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Numerical simulation of wave propagation
in frozen porous media*

José M. Carcione! Géza Serianit

Abstract

We propose a numerical algorithm for simulating wave propagation in frozen porous
, media. The original theory assumes that there is no direct contact between solid grains
\ and ice (we include the grain-ice interaction), and predicts three compressional waves
and two shear waves. The wavefield is obtained with a grid-method based on the Fourier
differential operator and a 4th-order Runge-Kutta time-integration algorithm. Since the
presence of slow diffusive waves makes the differential equations stiff, a time-splitting
integration algorithm is used to solved the stiff part with an analytical technique.

| Introduction

fnowledge of the physical properties of frozen soils is essential for the exploitation of
nineral resources in polar areas and quantification of the amount of drilling necessary for
{he construction of highways and pipelines. Another recent application concerns bottom
smulating reflectors (BSR), which are shallow seismic anomalies caused by gas-hydrate
wliments trapping underlying free gas bearing sediments partially saturated with water.
These applications require the knowledge of the degree of freezing of the interstitial water
und the amount of free gas. They have a negligible effect on density and magnetic
grmeability, precluding the use of gravimetric and magnetic techniques, but have a
gremarkable effect on wave velocities [2]. Hence, seismic and acoustic logging methods
tnstitute the best way for quantifying the amount of ice and water.

- A three-phase theory based on first principles has been recently proposed by Leclaire
ital. [6]. The theory, which assumes that there is no direct contact between solid grains
id ice, predicts three compressional waves and two shear waves and can be applied to

Jiconsolidated and consolidated media. Leclaire et al. [6] also provide a thermodynamic

tlation between water proportion and temperature. We modify the theory to include
fain-ice interaction and grain cementation with decreasing temperature. Snapshots are
(Dbtained by solving the equations of motion with a direct-grid algorithm based on the
fourier pseudospectral method for computing the spatial derivatives. Time-splitting [1]
Alows us to model the diffusive modes.
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2 Frozen porous medium

Leclaire et al. [6] assume that there is no direct contact between solid and ice, We hy

included this contribution to the potential and kinetic energies, and the Stiﬂ’ening of t;’)e

skeleton due to grain cementation at freezing temperatures. o
The equations of momentum conservation are deduced using Lagrange’s equationg:
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where o are stress components, v are particle velocities, p are density components, anq
b are friction coefficients [2, 6]; superscripts 1,2 and 3 refer to solid grain, water and ice
respectively, and index ¢ indicates the Cartesian components = and z. A dot abo\;e;
variable denotes time differentiation.

The 2-D constitutive equations, with the addition of the terms corresponding to grain.
ice interaction in the potential energy are
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where € are strain components and K, p and C are stiffnesses [2, 6]. The underlined terms
in equations (1) and (2) correspond to the extension of the theory.

The numerical solution of equations (1) and (2) is obtained by a velocity-stress
formulation. This results in first-order (in space and time) differential equations, where

the unknown variables are the particle velocities and stress components. The equations of '

momentum conservation can be rewritten as
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o rate of generalized momenta, and 7y, are the components of the following symmetric

e th

patr1* 1
P11 P12 P13

' o) P12 P22 P23
P13 P23 P33

IThe equations corresponding to the stress components are obtained by time differentiating

lequﬂtlons (2) and noting that the rate of the strain components is
|
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'3 Numerical algorithm

fhe velocity-stress differential equations can be written in matrix form as

(0 w = Mw +s,

fiere D (2 ,03) 0,2 .3 @1 1 T

) v = 10,000,000 o0, 00, 00,00, 0, 02, 0, o],

isthe unknown velocity-stress vector,

(8) 8= [0 O 0 0 0 0 S:(Ll:r)a gz),S:(Lz) (2 ) :(Lez’c)a Ezz),ngBZ)]T

is the source vector, and M is the propagation matrix containing the spatial derivatives
g g

" nd material properties.

For application of the source, we consider three main cases: i) Frame sources: s =0,
1and the various combinations of s(ﬁ-l), sg?) and sg’?)
force, an explosive source and a pure shear source, all applied to the rock-frame (m=1) or
{0 the ice-matrix (m=3); ii) Fluid volume injection: the matrix sources are equal to zero,

Land 5(®) £ 0; iii) Bulk source: this case assumes that the energy is partitioned between the

three phases and that the shear sources vanish; that is, s( ) = ( ) = 5(2) = (3@) = 3(3).
! The eigenvalues of M have negative real parts and differ gleatly in magnitude due to
the terms containing the friction coefficients ;2 and bes. The presence of large eigenvalues,
fogether with small eigenvalues, indicates that the problem is stiff [4]. The differential
equations are solved with the splitting algorithm introduced by Carcione and Quiroga-
Goode [1] for propagation in two-phase poroacoustic media, generalized here for three-phase
porous media. The propagation matrix can be partitioned as

giving a horizontal force, a vertical

9) M = M, + M,

where M, and M, correspond to the regular and stiff parts of the differential equations,
ispectively. The wavefield is advanced with a time step dt and computed using a second-
order accurate product formula of the evolution operator

