as follows. The first section introduces

the constitutive law and the field equations. Then, we obtain the 2D and 3D

frequency-domain solutions in closed form. Next, we illustrate how to introduce

intrinsic dissipation in a realistic way and give the expressions for the phase veloci-

ties and attenuations of the compressional waves. Finally, we analyse the 3D tran-

sient response as a function of the material pararneters, frequency range, intrinsic

dissipation, space dimensions and type of source.

Fie ld equat ions

The frequency-domain stress-strain relationships for a linear viscoelastic, isotropic

porous solid (Biot l962a,b) are

o "" : He - 2p(er, * e.,) - C(' (1)
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orn: He - 2p(e,, * e"") - C(,

o,": He - 2p(e*, + Eyy) - C(,

o r" : 2lttr, , (4)

o," : 2per", (5)

o r r : 2pe* r ,  ( 6 )

and

Pr:  -Ce + M(,  (7)

where o,, are the stress components of the bulk material, e,.' are the strain com-
ponents of the solid matrix, e and ( are the dilatations of the solid and of the fluid
relative to the solid, respectively, and pt is the fluid pressure. H, C and M are
stiffnesses that depend on the angular frequency ro. The model is viscoacoustic,
which implies no shear deformations, i.e. p is taken as 0. The stress-strain relation-
ships (11(7) then simplify to

- F : H e - C ' '  ( 8 )

and

? r :  - C e + M ( ,  ( 9 )

where p is the bulk hydrostatic stress. The assumption that the rigidity modulus
vanishes is not restrictive for compressional waves. It is equivalent to considering a
purely dilatational source, since in this case, the compressional and shear waves do
not interact with each other if the medium is isotropic and homogeneous. It is
convenient to express (8) and (9) in matrix forms as

(10)

or, in compact notation,

P : M . E ,  ( 1 1 )

where M is the complex bulk modulus and the dot denotes the ordinary matrix
product.

The explicit expression of this matrix is given in the next section. The high-
frequency limit gives the elastic dynamic behaviour (e.g. Herrera and Gurtin
1965), implying that M(oo) is the poroelastic (Biot) bulk modulus which, as shown
by Carcione (1993), is given by

f;-), (r2)

(2)

r1)

i,l:l--z f^llzl

M(o): 
[_3-
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where

KH*

K C *

and

(13)

(14)

I  1  . / t  1 \: K - - K - o \ K -  
d '

":*^(i;-or).*"(*-il,

K_ &

(16 )

where K", K- and Kr are the bulk moduli of the solid, matrix and fluid' respec-

tively, and @ is the effective porosity.

The dynamic equations were obtained by Biot using a macroscopic approach.

Restricted to the viscoacoustic case, the equations (Biot 1962b) become

- V ( p - s ) : p i i * p r f r

and

-Y(p, - sr) : prii * Y(q)w,

where u is the average displacement of the solid and w is the average displacement
giving the flow of the fluid relative to the solid. A dot above the variable denotes
time derivative.

The quantities s and sr are the body forces acting on the matrix-fluid system and

on the fluid phase, respectively. The composite density of the saturated material is

p : (l - Q)p" + Qp,, where ps and p1 are the solid and fluid densities' respectively.

The operator Y(q) is a function of q : dldt which, for harmonic fields at the

angular frequency a, is q: ico. This is Biot's viscodynamic operator and describes

the relative motion of the fluid. It depends on the fluid interia, its viscosity and the
pore geometry. In the low-frequency range (Biot 1962b),

Y(q) : *q +1.' for cr.r < .": h,
(1e)

where m : aprl6, a is the tortuosity, a dimensionless parameter that is dependent

on the pore geometry, 4 is the fluid viscosity and rc is the global permeability of the

porous medium. The frequency (oc defines the upper limit for which the fluid

motion is dominated by Poiseuille viscous flow. In the high-frequency range,

* r * : * ,

with

ap, Jo1ufa6ila,l.,"S
t  \ w )  

-  
.  .

4 Iz(J -6iala")

(1s)

(r7)

(18)
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for a porous network represented by circular tubes (Auriault et al. 1985), where Jo
and J2 are Bessel functions of the first kind, and the characteristic frequency is
a.:64la2pr, where a is the radius of the tube (see Appendix). For co(co",

JolIz- *@a"l3irco)(l *ialo"). In the l imit, and using a:413, Y(ar) takes the
form given in (19). Biot (1956c) introduced a snuctural factor d that takes into
account the sinuosity and cross-sectional shapes of the ducts. In this case, the argu-
ment of the Bessel functions in (20) is replaced 6y 6u/ -i@ctt". The viscodynamic
operator for slit-like pores is given in the Appendix. Another strategy is to consider

4 and rc as empirical parameters and no explicit pore geometry. In practice, the
viscodynamic term in (18) involves a convolution between Y(t) and the corre-
sponding fluid particle velocity w. As an illustration, in the Appendix we show the
relationship between the Biot (1962a) and Auriault et al. (1985) formulations of the
poroelastic equations.

In the harmonic regime, equations (17) and (18) can be written alternatively as

v(P - s): -r 'r [ 
"-1,

L - W J

where

5 : 1s, s1]r

and

(22)

(23)

is the viscodynamic matrix.

