
ON THE ACOUSTIC-ELECTROMAGNETIC ANALOGY FOR THE 
REFLECTION-REFRACTION PROBLEM 

 
JOSÉ M. CARCIONE 

 

Istituto Nazionale di Oceanografia e di Geofisica Sperimentale (OGS), Trieste, Italy1
 

ENDERS A. ROBINSON 
 

Department of Earth and Environmental Engineering, Columbia University, New York, USA2
 
 

ABSTRACT 
 
The same mathematical theory can be used to describe physical phenomena of 

different nature. For instance, the wave equation and the related mathematical 
developments can be used to describe elastic and electromagnetic wave propagation, and 
it is also extensively used in quantum mechanics. Fresnel’s equations are a classical 
example of the analogy between shear waves and light waves. George Green in the 
nineteenth century, used analogies to obtain the reflection coefficients for sound waves 
and light waves, before the advent of the electromagnetic theory of light. 

In this work, we investigate the mathematical analogy between elastic waves and 
electromagentic waves. We obtain a complete parallelism for the reflection and refraction 
problem, considering the most general situation, that is, the presence of anisotropy and 
attenuation – viscosity in the elastic case and conductivity in the electromagnetic case. 
The analogy is illustrated with Fresnel’s equations, the Brewster and critical angles, the 
concept of reflectivity and transmissivity, and the corresponding duals fields. The analysis 
of the elastic-solid theory of reflection applied by Green to light waves, and a brief 
historical review of wave propagation through the ether, further illustrate the analogy. 

 
 

1. INTRODUCTION 
 
Many of the great scientists of the past have been occupied with the establishment of 

the theory of wave motion. Throughout this development there has been an interplay 
between the theory of light waves and the theory of material waves. As early as 1637 
Rene Descartes (1596-1650) provided and explanation of the rainbow. His use of Snell’s 
law led to further advances in the study of the reflection and refraction of light. 

In 1660 Robert Hooke (1635-1703) formulated stress-strain relationships which 
established the elastic behavior of solid bodies. Hooke believed light to be a vibratory 
displacement of the medium, through which it propagates at finite speed. Significant 
experimental and mathematical advances came in the nineteenth century. Thomas Young 
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(1775-1812) was the first to consider shear as an elastic strain, and defined the elastic 
modulus that was later named Young’s modulus. 

In 1809 Etienne Louis Malus (1775-1812) discovered polarization of light by 
reflection, which at the time David Brewster correctly described as “a memorable epoch 
in the history of optics”. In 1815 Brewster discovered the law that regulated the 
polarization of light. Augustus Jean Fresnel (1778-1827) showed that if light were  
a transverse wave, then it would be possible to develop a theory accommodating the 
polarization of light. 

Green (1838, 1842) makes extensive use of the analogy between elastic waves and 
light waves. Although some of his conclusions are erroneous, an analysis of his 
developments illustrates the power of the use of mathematical analogies. 

Later in the nineteenth century, Maxwell and Kelvin made extensive use of physical 
and mathematical analogies to study wave phenomena in elastic theory and 
electromagnetism. In fact, the displacement current introduced by Maxwell into the 
electromagnetic equations arises from the analogy with elastic displacements. Maxwell 
assumed his equations were valid in an absolute system regarded as a medium (called the 
ether) that filled the whole of space. The ether was in a state of stress, and would only 
transmit transverse waves. 

Of course, with advent of the theory of relativity the concept of the ether was 
abandoned. However the fact that electromagnetic waves are transverse waves is 
important. This situation is in contrast to a fluid, which can only transmit longitudinal 
waves. A visco-elastic body transmits both longitudinal waves and transverse waves. It is 
well known that the visco-elastic can be specialized to the form that hold for fluids. It is 
also possible to recast the visco-elastic equations into a form that closely parallels 
Maxwell’s equations. In many cases this formal analogy becomes a complete 
mathematical equivalence such that the same analytic or numerical analogy can be used to 
solve problems in both disciplines. 

Carcione and Cavallini (1995) showed that the 2-D Maxwell equations describing 
propagation of the TM mode in anisotropic media is mathematically equivalent to the SH 
wave equation in an anisotropic-viscoelastic solid where attenuation is described with the 
Maxwell model. We use this theory to obtain a complete mathematical analogy for the 
reflection-refraction problem. 

 
2. THE ANALOGY 

 
The analogy, as given by Carcione and Cavallini (1995), is summarized in this 

section, in the time-space and wavenumber (or slowness)-frequency domains. 
 

2 . 1  E q u a t i o n  o f  m o t i o n  

Assume that the propagation is in the (x, z)-plane, and that the material properties are 
invariant in the y-direction. Then, Ex, Ez and Hy are decoupled from Ey, Hx and Hz. In the 
absence of electric source currents, the first three fields obey the TM (transverse magnetic 
field) differential equations: 
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where µm is the magnetic permeability, εij and σij are the components of the permittivity 
and conductivity tensors, respectively, and My is the magnetic source. 