1
(10) exp(Mdt) = exp <§Msdt> exp(M,.dt) exp (%Msdt> :

' Bquation (10) allow us to solve the stiff part separately. Using the Kronecker product “®”

_( Ib®S 0
MS_( ; O).

of two matrices yields
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with I the (2 x 2) identity matrix. We should solve
(12) Vi = Svi,
for each Cartesian component 7, where

(13) vi = [, o T,

)

and
SH = b12(’)’12 = ’)’11) -+ b13(713 - 711),
S12 = bia(111 — 12) + baz(713 — 712),
S13 = ba3(y12 — m13) + b13(v11 — m3),
So1 = b12(v22 — 112) + b13(v23 — 712),
S22 = baz(y23 — 722) + b12(712 — 722),
S23 = bag(722 — 723) + bis(v12 — 23),
S31 = bi2(723 — 113) + b13(y33 — 113),
S32 = b12(713 — 723) + b2z (33 — 723),
533 = bgg(’)’gg = ”)’33) + b13(713 - '733)'

The solution of equation (12) is
(15) vi(7) = exp(ST) v;(0),
where exp(S7) can be computed analytically as

1—eM7 (1—er2T)A — (1 —eM TN,
16 exp(S7) =13 — S +
(16) p(ST) =1 A1 A1Az (A1 — A2)

S-(S - M),

with {0, A1, A3} the eigenvalues of matrix S, and I3 the 3 x 3 identity matrix. The
eigenvalues are

(17) A = [m—(S) — i) - 4E} e =0(S) — Ay,

where

E = 513551 — 811823 — S13531 + S23531 + 511533 — So1.533.

The regular operator exp(M,7) is approximated with a 4th-order Runge Kutta solver. The
output vector is

(18) witl — w* + %(Al + 2409 + 2A3 + A4),

where
Ay =M, w* + s,
Ay = M, (W* + ZA ) +s7H1/2)
Az =M, (W* + ZA,) 4 s7H1/2,
Ay =M, (W* + 7A3) 4 s™H1,

and w* is the intermediate output vector obtained after the operation with the stiff
evolution operator. Variables with the superscript n indicate values at time ndt. T'he
spatial derivatives are calculated with the Fourier method by using the fast Fouriet
transform [3]. This approximation is infinitely accurate for band limited periodic functions
with cutoff spatial wavenumbers which are smaller than the cutoff wavenumbers of the
mesh.
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Fic. 1. Left: Phase velocity versus water proportion of the five waves propagating in a frozen

jorous medium. Right: Snapshot showing the five waves propagating in a frozen porous medium.
4 Example
golid grain, ice and water densities and bulk moduli are 2650, 920 and 1000 kg/m?3 and
8.7, 8.6 and 2.25 GPa, respectively; solid grain and ice shear moduli are 39.6 and 33.2
(Pa, respectively; rock-frame bulk and shear moduli are 14.4 and 26.1 GPa, respectively.
i percolation model is used for the shear modulus of the rock-frame, such that its value
it full water saturation is 13.1 GPa. The porosity is 20 %, with 10 % water proportion
(50 9% water saturation and 50 % ice “saturation”), and we assume no losses due to viscosity
effects. We consider a 357 x 357 mesh, with square cells and a grid spacing of 14 m. The
perturbation has a dominant frequency of 12.5 Hz and is a combination of bulk source and
shear force. Figure 1 (left) shows the phase velocities of the five wave modes versus water
proportion, where the compressional waves are labeled P1, P2 and P3, and the shear waves
ae labeled S1 and S2. The dots indicate the velocities at 50 % water saturation: 4124 m/s
forP1, 2511 m/s for S1, 1227 m/s for P2, 386 m/s for S2 and 255 m/s for P3. At full water
sturation three wave propagate, and the velocities are those predicted by Biot’s theory. A
snapshot of the wavefield is shown in Figure 1 (right). Waves S2 and P3 are aliased, since
fhe mesh “supports” a minimum velocity of 700 m/s according to the Nyquist criterion.
These results are preliminary. The research proceeds as follows: i) Wavefield calculation
[or realistic cases (i.e., including fluid-viscosity effects) and ii) Introduction of viscoelastic
iffects to model the observed attenuation levels in rocks.
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