The solut ion

Taking the divergence in (21) and assuming a homogeneous porous medium yields

A(P  -  S )  :  - co2 l  ' 8 ,

where

(24)

(2s)

and A is the Laplacian operator. Substituting the constitutive law (ll), (24)
becomes

A ( P - S ) + @ 2 D . P : 0 ,  ( 2 6 \

where

D : f  . M - 1 .  e 7 \

(2r)

, =l-;, {,i.f

E : div 
[_; ] ,
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Note that D is a complex function of the frequency and does not depend on the

position vector since the medium is homogeneous. This matrix may be decom-

posed as D : A'A'A-1, where A is the diagonal matrix of the eigenvalues, and A

is a matrix whose columns are the right eigenvectors. Thus, substituting this

decomposition into (26) and multiplying by A- 1 from the right-hand side, yields

A ( V - F ) + @ 2 4 . V : 0 , (28)

where

V : [ u r , a z ] ' : A  t ' P ,  Q 9 )

and

F :  [ " f t  , f r f ' :  A - 1  ' S .  ( 3 0 )

From (28) we get the following Helmholtz equations for the components of v:

(L  +  @21 , )1 )n :  L f  " )  v  :  1 ,2 ,  ( 31 )

can be shown that they are related to

compressional waves. In fact, let us

(32)

where x is the position vector and k is the complex wavevector. Putting this solu-

tion into (26) with zero body forces, and setting the determinant to zero, gives the

dispersion equation

f  / r \ 2 - l

a e t l o - ( : l  I l : 0 ,  ( 3 3 )
L  \ @ / J

where I is the identity matrix. Since co/ft : V is the complex velocity, the eigen-

values of D are given by 1: llv2. Since D is a second rank matrix, two modes

propagate in the medium and correspond to the fast and slow waves. A simplified

expression for the eigenvalues is

where ,1, and 72 are the eigenvalues of D. It

the complex velocities of the fast and slow

assume that a solution to (26) is of the form

P : Po exp (ik ' x),

Auzt : ; . ,  
* ] -  r ,  * (34)

r35 )

where

U :2ptC -  pM -  H(Yl i ruo) .

Considering the solution for the Green's function (i.e. the right-hand side of (31) is

a space delta function at' say) the origin), both equations have the form

(L + @21)s: - 86(x), (36)
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where d is Dirac's distribution. The 2D solution (line source) of (36) is (Pilant
1979, p. 55)

s(r, a) : _�2iH?l@rJ l,@)1, (37)

(38)

(3e)

where H[') ir the Hankel function of the second kind, and

The 3D solution (point source) of (36) is (Pilant 1979, p. 64)

1
s(r, u) : 1 exP l- iarl )@)1,

where 

r

,: n17T3P + r'.

The solutions (50) and (52) as given by Pilant (1979) hold only for real arguments
of the Hankel function. However, by invoking the correspondence principle (e.g.
Ben-Menahem and Singh 1981), complex, frequency-dependent material proper-
ties can be considered. For instance, the poroelastic equations without the Biot
mechanism (i.e. f : 0) have a real D matrix, whose eigenvalues are also real
(velocities are real and constant, without frequency dispersion). The introduction
of the Biot mechanism, by using the correspondence principle, implies the substi-
tution z - - Y(a)lia. In the same way, viscoelastic phenomena of a more general
nature can be modelled.

The solution of (31), with the band-limited sources /1 and /, , is

vu : i , LcQ) : f "G(A , ) ,

where

G(1") :  - l r t , tA,cQ) + 8d(x)1,

and (36) has been used. In (41) we introduced the source vector

F: t,r,  , ir . f ,  :  A-1 . Sft lrr.r; ,

where

S : [3, 3,]'

is a constant vector and h(a) is the source frequency spectrum.
The vector P is obtained from (29),

P(r' a): A(or)V(r, co).

From the form of o, and a, in (41) and using (43), the solution
written as

(40)

(41)

(42)

(43)

(44)

(4s)

can be explicitly

n : "["r,, (46)
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U s i n g D : A ' A ' A - 1 , a n d
caster and Tismenetsky 1985' P.

P :  G(D)  .  s l l ,

where G(D) can be viewed as the evolution operator (or Green's function) of the

system. An effective numerical implementation of the evolution operator is

obtained by decomposing it into its Lagrange interpolator (Lancaster and Tisme-

netsky 1985, p. 308). This yields

from the theory of functions of matrices (e.g. Lan-

311), (46) becomes

(47)

(48)

This expression avoids the calculations of the eigenvectors of D (i.e. of matrix A).

Using (42) and.the complex velocities V,: l lyE"'v :1,2, (48) becomes

o)2
G(D; : ,=tr {lV',s(V,) - VtreV)lD + [e(Z') - sV))Il - 8d(x)I'

(4e)

In the absence of viscoelastic dissipation and with the Biot mechanism de-activated

(i.e. zero fluid viscosity), only the Green's functions (37) and (39) are frequency

dependent (the eigenvalues of D are real). Let us denote the phase velocities of the

fast and slow waves as Vo and V", respectively. Then, the explicit frequency

dependence of the evolution operator is

I
G(D) : t-j . {tc(,i,) - GQ")fD + U"SQ) - A2c(l)lr}.