On the other hand, in the plane of mirror symmetry of a viscoelastic monoclinic 
medium, uniform properties in the y direction imply that one of the shear waves has its 
own (decoupled) differential equation, known in the literature as the SH wave equation. 
Propagation in this plane implies pure cross-plane strain motion, and is the most general 
situation for which pure shear waves exist at all propagation angles. Pure shear wave 
propagation in homogeneous hexagonal media occurs along all directions, since every 
plane containing the symmetry axis is a plane of symmetry. The differential equations 
describing the wave motion in the plane of symmetry of a monoclinic medium are 
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where νy is the particle velocity, σ denotes the stress, Fy is the body force, 

 2
44 66 66 44 46 46 44 66 46, , ,τ η η τ η η τ η η η η η η= = = − = −  , (7) 

and 

 2
44 66 66 44 46 46 44 66 46, , ,s c c s c c s c c c c c c= = = − = −  , (8) 

with cIJ the stiffness components, ηIJ, the viscosity components (I, J = 4, 6), and ρ is the 
density. 

Note that equations (1) – (3) are converted into equations (4) – (6), and vice versa, 
under the following substitutions: 
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The 2 × 2 stiffness and viscosity matrices 
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are respectively defined by 2-D identities C = S-1 and η = τ-1. Then, the anisotropic SH 
wave equation based on a Maxwell rheology is mathematically equivalent to the 
anisotropic Maxwell equations whose forcing term is a magnetic current. 
 

2 . 2 .  K i n e m a t i c s  a n d  e n e r g y  

The particle velocity of an inhomogeneous plane wave, propagating in the symmetry 
plane (the (x, z)-plane) of an homogeneous monoclinic medium, can be expressed as 

, where ˆy yν=ν e

 ( ) ( )[ ]0, expy y x zx z t s xν ν ιωυ ιω= = − − s z  , (15) 

where sx and sz are the components of the complex slowness vector, υ0 is a complex 
quantity and  is the unit vector along the y-direction. ˆ ye

The complex slowness vector is 

 ( ) [ ],x zs sι ω= − =s r α T  , (16) 

where the symbol T denotes transpose. The real slowness vector is given by 

  (17) ( ) ( ) ( )[ ,x zs s= =r sR R R T]

and the attenuation vector is 
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where R and I denote real and imaginary parts, respectively. 
According to the analogy, the complex stiffness matrix, defined by 
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corresponds to the inverse of the complex permittivity matrix ( )* ι ω= −ε ε σ , namely: 
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1
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The Umov-Poynting vector is 

 ( ) ( )[ ]{ }( )22 0
1 ˆ ˆexp 2
2 x z xs x s z X Zω υ ω= +p eI I z+ e  , (21) 

where 

 66 46x zX p s p s= +  ,   and   46 44x zZ p s p s= +  . (22) 

and ˆ xe  and  are the unit vectors along the x and z directions, respectively. ˆ ze
The time-average potential and dissipated energy densities are 

 ( ) ( )[ ]{ } ( )22 0
1 exp 2
4 x zV s x sω υ ω= +I I Rz g  , (23) 

and 

 ( ) ( )[ ]{ } ( )22 0
1 exp 2
2 x zD s xω υ ω= +I I Is z g  , (24) 

where 

 (2 2 *44 66 462z x x )zg p s p s p s s= + + R  (25) 

is a complex quantity and has the dimension of density (note the difference between g and 
the real-valued material density ρ). 

The time-average kinetic energy density is simply 

 ( ) ( )[{22 0
1 exp 2
4 x zT sρω υ ω= I I ]}x s z+  (26) 

The velocity of the energy is defined as the average power flow density ( )( )=p pR  
divided by the average energy density 
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The wave front is associated with the higher energy velocity. Since, in the lossless case, 
all the wave surfaces have the same velocity – there is no velocity dispersion – the 
concepts of wave front and wave surface are the same. In lossy media, the wave front is 
the wave surface associated with the unrelaxed energy velocity (Carcione, 2001). 

The following two fundamental relations hold 

  ,   and   1e ⋅ =ν r 2D
ω

= ⋅α p  . (28) 

If r and α point in the same direction, the wave is called homogeneous. The real 
slowness and attenuation vectors for homogeneous plane waves can be expressed as 
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is the propagation direction. 
The velocity of the energy is given by 
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where r is the magnitude of the real slowness vector. The electromagnetic slowness, 
attenuation, and energy velocity can be calculated from equations (29), (30), and (33) by 
applying this equivalence, and that of the density with the permeability (13), to equation 
(31). The kinetic and strain energy densities are associated with the magnetic and electric 
energy densities. In terms of circuit elements, the kinetic, strain and dissipated energies 
represent the energies stored in inductances, capacitors and the dissipative ohmic losses, 
respectively. 
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Fig. 1. Incident (I), reflected (R) and refracted (T) waves in the viscoelastic case. The angles θ, δ 
and ψ denote the propagation, attenuation and Umov-Poynting vector (energy) directions. The 
reflection angle is negative as shown. 

2 . 3 .  T h e  r e f l e c t i o n - r e f r a c t i o n  p r o b l e m  

Let us assume that the positive z-axis points downwards, and that the incident, 
reflected and refracted waves are identified by the superscripts I, R and T. The upper 
medium is defined by the stiffnesses pIJ and density ρ and the complex permittivities *ijε  

and magnetic permeability µm. The lower medium is defined by the corresponding primed 
quantities. Figure 1 represents the incident (I), reflected (R) and refracted (T) waves at  
a boundary between two linear viscoelastic and monoclinic media. The angles θ, δ and ψ 
denote the propagation, attenuation and power-flow directions. Note that the propagation 
and energy directions do not necessarily coincide. Moreover, θ δ−  may exceed 90° in 
anisotropicviscoelastic media, while θ δ−  is strictly less than 90° in isotropic media 
(Carcione, 1997). 

