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Wavefronts in dissipative anisotropic media:
Comparison of the plane-wave theory with
numerical modeling
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ABSTRACT

In a previous work, Carcione investigated the charac-
teristics of wavefronts in a dissipative anisotropic (or-
thorhombic) medium by means of time-harmonic, ho-
mogeneous, plane-wave analysis. Here, we extend the
theoretical analysis to a monoclinic medium and per-
form numerical experiments to investigate the transient
response. Given a line source the forward modeling
algorithm computes pure shear waves in the symmetry
plane of the medium. The results of the theoretical
analysis agree with those of our transient wave simula-
tion. For instance, the onset of the wavefield coincides
with the theoretical wavefront calculated with the unre-
laxed (high-frequency limit) energy velocity. Moreover,
while the wavefronts computed with the theoretical
envelope and energy velocities coincide practically with
a numerical evaluation of the energy location, using the
group velocity yields a wrong prediction. Finally, as an
interesting example, we present a medium where the
wave behaves isotropically (cylindrical wavefronts) at a
given frequency, but is strongly anisotropic at the low-
and high-frequency limits.

INTRODUCTION

Research on harmonic and transient wave propagation in
anisotropic and dissipative media is relatively recent (Hosten
et al., 1987; Carcione, 1990; Arts, 1993; Carcione and Cavallini,
1993a, b; Le et al., 1994). The differences between elastic and
anelastic wavefields can be substantial; for instance, in shallow
unconsolidated sediments and reservoir rocks. In an elastic
medium, the wavefront is defined as the envelope of the family
of planes that makes the phase of the plane waves zero. The
velocity of the envelope of plane waves coincides with the
energy and group velocities, but in dissipative anisotropic
media these three velocities are different (Carcione, 1994).

Pulses generated in a homogeneous anelastic medium are
assumed to be a superposition of time-harmonic homogeneous
viscoelastic plane waves, for which the propagation and atten-
uation directions coincide. Therefore, we compare theoretical
results, based on this type of wave, with numerical wavefronts
of pure shear waves propagating in the symmetry plane of a
homogeneous monoclinic medium.

THEORETICAL RESULTS

The following quantities describe the wavepropagation
properties of time-harmonic plane shear waves in the (x, z)
symmetryplane of a viscoelastic monoclinic medium:

  elastic constants at infinite frequency;
  frequency-dependent complex stiffnesses;

  relaxation times along the z-axis;
    l relaxation times along the x-axis;

 density.

In addition, we use the following symbols:

t: time variable;
 angular frequency;

f: frequency;
 propagation angle;
 = (sin cos  = (   propagation direction;

Px  + 
PZ  + 

Generalizing to monoclinic media the results obtained in
Carcione (1994) for orthorhombic media, we get

Complex velocity:

   
(1)

Slowness vector:

  (2)
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Attenuation vector:

  

Phase velocity vector:

  

Quality factor:

Q    

Envelope velocity:

(3)

(4)

(5)

(6)
Energy velocity:

  . (7)

Group velocity:

 

(8)
where

     (9)

and the prime denotes the derivative with respect to the
angular frequency. As in Carcione (1994), we define the
wavefront as the locus of the tip of the energy velocity vector,
and find that the envelope velocity closely approaches the
energy velocity for all propagation directions. On the other
hand, the group velocity can be used to describe the wavefront
only for low-loss media. Moreover, the analysis reveals that
differences in attenuation along the principal axes strongly
influence the velocities. examples.

EXAMPLES

Constitutive law

We consider a monoclinic medium with  = 
P66 =   =  where

 1  +  
  

    
   (10)

are dimensionless complex moduli representing standard lin-
ear solid elements. Note that if    then   1, and

 and  represent the high-frequency limit elastic
constants. The quality factors for homogeneous waves along
the  and  axes are

   

  
 (13)

(Carcione, 1994). The curve Q  has its minimum at
 =  and the value of Q  at the minimum is 

The relaxation times are obtained from equations (12) and
..