A l -  4 2

G(D, rr.r) (s0)

In this case, the solution can be obtained in closed form since the Green's func-

tions (37) and (39) can be Fourier transformed analytically to the time-domain (e'g'

Norris 1985).
In order to ensure a time-domain real solution in the general viscoelastic case, we

take

P(r, al) : P*(r' -ro)' (51)

for cr; < 0, where the superscript * denotes complex conjugate. Finally' the time-

domain solution is obtained by an inverse Fourier transform.

Complex bulk modul i  matr ix ,  O factors and phase veloc i t ies

There are two strategies to introduce general viscoelasticity in the theory. In the

first approach, the solid, matrix and fluid bulk moduli in (13F(15) are replaced by

complex moduli, i.e.

K, - Ru, u denotes s, m or f. (52)

This defines the complex bulk moduli matrix M (see (10)). General frequency

behaviour is modelled by several standard linear elements in parallel connection.
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Such a model gives

R : K, $ '!,li [t + i,"lii1.
' -u 

L" ,?rt!y)11 + iror!]) l '

where r!j) and r!|) are material relaxation times and lu is the number of dissipation
mechanisms, Note that when a) + @r Ku - K,. Another useful kernel, to obtain a
constant quality factor over a given frequency band, is constructed with a contin-
uous distribution of relaxation mechanisms (Liu, Anderson and Kanamori 1976;
Carcione 1993).

The quality factors of the solid, dry matrix and the fluid (which parameterized
the model), are then given by

,-, _ Re [K,]g" : 
h tK"J) 

u denotes s, m, or f, (54)

For instance, when Lu: l,
/ .  a  a

o.. :  o* , ( r  ! . "6 ' . ) ,  (5s)-u -" 
\  2ato / '

where Of) : 2rol(r[i\ - rr\\) and ro The curve e,(ro) has its peak at
ao : llro, and the value of Qu at the peak is Q$). The examples presented in the
next section assurne that a;o coincides with the central frequency ofthe source.

The second approach, used when modelling more complex phenomena than
intrinsic dissipation of the single constituents, considers that the quantities F1, C
and M in (10) have a specific frequency dependence according to the anelastic
process causing the dissipation.

The anelastic properties of the compressional waves are obtained from the char-
acteristic equation (33). Having M and the viscodynamic matrix r, we compute D
from (27), diagonalize it and compute the complex velocities as

r51)

(s6)

(s8)

, , r -  
|

' v -  
[ ; t

J L u

v  :  1 , 2 ,

where ).t and )., are the eigenvalues of matrix D, corresponding to the fast and slow
waves, respectively, given in (34). For homogeneous viscoelastic waves, the phase
velocities are given by the frequency divided by the real part of the complex wave-
number,

(s7)

The attenuation is the imaginary part of the complex wavenumber. In terms of the

'": (*' [^t]) 
'

complex velocity,

dv: -e)t- 
[rr"a]
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The quality factors can be expressed as

Re fZ?l
l t  : -Yu rm fv l l '

Equation (57) is an extension to porous

neous plane waves in a viscoelastic solid
more precise expression for viscoelastic
(1ee1).
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(se)

media of the quality factors for homoge-
(Carcione, Kosloff and Kosloff 1988). A
porous media is given by Rasolofosaon

Examples and d iscussion

'I-he material properties of a porous brine-saturated sandstone medium are given in

Table 1. Figures 1a and b represent the phase velocities of the compressional

modes versus the frequency, corresponding to an acoustic skeleton saturated with

water and oil, respectively. The slow wave has a diffusive character at low fre-

quencies. When the saturating fluid is oil (4 :264 cp), the diffusive behaviour

invades higher frequencies. Figure lc shows the attenuation a, of the slow wave

versus the frequency; the higher the frequency, the higher the dissipation. This

phenomenon and the diffusive character of the slow wave at low frequencies make

it difficult to detect this wave experimentally over the whole frequency range.

In the following, we analyse the 3D pressure wavefields by varying some of the

material parameters in Table 1: the frequency range, the dimensionality of the

space, the type of source (see Appendix) and the intrinsic solid and fluid dissi-

parions. Instead of the bulk hydrostatic stress p, we plot the pressure in the solid

phase, which is given by (Biot 1962a)

P " : 8  -  Q f u . (60)

Table 1. Material properties: Brine saturated

s a n d s t o n e .  I  c p : 1 0 - 3  P a  s ;  I  m D : 1 0 - 1 s

m 2 .

bulk modulus K.
Solid density p.

40 GPa
2500 kg/m3

Matrix bulk modulus 1(-
density p-
porosity @
permeability r
tortuosity a

20 GPa
2000 kg/m3

0.2
600 mD

z

Fluid bulk modulus K6
density p,
viscosity 4

2.5 GPa
1040 kg/m3

l c p
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0 1 2 3 4 5 6 7

Log(Freq (Hz))Log(Freq (Hz) )  

7  I

Figure 1. Phase velocity of the fast and slow compressional waves versus frequency of (a)
the brine-saturated and (b) the soil-saturated sandstone. (c) shows the attenuation of the
compressional waves versus frequency for the brine-saturated sandstone. The vertical line
indicates the characteristic frequency.