The analogy can be extended to the boundary conditions at a surface of discontinuity, 
because according to equation (9) continuity of 
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 σyz   and   νz (34) 

in the elastic case, is equivalent to continuity of 

 Ex   and   Hy (35) 

in the electromagnetic case. The variables in (35) are precisely the tangential components 
of the electric and magnetic fields. In the absence of surface current densities at the 
interface, the boundary conditions impose the continuity of those components (Born and 
Wolf, 1964). 

The SH reflection-refraction problem was solved by Carcione (1997). Carcione 
considered an incident homogeneous wave and a Zener model (e.g., Carcione, 2001) to 
describe the attenuation properties. In the case of an inhomogeneous incident wave and  
a general stiffness matrix P, the relevant equations can be summarized as follows: 

 
2 . 3 . 1 .  R e f l e c t i o n  a n d  r e f r a c t i o n  c o e f f i c i e n t s  

The particle velocities of the reflected and refracted waves are given by 
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For the principal value, the argument of the square root lies between –π/2 and +π/2. As 
indicated by Krebes (1984), special care is needed when choosing the sign, since a wrong 
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choice may lead to discontinuities of the vertical wavenumber as a function of the 
incidence angle. 
 

2 . 3 . 2 .  P r o p a g a t i o n ,  a t t e n u a t i o n  a n d  r a y  a n g l e s  
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The ray angle denotes the direction of the power flow vector R(p), as defined by Auld 
(1990). A different definition is given in the context of complex ray theory (e.g., 
Thomson, 1997). 
 

2 . 3 . 3 .  E n e r g y  f l u x  b a l a n c e  

The balance of energy flux regards the continuity of the normal component of the 
Umov-Poynting vector across the interface. This is a consequence of the boundary 
conditions that impose continuity of normal stress σzy and particle velocity νy. The 
balance of power flow at the interface, on a time-average basis, can be expressed as 

 I R IR TP P P P+ + =  , (46) 

where 
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is the incident flux, 
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is the interference between the incident and reflected normal fluxes, and 
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is the refracted flux. In the elastic case, ZI is real and the interference flux vanishes. 
 

3. APPLICATION OF THE ANALOGY 
 
On the basis of the solution of the elastic problem, we use the analogy to find the 

solution in the electromagnetic case. For every electromagnetic phenomenon – using the 
electromagnetic terminology – we analyze its corresponding mathematical and physical 
counterpart in the elastic case. Maxwell (1891, p. 65), who used this approach, writes: The 
analogy between the action of electromotive intensity in producing the displacement of an 
elastic body is so obvious that I have ventured to call the ratio of electromotive intensity 
to the corresponding electric displacement the coefficient of electric elasticity of the 
medium. … 

The variations of electric displacements evidently constitute electric currents. 
 

3 . 1 .  R e f r a c t i o n  i n d e x  a n d  F r e s n e l  f o r m u l a e  

Let us assume a lossless, isotropic medium. Isotropy implies c44 = c66 = µ and c46 = 0, 
and ε11 = ε33 = ε, and ε13 = 0. It is easy to show that the reflection and refraction 
coefficients reduce to 

 cos cos
cos cos

I T

I TR ρµ θ ρ µ θ
ρµ θ ρ µ θ

′ ′−
=

′ ′+
 ,   and   2 cos

cos cos

I

I TT ρ µ θ
ρµ θ ρ µ θ

′ ′
=

′ ′+
 , (51) 

respectively. From the analogy (equation (11)) and equation (8) we have 

 1µ ε− ⇔  , (52) 

The refraction index is defined as the velocity of light in vacuum, c0, divided by the 
phase velocity in the medium, where the phase velocity is the reciprocal of the real 
slowness. For lossless, isotropic media the refraction index is 

 0
0 0

mn rc
µ ε
µ ε

= =  , (53) 

where 0 01c 0µ ε= , and ε0 = 8.85×10-12 F/m; µ0 = 4π×10-7 Hm. In elastic media there 
is not a limit velocity, but using the analogy we can define 

 en k ρ
µ

=  , (54) 

where k is a constant with the dimensions of velocity. 
Assuming ρ = ρ′ in (51), the electromagnetic coefficients are 

 

 cos cos
cos cos

I T

I TR ε θ ε θ
ε θ ε θ

′ −
=

′ +
 ,   and   2 cos

cos cos

I

I TT ε θ
ε θ ε θ

=
′ +

 . (55) 
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In terms of the refraction index we have 

 cos cos
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n nR
n n T

θ θ
θ θ
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I T
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n n
θ

θ θ
=

′ +
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Equations (56) are Fresnel formulae (derived by Fresnel in 1923) corresponding to the 
electric field vector in the plane of incidence (Born and Wolf, 1964, p. 40). He assumed  
a magnetic permeability equal to one and zero conductivity. 
 