Wave equation

(14)

(15)

The wave equation used here is the generalized version of
the SH equation, including anisotropy and attenuation effects,
introduced in Carcione and Cavallini, 1993b. For instance, for
one dissipation mechanism, the wave equation (for the dis-
placement u and strain memory variables e (l) and e (2))  reads

   ( 1 6 )

 au

 1

  
  (17)

 

 

   
    (18)

The above system of equations may be solved efficiently in the
time-domain by using a spectral method (Carcione and
Cavallini, 1993b). We now apply this scheme to two typical

NUMERICAL SIMULATIONS

First computer experiment.- The values of the high-fre-
quency elastic constants and density are taken as c44 =
6.8 GPa, c66 = 3.8 GPa, and c46 = 1.5 GPa, and  =
1.364 Kg/m3, respectively. The relaxation peaks of both dis-
sipation mechanisms are centered at f0 =  =
10 Hz, and the values of the minimum quality factors along the
vertical (z) and horizontal (x) directions are  = 5 and

 = 20 respectively. The modeling algorithm solves for
wave propagation with a source central frequency of 10 Hz.
Along the vertical direction, Figures la and lb represent the
quality factor and the wave velocities, respectively. As can be

( 1 1 )

seen, the quality factor has its minimum value at 10 Hz, the
frequency for which the group velocity has the maximum
deviation from the energy and envelope velocities. In the low
and high-frequency (elastic) limits, the three velocities coin-
cide. The pictures shown in Figure 2 are snapshots, with
different graphical representations, taken at 250 ms propaga-
tion time. Figure 2a shows the displacement u, and Figure 2b
displays    which, roughly speaking, represents the energy
location. The thick continuous line is the theoretical high-

w h e r e

( 1 2 )
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frequency energy velocity (multiplied by 250 ms), which coin-
cides with the onset of the wavefield. In particular, this
coincidence is clear in Figure 2a. This curve gives the elastic
wave surface (Herrera and Gurtin, 1965). In Figure 3, we
compare a numerical (white dots) and a theoretical (continu-
ous line) evaluation of the energy location at a frequency of
10 Hz. The numerical evaluation of the energy location is
obtained by finding the center of gravity of    along the
radial direction. The continuous line is calculated from the
following equation:

FIG. 1. Quality factor (a), and wave velocities (b , versus
frequency. The propagation direction is downwardvertical
(i.e., along the negative z-semiaxis). The quality factor has its
minimum value at 10 Hz, where the
maximum deviation from the energy and

roup velocity has a
envelope velocities.

 =   

where d is the distance from the source, ts = 250 ms, and to
is half the source duration. Alternatively, this comparison can
be performed using the Cartesian plot in Figure 4, where the
envelope and group velocities are also represented. While the
envelope and energy velocities coincide practically, the group
velocity gives a wrong prediction of the energy location, thus
failing to represent any physical (measurable) quantity.

Second computer experiment.- A medium can be strongly
anisotropic in the unrelaxed high-frequency limit, and yet
behave isotropically at a given finite frequency. This behavior
is demonstrated by the following example. Consider an orthor-
hombic solid with c44 = 6.8 GPa, c66 = 4.8 GPa,  =

FIG. 2. Snapshots of numerically simulated wavefields taken at
time t = 250 ms: (a) snapshot of the displacement u, (b)
snapshot of the energy-like quantity     The thick continuous
line is the theoretical high-frequency limit energy velocity
(multiplied by 250 ms).
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FIG. 3. Comparison between a numerical evaluation of the
energy location (white dots) and the theoretical energy velocity
curve (continuous line) at a frequency of 10 Hz. The former is
computed by finding the center of gravity of the 
like quantity    along the radial direction.

FIG. 4. Same comparison as in Figure 3, but here, the envelope
and group velocities are also represented. The dotted line
corresponds to the numerical evaluation of the energy velocity
and  is the propagation angle.

1.364 gr/cm3,  = 3, and Q = 20. As before, the source
central frequency is 10 Hz. Figure 5 represents the snapshot of

   and the unrelaxed (a), and 10 Hz (b), theoretical energy
velocity (scaled) curves. As can be seen, the snapshot reveals
the almost perfect cylindrical symmetry of the wave. The aniso-
tropic character of the medium emerges from the anisotropic
attenuation and width of the wavefield (dynamical effects), al-
though these effects are more difficult to measure, in practice,
than are variations of wave velocities (kinematic effects) caused by
elastic anisotropy and/or directional dissipation.

CONCLUSIONS

Results from numerical modeling in homogeneous dissipa-
tive anisotropic media agree with the plane-wave theory based

FIG. 5. Snapshots of the energy-like quantity    in a strongly
anisotropic orthorhombic medium. The source central fre-
quency is 10 Hz. The continuous lines are the theoretical
energy velocities: at (a) infinite frequency, and at (b) 10 Hz.
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on homogeneous, viscoelastic plane waves. The energy velocity
effectively defines the location of the energy, while the group
velocity gives a wrong prediction. As a further conclusion, the
results suggest that the transient wavefield in a homogeneous
medium can be viewed as a linear superposition of homoge-
neous viscoelastic plane waves.
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Moreover, our second example shows the paradoxical result
that a medium which is strongly anisotropic in the unrelaxed
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effects) may be helpful in reducing the uncertainty.
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