O 1996 European Association of Geoscientists & Engineers, Geophgsical Prospecting, 44, gg-l2g
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In all cases, we model the full frequency range response by using the viscodynamic
operator given in (20). The source time function is

h(t) : ,*o t - if ?G - ti2f cos lnf .(t - ro)1, (61 )

wherel, is the central frequency and ro :3lf".The response of the medium is
obtained by multiplying the Green's function (a9) by the time Fourier transform of
the wavelet, and then performing an inverse discrete Fourier transform back to the
time domain. The time scale varies from seconds to microseconds in order to study
the behaviour of the wavefield at different frequencies. The examples cover the
seismic exploration band and frequency ranges used in laboratory experiments.

Viscosity

Consider a solid source with a central frequency of f ,:5 MHz. The viscosity
varies from that of brine, 4 : 1 cp, to that of oil, 4 : 264 cp (Fig. 2). The ampli-
tudes of the fast wave in the solid and fluid phases remain unchanged. However,
the amplitude of the fluid dilatation, corresponding to the fast wave, approaches
that of the solid when the saturating fluid is oil. In this case, viscosity effects
dominate over inertial effects and the material behaves as a single medium. The
pressures differ since the solid and fluid bulk moduli are different. For the same
reason, the slow wave disappears when the viscosity increases. Note also that this
wave contributes mainlv to the fluid Dressure.

Porosity

Here the viscosity is set at zero (ideal fluid), and the central frequency of the source
isf : 25 Hz, i.e. in the seismic exploration band. The porosity varies from 20o/o Io
l%,. In this experiment, the bulk modulus of the matrix and the tortuosity change
with the porosity. \We consider that K- : K.(l - 1.20 and a : 0.5(1 + llS). The
last equation was proposed by Berryman (1980) and corresponds to the case of
solid spherical particles in a fluid. Figure 3 illustrates the phase velocity as a func-
tion of the porosity. As can be seen, the velocities of fast and slow waves decrease
and increase, respectively, with increasing porosity. This is in agreement with the
experimental curves obtained by Plona (1982). The transient response for a bulk
source is shown in Fig. 4. The arrival times of the waves for the different porosities
agree with the results plotted in Fig. 3; for lower porosity, the waves tend to
separate. Moreover, the solid pressure decreases compared to the slow-wave fluid
pressure.

Permeability

For brine saturation and a frequency/" : 0.5 MHz, the wave-field is computed for
different permeabilities (Fig. 5). The porosity and the tortuosity are kept constant

o 1996 European Association of Geoscientists & Engineers, Geophysical prospecting, 44, gg-l2g
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Time (ps)
Figure 2. Transient response due to a solid source with a central frequency of f.:5 7,111r,
for diferent viscosities of the saturating fluid. The solid and dashed lines correspond ro
solid pressurep. and fluid pressurepr, respectively. Amplitudes are normalized with respect
to the maximum value of the solid pressure, correspondin E to rl : l cp. The source-receiver
distance is 2.25 mm.

for variable permeability. A more realistic analysis should consider, for instance,
the Carman-Kozeny equation (carman 1961). The variation of the permeability
mainly affects the slow wave. As expected (see (19)), the effect is the inverse of that
of the viscosity, i.e. lower permeability implies stronger dissipation of the slow
wave.

Dimensionality of the space

Figure 6 shows the 2D and the 3D wavefields. The latter preserves the shape of the
Ricker wavelet, since this is basically convolved with a Green's function containing
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delta functions (i.e. the inverse Fourier transform of (39), in the absence of
viscoelasticity). The 2D response involves the transform of the Hankel's function,
producing a change of shape.

Source type

Consider three source configurations (Fig. 7), whose analytical implementations in
the equation of motion are analysed in the Appendix. In the absence of viscosity
effects, the slow wave in the fluid has the higher amplitude, even when the source
is in the solid. The slow wave in the fluid is out of phase with respect to the slow
wave in the solid, in agreement with the differential motion that generates this
phenomenon. on the other hand, the fast wave pressures are in phase. Moreover,
the polarity of the slow wave for a solid source is opposite to that of the fluid and
bulk sources. There is a critical value of the partition coefficient (fluid and solid
contributions) of the source function for which no slow wave is generated (see Fig.
8). As indicated in the Appendix, a bulk source has s,. : s. The example shown in
Figure 8 has s, :0.225 s, implying a solid-fluid coefficient equal to (lle.Z25l
d) - 1).
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0.2 0.4 0.6
Time (s)

Figure 4. Transient response for three different porosities of a sandstone saturated with an
ideal fluid (rl : 0). The source is in the bulk material and has a central frequency of 25 Hz.
The solid and dashed lines correspond to solid pressure p. and fluid pressure prr respec-
tively. Amplitudes are normalized with respect to the maximum value of the fluid pressure.
The source-receiver distance is 200 m.