3 . 2 .  B r e w s t e r  ( p o l a r i z a t i o n )  a n g l e .  N o  r e f l e c t i o n  

Fresnel formulae can be written in an alternative form, which may be obtained from 
(56) by using Snell’s law 

 sin
sin

I
e

T e
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θ µ ε
µ εθ

′ ′ ′
= = = =

′
 . (57) 
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( )
( )

tan

tan

I T

I TR
θ θ

θ θ

−
=

+
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2 sin cos

sin cos

T I

I T IT θ θ
Tθ θ θ θ

=
+ −

 . (58) 

The denominators in (58) are finite, except when 2I Tθ θ π+ = . In this case the reflected 
and refracted rays are perpendicular to each other and R = 0. It follows from Snell’s law 
that the incidence angle, I

Bθ θ= , satisfies 

 tan cot T e
B

e

n n
n n

µ εθ θ
µ ε

′ ′ ′
= = = = =

′
 . (59) 

The angle θB is called the Brewster angle, first noted by Étienne Malus and David 
Brewster (Brewster, 1815). It follows that the Brewster angle in elasticity can be obtained 
when the medium is lossless and isotropic, and the density is constant across the interface. 
This angle is also called polarization angle, because, as Brewster states, When a polarised 
ray is incident at any angle upon a transparent body, in a plane at right angles to the 
plane of its primitive polarisation, a portion of the ray will lose its property of being 
reflected, and will entirely penetrate the transparent body. This portion of light, which has 
lost its reflexibility, increases as the angle of incidence approaches to the polarising 
angle, when it becomes a maximum.. Thus, at the polarizing angle, the electric vector of 
the reflected wave has no components in the plane of incidence. In the elastic case, we 
cannot define the same concept, since a plane wave whose particle velocity is not 
perpendicular to the plane of incidence (the symmetry plane) will undergo mode 
conversion. 

The restriction about the density can be removed and the Brewster angle is 
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 tan B
ρµ µ ρθ
ρ ρµ µ
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=

′ ′−
 , (60) 

but 2I Tθ θ π+ ≠ , in this case (Carcione, 1997). The analogies (12) and (13) imply 

 tan m
B

m m

mµ ε ε µ
θ

µ µ ε ε
′ ′ −

=
′− ′

 (61) 

in the electromagnetic case. 
In the anisotropic and lossless case the angle is obtained from 

 ( ) ( )2cot 4 2B b b ac aθ = − ± −  , (62) 

where 

 ( )44 44 44a c c cρ ρ ρ′ ′= −  , 46 442b c a c=  , (63) 

and 

 ( )2 2
46 46 44 66 66c c c c c cρ ρ ρ′ ′ ′ ′= − − −  . (64) 

If , we obtain 46 46 0c c′= =
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44 44 44

44 66 66
tan B
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ρ ρ
θ

ρ ρ
′ ′−

=
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 , (65) 

or, using the analogy, 

 1
44 11c ε− ⇔  , 

 1
66 33c ε− ⇔  , 

 mρ µ⇔  , (66) 

the electromagnetic Brewster angle is 

 ( )33 33 11 11

11 33 33

1tan m m
B

m m

ε ε µ ε µ ε
θ

ε µ ε µ ε
′ ′ ′−

=
′ ′ −

 . (67) 

In the viscoelastic case, tan θB is complex, in general, and there is no Brewster angle. 
However let us consider equation (61) and incident homogeneous waves. According to the 
analogy (19), its extension to the lossy case is 

 
* *

tan
* *

m m
B

m m

µ ε ε µ
θ

µ µ ε ε
′ ′ −

=
′ ′−

 . (68) 
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The Brewster angle exists if *ε ′  is proportional to *ε , for instance, if the conductivity of 
the refraction medium satisfies ( )σ ε ε σ′ ′=  ( ( )η µ µ η′ ′=  in the elastic case). This 
situation is unlikely to occur in reality, unless the contact is designed for this purpose. 
 

3 . 3 .  C r i t i c a l  a n g l e .  T o t a l  r e f l e c t i o n  

In isotropic, lossless media, total reflection occurs when Snell’s law 

 sin sin sinT I m

m

µ ερµ Iθ θ
ρ µ µ ε

′
= =

′ ′ ′
θ  (69) 

does not give a real value for the refraction angle θT. When the angle of incidence exceeds 
the critical angle θC defined by 

 sin sinI e m
C

e m

n n
n n

µ ερ µθ θ
ρµ µ ε

′ ′ ′′ ′
= = = = =

′
 , (70) 

all the incident wave is reflected back into the incidence medium (Born and Wolf, 1964,  
p. 47). Note from equations (59) and (70) that tan θB = sin θC if ρ′ = ρ and µ′m = µm. 

The critical angle is defined as the angle(s) of incidence beyond which the refracted 
Umov-Poynting vector is parallel to the interface. The condition Re(ZT) = 0 (see equation 
(21)) yields the critical angle θC. For the anisotropic, lossless case, with c46 = c′46 = 0, we 
obtain 

 
( )

33 3344

66 66 11 33 33
tan m

C
m m

c
c c

ρ ε ερ
θ

ρ ρ ε ρ ε ρ ε
′ ′′

= =
′ ′ ′ ′− −

 (71) 

where we have used the analogy. 
In the isotropic and lossy case we have 

 
*

tan
* *
m

C
m m

ρ ε
θ

ρ ε ρ ε
′ ′

=
′ ′−

 . (72) 

The critical angle exists if *ε ′  is proportional to *ε , i.e., when the conductivity of the 
refraction medium satisfies ( )σ ε ε σ′ ′= . 
 