Intrinsic dissipation

The effects of matrix, solid and fluid dissipation are shown in Figs 9, 10 and 11,
respectively. The fluid is ideal and the source is applied to the bulk material with a
central frequency of 25 Hz. The quality factors Qbu', u denotes m, s or f, take the
values oo (elastic case), 50 and 10. When solid dissipation is considered, the quality
factor of the matrix is half the quality factor of the solid phase. Figure 9 corre-
sponds to a viscoelastic skeleton, i.e. K- is replaced by a complex modulus K- as
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Time (ps)
Figure 5. Transient response for three different permeabilities of a brine-saturated sand-
stone. The source is in the solid phase and has a central frequency of 0.5 MHz. The solid
and dashed lines correspond to solid pressurep. and fluid pressure pr, respectively. Ampli-
tudes are normalized with respect to the maximum value of the solid pressure, correspond-
ing to rc : 2000 mD. The source-receiver distance is 2.25 mm.

given by (53). According to Biot (1962a), this simulates the squirt-flow dissipation
mechanism by which a force applied to the area of contact between two grains
produces a displacement of the surrounding fluid in and out of this area. Since the
fluid is viscous, the motion is not instantaneous and energy dissipation occurs. The
grains and the fluid are elastic and do not dissipate energy. The physics of the
mechanism is contained in the operator describing the behaviour of the dry skele-
ton. Since experiments indicate that the mechanism can be represented by a Zener
model (e.g. Murphy et al. 1986), we use one elemenr in (53). Figure 9 indicates that
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Time (s)

Figure 6. Transient response of a sandstone saturated with an ideal fluid comparing 2D
and 3D wave propagation. The source is in the solid phase and has a central frequency of 25
Hz. The solid and dashed lines correspond to solid pressureps and fluid pressureplr respec-
tively. Amplitudes are normalized with respect to the maximum value of the fluid pressure.
The source-receiver distance is 400 m.

the squirt-flow mechanism affects both pressures, but mainly that of the slow
wave, which shows a substantial energy dissipation for Q^: 10. On the other
hand, dissipation in the fluid does not have a major influence on the amplitude of

the fast wave but strongly attenuates the slow pulse. In all the cases, the change in
pulse shape is due to velocity dispersion.

Frequency range

Figure 12 shows the behaviour of the wavefield as a function of the frequency

content of the (solid) source. Higher frequencies excite a slow wave that is stronger

in the fluid phase. Increasing the frequency presents the same qualitative behav-

iour as decreasing the viscosity (compare Figs 2 and 12).

O 1996 European Association of Geoscientists & Engineers, Geophysical Prospecting, 44,99-129

0.60.40.2



Solution for compressional waves 117

0.2 0.4 0.6
Time (s)

Figure 7. Transient response of a sandstone saturated with an ideal fluid (ry : 0) for three
different source excitations having a central frequency of 25H2. The solid and dashed lines
correspond to solid pressure 2" and fluid pressure pr, respectively. Amplitudes are normal-
ized with respect to the maximum value of the fluid pressure. The source-receiver distance
is 400 m.

Static mode

lfhen the fluid is viscous, the slow wave becomes diffusive and appears as a static
mode at the source location. This behaviour is predicted by the analytical solution
(Fig. 13), where snapshots of the solid and fluid pressures due to a fluid volume
injection are represented. The frequency band corresponds to the sonic range
(f . : 4.5 KHz) and the propagation time is 1.5 ms. In order to enhance the lower
frequencies, we use the source spectrum h(a)lko, which corresponds to the time
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Figure 8. Transient response of a sandstone saturated with an ideal fluid (4 : 0) for a
solid-fluid source partition coefficient equal to 21. The solid and dashed lines correspond to
solid pressure p. and fluid pressure pr, respectively. Amplitudes are normalized with respect
to the maximum value of the solid pressure. The dominant frequency is 25 Hz and the
source-receiver distance is 400 m.

integra l  of  h( t ) .  Thisal lowsabet terexci tat ionof  thestat icmodeascanbeinferred
from its attenuation curve (Fig. 1c).

A more general soluton for wave propagation in a porous medium should con-

sider partial saturation, i.e. the presence of a two-phase fluid. Recent work

(Berryman, Thigpen and Chin 1988; Santos et al. 1990a, b) indicates that in this

case there exist two slow waves with very low velocity compared to the compres-

sional waves travelling in a saturated material.

Conclus ions

Reservoir characterization from wave propagation experiments requires a mathe-

matical model which accounts for the effects of rock and fluid stiffnesses, porosity,

fluid viscosity and permeability on wave characteristics. Biot's theory allows an

explicit treatment of these properties and is the framework for building a general

model including complex mechanisms for wave dissipation and velocity dispersion.

The first stage in understanding the physics of wave propagation is to study the
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Time (s)
Figure 9. Transient response of a sandsrone saturared with an ideal fluid (ry : 0) for three
different levels of attenuation of the skeleton (squirt-flow mechanism). The solid and dashed
lines correspond to solid pressure 2" and fluid pressure pr, respectively. Amplitudes are
normalized with respect to the maximum value of the fluid pressure, corresponding to the
elastic case. The source is in the bulk material at a distance of 400 m from the receiver and
has a central frequency of 25 Hz.

influence of the material properties when the medium between the source and the
receiver is homogeneous. For this purpose, an analytical solution for the propaga-
tion of compressional waves is presented. We use the concept of the viscodynamic
operator to account for the dynamic properties of the fluid motion, and a phenom-
enological viscoelastic model introduces anelastic effects due the variety of complex
dissipation mechanisms.
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I- l
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Figure 10. Transient response of a sandstone saturated with an ideal fluid (tt:0) for three

different levels of attenuation of the solid phase. The solid and dashed lines correspond to

solid pressure p" and fluid pressure p' respectively. Amplitudes are normalized with respect

to the maximum value of the fluid pressure, corresponding to the elastic case. The source is

in the bulk material at a distance of 400 m from the receiver and has a central frequency of

25 Hz.

The most relevant results obtained from the analysis are:

1. The slow wave is stronger in the fluid phase.

2. The slow wave in the fluid is out of phase with respect to the slow wave in the

solid.
3. \7hen brine is replaced by oil, the slow wave disappears and the material

behaves as a single medium.

4. The slow wave in the solid decreases in amplitude as porosity decreases.
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0.2 0.4
Time (s)

Figure 11. Transient response of a sandstone saturated with an ideal fluid (ry:0) for three
different levels of attenuation of the fluid phase. The solid and dashed lines correspond to
solid pressure p" and fluid pressure 2r, respectively. Amplitudes are normalized with respect
to the maximum value of the fluid pressure, corresponding to the elastic case. The source is
in the bulk material at a distance of 400 m from the receiver and has a central frequency of
25 Hz.

5. A fluid injection source transfers most of its energy to slow-wave motion in the
fluid phase.

6. There is a critical value of the partition coefficient (fluid and solid
contributions) of the source for which no slow wave is generated.

7. For low permeability, the slow wave disappears and the material behaves as a
single medium.
8. The squirt-flow mechanism and intrinsic solid dissipation attenuate both types

of wave. The slow wave shows a substantial change of shape due to velocity disper-
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Time (ps)

Figure12. Transient response of a brine-saturated sandstone as a function of the fre-

quency content ofthe (solid) source. The solid and dashed lines correspond to solid pressure

p. and fluid pressure p1, resp€ctively. Amplitudes are normalized with respect to the

maximum value of the solid pressure. From the low to the high frequencies, the source-

receiver distances are 2.25 m,2.25 cm and 2.25 mm' respectively.

Figure 13. Snapshots of (a) the solid and (b) the fluid pressure at 1.5 ms propagation time

for a viscous pore fluid (4+O). The source is a fluid volume injection and has a central

frequency of 4.5 KHz. The event at the source location is the slow static mode.
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sion. On the other hand, dissipation in the fluid does not have a major influence on

the amplitude of the fast wave.
9. $(lhen the pore fluid is viscous, the slow wave appears as a static mode at the

source position.

Besides the analysis of the kinematic and dynamic characteristics of the wave

motion, the present solution can be used to check the validity of numerical forward

modelling algorithms.
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Appendix A

Relat ionship between the poroelast ic  equat ions of  Biot  and

Aur iaul t  e f  a/ .

Auriault et al. (1985) use a homogenization theory to provide a unified expression

for the mass and viscous coupling coefficients through a complex and frequency-

dependent Darcy coefficient K(at), which depends upon the shape and geometry of

the pores. The equations are generally expressed in terms of the solid and fluid

displacements u and IJ, respectively, which corresponds to the formulation given

by Biot (1956a). The acoustic equations (i.e. zero rigidity modulus) for time har-

monic fields obtained by Auriault et al. (1985) (see also Boutin et al. 1987;

Schmitt, Bouchon and Bonnet 1988) are

AY div  u + 8V div  U:  prr i i  *  pnU *  b(u -  U)  + f ,

and

QV div u *  RV div  U :  pni  t  pr r t  -b(u -  U)  + f r ,

(A1)

(A2)

where A, Q and R are the Biot elastic elastic coefficients (Biot and Willis 1957)'

and

b(a) :  dtHr(r ) ,

pzz(a): Q2Hr(a)la,

P v ( a ) : 0 k - P z z ( a )

and

prr( ro)  :  (1 -  Q)p"-  po(a) ,

(A3)

(44)

(As)

(A6)
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with F/r(ro) + iHr(at): llK(a). For instance, a pore network of circular tubes of
radius c has (Auriault et al. 1985)

K(o) : 19- +P, where ,: io(Yl!\''', (A7)<r.,p1 J6(s) 
-*\ 

n I

and for a pore network of plane slits of thickness 2a.

i 6 f  I  I
K ( @ ) : -  l l - - t a n ( s ) 1 .  ( A S )tttpr L s "l

vectors d and f, are external forces acting on the solid and fluid phases, respec-
tively (Biot 1956b).

on the other hand, the elastic coefficients in equations (1)-(7) are related to rhe
corresponding coefficients in (A1) and (A2) by (Biot 1962a)

H : A + R + 2 e ,  C : a : R ,  M : !
0  6 2 '

In fact, in the absence of viscoelasticity we should consider H *, c * and M- , as
defined in (13)-(16), instead of H, c and. M, which depend on frequency. More-
over, the following relationship hold (Biot 1962a)

div u : e, div U: e, -div w : (,

and

qrl ' : @(U - u), (: Qe _ t).