3 . 3 . 1 .  E x a m p l e  

The acoustic properties of the incidence and refraction media are 

 3
44 66 44 44 66 449.68 GPa , 12.5 GPa , 20 , , 2000 kg mc c cη ω η η ρ= = = = =  

and 

 3
44 66 44 44 6625.6 GPa , , , 2500 kg mc c c η η ρ′ ′ ′ ′ ′= = = = ∞ =  ,  
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Fig. 2. Reflection and refraction coefficients (solid and dashed lines) for acoustic media – lossless 
(a) and (b) lossy cases. 

respectively, where ω = 2π f, with f = 25 Hz. The refraction medium is isotropic and 
lossless. The absolute value of the acoustic reflection and refraction coefficients – solid 
and dashed lines – are shown in Figures 2a and 2b for the lossless and lossy cases, 
respectively. The Brewster and critical angles are θB = 42.61° and θC = 47.76° (see 
Figure 2a), which can be verified from equations (65) and (71). 

The electromagnetic properties of the incidence and refraction media are 

 ε11 = 3 ε0 ,   ε33 = 7 ε0 ,   σ11 = σ33 = 0.15 S/m ,   µm = 2 µ0  

and 

 ε11 = ε33 = ε0 ,   σ11 = σ33 = 0 ,   µm = µ0 , 

respectively, where we consider a frequency f of 1 GHz. The refraction medium is 
vacuum. We apply the analogy 

 1
44 11c ε− ⇔  , 

 1
66 33c ε− ⇔  , 

 1
44 11η σ− ⇔  , 
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Fig. 3. Reflection and refraction coefficients (solid and dashed lines) for electromagnetic media –
 lossless (a) and (b) lossy cases. 

 1
66 33η σ− ⇔  , 

 mρ µ⇔  , (73) 

and use the same computer code to obtain the acoustic reflection and refraction 
coefficients. The absolute value of the electromagnetic reflection and refraction 
coefficients – solid and dashed lines – are shown in Figures 3a and 3b for the lossless and 
lossy cases, respectively. The Brewster and critical angles are θB = 13.75° and 
θC = 22.96° (see Figure 3a), which can be verified from equations (67) and (71). 
 

3 . 4 .  R e f l e c t i v i t y  a n d  t r a n s m i s s i v i t y  

Equation (46) is the balance of energy flux across the interface. After substitution of 
the fluxes (47) – (50), we obtain 

 ( ) ( ) ( ) ( ) ( )2 2 2I R T IZ Z R Z T Z R= − + −R R R I I  . (74) 

Let us consider the isotropic lossy case and an incident homogeneous wave. Thus, p46 = 0, 
p44 = p66 = µ*, and equations (22) and (31) imply * cosZ ρµ= θ . Then, the balance 
(74) becomes 
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 ( ) ( )2 2 2** cos * cos pv * 1 sin
*

I IR T ρµρµ θ ρµ θ ρ µ θ
ρ µ

I⎡ ⎛ ⎞′
′ ′= + −⎜ ⎟

⎤
⎢ ⎥′⎣ ⎝ ⎠

R R R
⎦

 

 ( ) ( )2 * cos IR ρµ− I I θ  (75) 

where we have used that ZR = −ZI. For lossless media the interference flux – the last term 
on the right-hand side – vanishes, because µ* is real. Moreover, using Snell’s law (69) we 
obtain 

  (76) 1= +R T

where 

 2R=R  , and 2cos
cos

T

I Tρ µ θ
ρµ θ

′ ′
=T  (77) 

are called the reflectivity and transmissivity, respectively. Using the analogy (52) and 
assuming ρ ρ′=  and m mµ µ′ = , we obtain 

 2cos cos
cos cos

T T
e

Ie

n nT
n n

θ θ
θ θ

′ ′
= = 2

I TT  (78) 

(Born and Wolf, 1964, p. 41). 
 

3 . 5 .  D u a l  f i e l d s  

The reflection and refraction coefficients that we have obtained above correspond to 
the particle-velocity field or, to be more precise, to the displacement field (due to the 
factor ιω in equation (15)). In order to obtain the reflection coefficients for the stress 
components, we should make use of the constitutive equations, which for the plane wave 
(15) are 

 xy yXσ ν= −  , and yz yZσ ν= −  , (79) 

where X and Z are defined in equation (22). Let us consider the reflected wave. Then, 
combining equation (79) and (36) we obtain 

  , ( )expR R
xy xy x zR t s x sσ ιω⎡ ⎤= − −⎣ ⎦z

z  , (80) ( )expR R
zy yz x zR t s x sσ ιω⎡ ⎤= − −⎣ ⎦

where 

 R
xyR Xιω= − R  , and R

yzR Zιω= − R  , (81) 

are the stress reflection coefficients. 
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In isotropic and lossless media we have 

 sin I
xyR Rιω ρµ θ= −  ,  and cos I

yzR Rιω ρµ θ=  . (82) 

The analogies (9), (13) and (52) imply 

 sin I
z mE Rιω µ ε θ= −  ,  and cos I

x mE Rιω µ ε θ= −   (83) 

(Born and Wolf, 1964, p. 39). 
 