Using these relationships, (A1) and (A2) can be expressed as

AYe * Oo(, - 1\ -': ' /" i+\ b
\  A / : P r r w  

* n ' r \ u *  
O ) -  O * * q

and

Q Y e + o o r , - + ) ,  ( . .  * ) * l w + f . .
\ A/ 

= Prz\ + ?zz\u + 
$1 A

Adding these two equations we obtain

(A + 2e+ R)ve - /o + n\
\=-io; 

: (prr r 2p,, * pzz)i

*  (u "+  p , , \
\ o:)li 

+ f, + fr

Rearranging (A13) and dividing by @, we obtain

(n +* 
^)o, -  *r t  -  (p, , !  p, ,)u *4? i ,  + +, i  ++* -  r ,

\  d  ) ' -  0 2 '  \  @  /  a -  a -  a -  
r 6 '  ( A l s )
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From (A3) and (A6), we have

p r r (a ) - l 2p r r (a t )  *  p r zk t t ) :  ( 1  -  Q )p ,  +  Qp , :  p ,

the composite density, and

pp(tt) * pzzk't)- -  
6  

: ' ' '

Moreover,

p zz(o) H r(crt)
-  

-  - :  l , l \ w ) )

a - @

and

b(a) 4 .- + : H , ( t t t ) : - ( < o ) .
E - K

The last two equations give

7 n

K((r, K

(416)

(417)

(418)

(A1e)

(420)

which is the viscodynamic operator introduced by Biot (1956c, 1962b). The
explicit frequency dependence in 41rc and m means that they are defined for the
whole frequency range. Finally, by using the preceding relationships, (A14) and
(A15) become

IIYe - CVC: pi + prr* + f, + fr

and

CYe I Mv( :pri i  * Y(o)w + I,o '

(A2r)

(422)

which are equivalent to (17) and (18), provided that Vs: -(f" * fs) and Vsr:
-frl6.Since we consider dilatational excitations, the relevant quantity is AS (see

(24)), and the number of independent scalar sources is two.

Consider three source types:

1. Bulk source: this situation, implemented, for instance, by Hassanzadeh (1991)

and Dai et al. (1995), assumes that the source energy is partitioned linearly between

the two phases as t : (1 - d)f and fr: Of . Then, we have that Vs: Vsr : f '

2. Source in the solid: \7e simply assume that fr : 0, implying that y5 : f, and

Vs r :  g .

3. Fluid volume injection: In this case, { : 0. Then, Vs : fr and Vsr : ttlQ.
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where a is the pore radius. Substituting the tortuosity a :

The transition from the low- to the high-frequency
by the characteristic frequency

b(o) 4
W ^ :  U'  qrt(o) mK

For the model of cylindrical ducts a : 413, p : $a2lg, and

64
@ . :  - - i - '

a- pr
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range of the theory is given

(423)

mQlk, we have

(424)
40

@ . :  -

aKpt

(A2s)

Below o" (i.e. in the low-frequency range), viscous forces are predominant and the
fluid is of the Poiseuille type. Moreover, ro" determines the transition from a diffu-
sive to a propagative slow compressional wave. Note that the argument of the
Bessel functions in (A7) can be written in terms of the characteristic frequency as
s : (-6iotla")1/2, which is the form given by Norris (1986, r9g9) with the opposite
sign convention for the Fourier transform.

References

Auriault J.L., Borne L. and Chambon R. 1985. Dynamics of porous saturated media, check-
ing of the generalized law of Darcy. Journal of the Acoustical Society of AmericaTT,164l-
1650.

Ben-Menahem A.B. and Singh S.J. 1981. Seismic Waaes and Sources. Springer Verlag, Inc.
Berryman J.G. 1980. confirmation of Biot's theory. Applied physics Letters 37, 3g2-3g4.
Berryman J.G., Thigpen L. and chin R.C.y. 1988. Bulk elastic wave propagation in par-

tially saturated porous solids. Journal of the Acoustical Society of America 84,360-373.
Biot M'A. 1956a. Theory of deformation of a porous viscoelastic anisotropic solid,. Journal of

Applied Physics 27, 459467.
Biot M'A. 1956b. Theory of propagation of elastic waves in a fluid-saturated porous solid. I.

Low-frequency range. Journal of the Acoustical society of America 2g, 16g-17g.
Biot M.A. 1956c. Theory of propagation of elastic waves in a fluid-saturated porous solid.

II. Higher frequency range. Journal of the Acoustical Society of America 2g, l7g-lgl.
Biot M.A. 1962a. Mechanics of deformation and acoustic propagation in porous media.

Journal of Applied Physics 33,1482-1498.
Biot M-A. 1962b. Generalized theory of acoustic propagation in porous dissipative media.

Journal of the Acoustical Society of America 34, 1254-1264.
Biot M.A. and u7illis D.G. 1957. The elastic coefficients of the theory of consolidation.

Journal of Applied Mechanics 24, 594-401 .
Bonnet G. 1987. Basic singular solutions for a poroelastic medium in the dynamic range.

Journal of the Acoustical Sociery of AmericaSZ, 175g-1762.
Boutin C., Bonnet G. and Bard P.Y. 1987. Green's functions and associated sources in

infinite and stratified poroelastic mediz. Geophysical Journal of the Royal Astronomical
Society 90, 521-550.

o 1996 European Association of Geoscientists & Engineers, Geophysical prospecting, 44, g9-l2g



128 J.M. Carcione and G. Quiroga-Goode

Burridge R. and Vargas C.L. lg7g. The fundamental solution in dynamic poroelasticity.

Geophysical Journal of the Royal Astronomical Society 58, 6l-90'

Carcione J.M. 1993. A 3-D time-domain wave equation for viscoacoustic saturated porous

media. European Journal of Mechanics Al Solids 12, 53-71.

Carcione J.M., Kosloff D. and Kosloff R. 1988. Wave propagation simulation in a linear

viscoelastic medium. Geophysical Journal of the Royal Astronomical Society 95' 597411.