3 . 6 .  B a c k  t o  a c o u s t i c s .  S o u n d  w a v e s  

There is a mathematical analogy between the TM equations (11) and a modified 
version of the so-called acoustic wave equation for fluids. Denoting the pressure field by 
p, the modified acoustic equations can be written as 

 xz p
z x

νν
κ

∂∂ ∂
+ = −

∂ ∂ ∂t
 , (84) 

 z
z

p
z t

ν
γν ρ

∂∂
− = +
∂ ∂

 , (85) 

 x
x

p
x t

ν
γν ρ

∂∂
− = +
∂ ∂

 , (86) 

where κ is the fluid compressibility, and γ = 0 yields the standard acoustic equations of 
motion. Equations (84) – (86) correspond to a generalized density of the form 

 ( ) ( ) ( )ˆ t I t H tρ γ ρ= +  , (87) 

where H(t) is the Heaviside function and I(t) is the integral operator. The acceleration 
term for, say, the x-component is 

 ( )ˆ x x
x

t
t t

ρ
t

ν ν
γν ρ

∂ ∂ ∂
∗ = +

∂ ∂ ∂
 . (88) 

Equations (84) − (86) are mathematically analogous to the isotropic-medium 
electromagnetic equations (1) – (3) for the following correspondence 

 yH p⇔ −  

 x zEν ⇔  

 z xEν ⇔ −  

 ε ρ⇔  
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 σ γ⇔  

 mµ κ⇔  , (89) 

where My = 0 has been assumed. Let us assume a lossless electromagnetic medium, and 
consider Snell’s law (69) and the analogy between the SH case and the TM case. That is, 
transform equation (51) to the TM equations by using the analogies 1µ ε− ⇔  and 

mρ µ⇔ . In order to apply the mathematical analogies correctly, we need to recast the 
reflection coefficients only as a function of the material properties and incidence angle. 
We get 

 

2

2

cos 1 sin

cos 1 sin

I Im m m

m

I Im m m

m

R

µ µ µ εθ θ
ε ε µ ε
µ µ µ εθ θ
ε ε µ ε

′
− −

′ ′ ′
=

′
+ −

′ ′ ′

 . (90) 

If 1 cκ 2ρ− = , where c is the sound wave velocity, application of the analogy (89) to 
equation (90) implies 

 cos cos
cos cos

I T

I T
c cR
c c

ρ θ ρ θ
ρ θ ρ θ

′ ′ −
=

′ ′ +
 , (91) 

where we have used the acoustic Snell’s law 

 sin sinI T

c c
θ θ

=
′

 . (92) 

If we assume ρ = ρ′ and use Snell’s law, we obtain 

 
( )
( )

sin

sin

T I

T IR
θ θ

θ θ

−
=

+
 , (93) 

which is the reflection coefficient for light polarized perpendicular to the plane of 
incidence (the electric vector perpendicular to the plane of incidence), as we shall see in 
the next section. However, note that we started from the TM equation, corresponding to 
the electric vector lying in the plane of incidence. 
 

3 . 7 .  T h e  T M - T E  a n a l o g y  

The lossless TE (transverse electric field) differential equations for an isotropic 
material are 

 yx z EH H
z x

ε
∂∂ ∂

− =
∂ ∂ ∂t

 , (94) 
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 y x
m

E H
z t

µ
∂ ∂

=
∂ ∂

 , (95) 

 x z
m

E H
z t

µ
∂ ∂

− =
∂ ∂

 (96) 

(a more general analogy can be obtained by assuming electric sources and magnetic 
relaxation, but we do not consider these terms for clarity). The isotropic version of 
equations (1) − (3) and (94) − (96) are mathematically analogous for the following 
correspondence 

 TM TE⇔  

 y yH E⇔ −  

 x xE H⇔  

  z zE H⇔

 mε µ⇔  

 mµ ε⇔  . (97) 

From equation (90), and using the analogy (97) and Snell’s law (69), the TE reflection 
coefficient is 

 
cos cos

cos cos

I T

m m

I T

m m

R

ε εθ θ
µ µ
ε εθ θ
µ µ

′
−

′
=

′
+

′

 . (98) 

Assuming m mµ µ′ =  and using again Snell’s law, we obtain 

 
( )
( )

sin

sin

T I

T IR
θ θ

θ θ

−
=

+
 . (99) 

This is the reflection coefficient for the electric field component Ey, i.e., light polarized 
perpendicular to the plane of incidence. Note that R for Hy (equation (58)) and R for Ey 
have different functional dependences in terms of the incidence and refraction angles. 
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3 . 8 .  G r e e n ’ s  a n a l o g i e s  

On December 11, 1837 Green read two papers to the Cambridge Philosophical 
Society. The first paper (Green, 1838) makes the analogy between sound waves and light 
waves polarized in the plane of incidence. In order to obtain his analogy we establish the 
following correspondence between the acoustic equations (84) − (86) and the TE 
equations (94) − (96): 

  yE p⇔ −

 x zH ν⇔  

 z xH ν⇔ −  

 ε κ⇔  

 mµ ρ⇔  . (100) 

Using Snell’s law (69), the TE reflection coefficient (98) can be rewritten as 

 

2

2

cos 1 sin

cos 1 sin

I Im

m m

I Im m

m

R

µ εε εθ θ
µ µ µ ε
µ µε εθ θ
ε µ µ ε

′
− −

′ ′ ′
=

′
+ −

′ ′ ′

 (101) 

If we apply the analogy (100) to this equation and Snell’s law (92), we obtain equation 
(91). Green obtains the reflection coefficient for the potential field, and assumes κ = κ′ or 

 c c
c c

ρ
ρ

′
=

′ ′
 . (102) 