Carman P.C. 1961. L'6coulement des gaz d travers les milieux poreux. Bibliothiques des

Sciences et Techniques Nucl^aires. Presses Universitaires de France, Paris.

Dai N., Vafidis A. and Kanasewich E.R. 1995. Wave propagation in heterogeneous porous

media: a velocity-stress, finite-diflerence method . Geophysics' 60' 327-340

Deresiewicz H. and Rice J.T. 1962. The effect of boundaries on wave propagation in a

liquid-filled porous solid: III. Reflection of plane waves at a free plane boundary (geneal

case). Bulletin of the Seisrnological Society of America 52,595-625.

Dvorkin J., Nolen-Hoeksema R. and Nur A. 1994. The squirt-flow mechanism: Macro-

scopic description. G eophy sics 59, 428438'

Garg S.K., Nayfey A.H. and Good A.J. 1974. Compressional waves in fluid-saturated

elastic porous rnedia. Journal of Applied Physics 45,1968-1974'

Geertsma J. and Smit D.C. 1961. Some aspects of elastic wave propagation in fluid-

saturated porous solids. G eophy sics 26, 1 69-1 8 I .

Hassanzadeh S. 1991. Acoustic modeling in fluid-saturated porous media. Geoplrytsics 56'

424435.
Herrera I. and Gurtin M.E. 1965. A correspondence principle for viscoelastic wave propaga-

rion. Quarterly of Applied Mathematics 22' 36Cl-364.

Kazi-Aoual M.N., Bonnet G. and Jouanna P. 1988. Green's functions in an infinite trans-

versely isotropic saturated poroelastic medium. Journal of the Acoustical Societi of

America 84, 1883-1889.

Lancaster P. and Tismenetsky M. 1985. The Theory of Matrices, second edition' with Appli-

cations. Academic Press, Inc.

Liu H.p., Anderson D.L. and Kanamori H. 19'76. Velocity dispersion due to anelasticity:

implications for seismology and mantle composition. Geophysical Journal of the Royal

Astronomical Society 47, 4l'58.

Lumley D., Nur A., Dvorkin J. and Packwood J. 1994. Seismic monitoring of oil pro-

duction:A feasibi l i ty study.64th SEG meeting, Los Angeles, Expanded Abstracts,3l9-

322.
Mochizuki S. 1982. Attenuation in partially saturated tocks. Journal of Geophysical Research

87,8598-8604.
Murphy $f.F., rJrinkler K.$7. and Kleinberg R.L. 1986. Acoustic relaxation in sedimentary

rocks: Dependence on grain contacts and fluid saturation. Geophysics 5l'757-766.

Norris, A.N. 1985. Radiation from a point source and scattering theory in a fluid-saturated

porous solid. Journal of the Acoustical Society of America 77 ' 2012-2023 '

Norris A.N. 1986. On the viscodynamic operator in Biot's equations of poroelasticity.

Journal of Waae-Material Interaction l' 365-38O-

Norris A.N. 1989. Stoneley-wave attenuation and dispersion in permeable formations. Geo-

physics 54,33U341 .

Pilant \7.L. 7979. Elastic Waaes in the Earth. Elsevier Science Publishing Co'

plona T.J. 1982. Acoustics of fluid-saturated porous media. Ultrasonics Symposium IEEE

2,1044-1048.

@) 1996 European Association of Geoscientists & Engineers, Geophysical Prospeeting, 44' 99-129



Solution for compressional waves 129

Rasolofosaon P.N.J. 1991. Plane acoustic waves in linear viscoelastic porous media: Energy,
panicle displacement, and physical interpretation. Journal of the Acoustical Society of
America 89, 1532-1550.

Sandhu R.S., Shaw H.L. and Hong S.J. 1990. A three-field finite element procedure for
analysis of elastic wave propagation through fluid-saturated soils. Soil Dynamics and
Earthquake Engineering 9, 58-65.

Santos J.E., Corbero J. and Douglas Jr. J. 1990a. Static and dynamic behaviour of a porous
solid saturated by a two-phase fluid. Journal of the Acoustical Society of America 87, 1428-
1438.

Santos J.E., Douglas Jr. J., Corbero J. and Lovera O.M. 1990b. A model for wave propaga-
tion in a porous medium saturated by a two-phase fluid. Journal of the Acoustical Society
of America 87, 1439-1448.

Schmitt, D.P., Bouchon M. and Bonnet G. 1988. Full-wave synthetic acoustic logs in radi-
ally semiinfinite saturated porous media. Geophysics 53,807-823.

Turgut A. and Yamamoto T. 1988. Synthetic seismograms for marine sediments and deter-
mination of porosity and permeability . Geophysics 53, 1056-1067.

Zhu X. and McMechan G.A. 1991. Numerical simulation of seismic responses of poroelastic
reservoirs using Biot theory. Geophysics 56,32&339.

O 1996 European Association of Geoscientists & Engineers, Geophysical Prospecting, 44,99-129


	Table of Contents
	Full frequency-range transient solution for compressional waves in a fluid-saturated viscoacoustic porous medium
	Abstract
	lntroduction
	Field equations
	The solution
	Complex bulk moduli matrix, O factors and phase velocities
	Examples and discussion
	Conclusions
	Acknowledgements
	Appendix A
	References