Using this condition and Snell’s law (92) to equation (91), we obtain 

 
( )
( )

tansin cos sin cos
sin cos sin cos tan

I TI I T T

I I T T I TR
θ θθ θ θ θ

θ θ θ θ θ θ

−−
= =

+ +
 , (103) 

which is the same ratio as for light polarized in the plane of incidence. Green (1838) has 
the opposite convention for describing the polarization direction. i.e., his convention is to 
denote R as given by equation (103) as the reflection coefficient for light polarized 
perpendicular to the plane of incidence. Conversely, he consider the reflection coefficient 
(93) to correspond to light polarized in the plane of incidence. This is a convention 
dictated probably by the experiments performed, for instance, by Malus, Brewster (1815) 
and Faraday, since Green did not know that light is an electromagnetic phenomenon 
related to the electric and magnetic fields – this relation was discovered by Maxwell 
nearly 30 years later (Maxwell, 1865). Note that different assumptions lead to the different 
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electromagnetic reflection coefficients. Assuming ρ = ρ′, we obtain the reflection 
coefficient for light polarized perpendicular to the plane of incidence (equation (93)), and 
assuming κ = κ′, we obtain the reflection coefficient light polarized in the plane of 
incidence (equation (103)), Green’s second paper (Green, 1942), read to the Cambridge 
Philosophical Society in December 1837, is an attempt to obtain the electromagnetic 
reflection coefficients by using the equations of elasticity (isotropic case). Firstly, he 
considers the SH wave equation (Green’s equations (7) and (8)) and the boundary 
conditions for the case µ = µ′ (his equation (9)). He obtains equation (51) for the 
displacement reflection coefficient. If we use the condition (102) and Snell’s law (92), we 
obtain precisely equation (93). i.e., the reflection coefficient for light polarized 
perpendicular to the plane of incidence – in the plane of incidence according to Green. 

Secondly, Green considers the P-SV equation of motion in terms of the potential fields 
(Green’s equations (14) and (16)), and makes the following assumptions 

  , 2 2
P Pc cρ ρ′ ′= 2 2

S Sc cρ ρ′ ′=  , (104) 

that is, the plane-wave and shear moduli are the same for both media. This condition 
implies 

 P P

S S

c c
c c

′
=

′
 , (105) 

which means that both media have the same Poisson’s ratio. Conversely, relation (105) 
implies that the P-wave and the S-wave velocity contrasts are similar: 

 SP

P S

cc
c c

α= ≡
′ ′

. (106) 

Green is aware – on the basis of experiments – that waves with polarization perpendicular 
to the wave front were not observed experimentally. He writes: But in the transmission of 
light through a prism, though the wave which is propagated by normal vibrations were 
incapable itself of affecting the eye, yet it would be capable of giving rise to an ordinary 
wave of light propagated by transverse vibrations.... He is then constrained to assume that 
cP >> cS, that is, according to his own words, that in the luminiferous ether, the velocity of 
transmission of waves propagated by normal vibrations, is very great compared with that 
of ordinary light. The implications of this constraint will be clear below. 

The reflection coefficient obtained by Green (1842), for the shear potential and an 
incident shear wave, has the following expression using our notation: 

 
( ) ( )

( ) ( )

2 22 42 2 2
2

2
2 22 42 2 2

2

1 1

1 1

T
zS x
I I
zS zS
T
zS x
I I
zS zS

s s
s s

R
s s
s s

α α α

α α α

⎛ ⎞
+ − + −⎜ ⎟⎜ ⎟

⎝ ⎠=
⎛ ⎞

+ + + −⎜ ⎟⎜ ⎟
⎝ ⎠

 (107) 
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(Green’s equation (26)), where I
zSs  and T

zSs  are the vertical components of the slowness 
vector corresponding to the S wave. On the basis of the condition cP >> cS, Green 
assumed that the vertical components of the slowness vector corresponding to the 
incident, reflected and refracted P waves satisfy 

 I R T
zP zP zP xs s s sι ι ι= − = =  . (108) 

These relations can be obtained from the dispersion relation 2 2 2
x z Ps s cω+ =  of each 

wave assuming . This assumption gives an incompressible medium and 
inhomogeneous P waves confined at the interface. The complete expression for the SS 
reflection coefficients are given, for instance, in Pilant (1979, p. 137). He defines 

Pc →∞

S Pa c c=  and S Pc c c′= . Green’s solution (107) is obtained for a = c = 0. Note  
a mistake in Pilant’s equation (12-21): the (43) coefficient of matrix ∆s should be 

( )2 2 2
1 12sin sinS Scθ θ− − b d  instead of ( )2 2 2

1 12sin sinS Saθ θ− − b d . However, 

this mistake does not affect the approximate solution. 
The vertical components of the shear slowness vector are given by 

 2
2
1I

zS x
S

s s
c

= −  , 2
2

1T
zS x

S
s s

c
= −

′
 . (109) 

However, equation (107) is not Fresnel’s equation. To obtain this equation, Green 
assumes that 1α ≈ ; in his own words: When the refractive power in passing from the 
upper to the lower medium is not very great, α (µ using his notation) does not differ much 
from 1. The result of applying this approximation to equation (107) is 

 

2

2

T
zS
I
zS
T
zS
I
zS

s
s

R
s
s

α

α

−

=

+

 . (110) 

If θI is the incidence angle of the shear wave and θT is the angle of the refracted shear 
wave, equation (106), Snell’s law and the relation 

 cot
cot

T T
zS
I I
zS

s
s

θ
θ

=  (111) 

(which can be obtained by using equation (109) and Snell’s law), yield 
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Fig. 4. Green’s reflection coefficient for light polarized in the plane of incidence (dashed line) 
and corresponding Fresnel’s reflection coefficient (continuous line). 

 
( )
( )

2

2

2

2

sin cot
tansin 2 sin 2sin cot

sin cot sin 2 sin 2 tan
sin cot

I T
I TI TT I

I T I T I T

T I

R

θ θ
θ θθ θθ θ

θ θ θ θ θ θ
θ θ

− −−
= = =

+ +
+

 , (112) 

which is the reflection coefficient for light polarized in the plane of incidence. Green 
considers that equation (112) is an approximation of the observed reflection coefficients. 
He claims, on the basis of experimental data, that the intensity of the reflected light never 
becomes absolutely null, but attains a minimum value. Moreover, he calculates the 
minimum value of the reflection coefficient and obtains 

 
( )

( ) ( )

42
2
min 2 42 2 2

1

4 1
R

α

α α α

−
=

+ + −1
 , (113) 

which using the approximation 1α ≈  gives zero reflection coefficient. This minimum 
value corresponds to the Brewster angle when using the Fresnel equation (112). Green 
assumes α = 4/3 for air-water interface. The absolute values of the reflection coefficient R 
given by equations (107) and (112) are shown in Figure 4. The dashed line correspond to 
equation (107). We have assumed cS = 30 cm/ns and c′S = cS /α. At the Brewster angle 
θ = atan(α), Green obtains a minimum value Rmin = 0.08138. 
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The non-existence of the Brewster angle (zero reflection coefficient), can be explained 
by the presence of dissipation (ionic conductivity effects), as can be seen in Figure 3b. 
Green attributes this to the fact that the refraction medium is highly refracting. Quoting 
him: This minimum value [Rmin] increases rapidly, as the index of refraction increases, 
and thus the quantity of light reflected at the polarizing [Brestwer] angle, becomes 
considerable for highly refracting substances, a fact which has been long known to 
experimental philosophers (Green, 1842). For instance, fresh water is almost lossless and 
is a less refracting medium than salt water, which has a higher conductivity. 

 
3 . 9 .  B r i e f  h i s t o r i c a l  r e v i e w  

We have seen in the previous section that Green’s theory of refraction does not 
provide an exact parallel with the phenomenon of light propagation. MacCullagh (Trans. 
Roy. Irish. Acad., xxi, 1848; Whittaker, 1987, p. 141) presented an alternative approach to 
the Royal Irisih Academy in 1839. He devised an isotropic medium, whose potential 
energy is only based on rotation of the volume elements, thus ignoring pure dilatations 
from the beginning. The result is a rotationally elastic ether and the wave equation for 
shear waves. The corresponding reflection and refraction coefficients coincide with 
Fresnel’s equations. 

Green (1842) assumed the P-wave velocity to be infinite and dismissed a zero P-wave 
velocity on the basis that the medium would be unstable (the potential energy must be 
positive). Cauchy (Comptes Rendus, ix (25 Nov. 1839), p. 676, and (2 Dec. 1839), p. 726; 
Whittaker, 1987, p. 145), neglecting this fact, considered that P-waves have zero velocity, 
and obtained the sine law and tangent law of Fresnel. He assumed the shear modulus to be 
the same for both media. Cauchy’s ether is known as the contractile or labile ether. It 
corresponds to an elastic medium of negative compressibility. The P-wave dispersion 
relation for this medium is , which leads to an infinite vertical slowness. This 
condition confines the propagation direction of the compressional waves to be normal to 
the interface. The energy carried away by the P waves is negligible, since no work is 
required to generate a dilatational displacement, due to the negative value of the 
compressibility. If we assume the shear modulus of both media to be the same (the 
differences depend on density contrasts only), we obtain Fresnel’s equations. The 
advantage of the labile ether is that it overcomes the difficulty of requiring continuity of 
the normal component of the displacement at the interface. Light waves do not satisfy this 
condition, but light waves plus dilatational vibrations, taken together, do satisfy the 
condition. 

2 2 0x zs s+ =

 
4. CONCLUSIONS 

 
Scientists of the 19th century made frequent use of analogies to solve problems of 

different physical nature. In many cases, this practice lead to important discoveries. For 
instance, Fresnel’s equations and Maxwell’s equations were obtained from mathematical 
analogies – and physical analogies to a lesser degree – with shear wave propagation and 
Hooke’s law. 

We have solved the electromagentic reflection-refraction problem by using the 
analogy between cross-plane shear waves in the symmetry plane of a monoclinic medium 
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and transverse-magnetic waves. A mathematical analogy exists also between 
electromagentic waves and sound waves (in the isotropic case), and between TM and TE 
electromagnetic waves. Illustrative examples are given in the papers by George Green, 
who used the analogy between sound waves and light waves, and elastic waves and light 
waves. 

The analogy constitutes a mathematical equivalence that allows the acoustic and 
electromagnetic problems to be solved with the same analytical methodology. The most 
powerful application of the analogy is the use of the same computer code to solve acoustic 
and electromagnetic propagation problems in general inhomogeneous media. 
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