
Journal of Computational Physics170,676–695 (2001)

doi:10.1006/jcph.2001.6756, available online at http://www.idealibrary.com on
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We propose a numerical algorithm for simulation of wave propagation in frozen
porous media, where the pore space is filled with ice and water. The model, based
on a Biot-type three-phase theory, predicts three compressional waves and two shear
waves and models the attenuation level observed in rocks. Attenuation is modeled
with exponential relaxation functions which allow a differential formulation based
on memory variables. The wavefield is obtained using a grid method based on the
Fourier differential operator and a Runge–Kutta time-integration algorithm. Since
the presence of slow quasistatic modes makes the differential equations stiff, a time-
splitting integration algorithm is used to solve the stiff part analytically. The modeling
is second-order accurate in the time discretization and has spectral accuracy in the
calculation of the spatial derivatives. c© 2001 Academic Press
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1. INTRODUCTION

Knowledge of the physical properties of frozen soils is essential for the exploitation of
mineral resources in polar areas and quantification of the amount of drilling necessary for
the construction of highways and pipelines. Another recent application concerns bottom
simulating reflectors (BSR), which are shallow seismic anomalies caused by gas-hydrate
sediments trapping underlying free gas-bearing sediments partially saturated with water.
These applications require the knowledge of the degree of freezing of the interstitial water.
Freezing has a negligible effect on density and magnetic permeability, precluding the use
of gravimetric and magnetic techniques, but have a remarkable effect on wave velocities
(see Timur [24], Carcione and Seriani [7]). Hence, seismic and acoustic logging methods
constitute the best way for quantifying the amount of ice and water.

A Biot-type three-phase theory based on first principles has been recently proposed by
Leclaireet al. [17]. The theory, which assumes that there is no direct contact between solid
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grains (rock frame) and ice, predicts three compressional waves and two shear waves and
can be applied to unconsolidated and consolidated media. Leclaireet al.[17] also provide a
thermodynamic relation between water proportion and temperature. Here, we generalize the
theory to include grain–ice interaction and grain cementation with decreasing temperature
and provide an explicit relation between water proportion and temperature. Moreover, it is
well known that Biot-type theories do not appropriately model the levels of wave attenua-
tion observed in rocks [19]. Gurevichet al. [12] performed experiments on a sample made
of sintered glass beads and used Biot’s pore form factor as a fitting parameter to model
the amplitudes. This factor controls the behavior of the dynamic permeability/tortuosity
function. However, although this approach successfully describes the wave propagation
properties of synthetic porous media such as sintered glass beads, in natural porous media
such as sandstone, discrepancies between Biot theory and measurements are due to complex
pore shapes and the presence of clay, which are not present in synthetic media. This com-
plexity gives rise to a variety of relaxation mechanisms that contribute to the attenuation
of the different wave modes. Stoll and Bryan [23] show that attenuation is controlled by
the anelasticity of the skeleton (friction at grain contacts and interaction with the fluid) and
by viscodynamic causes. Thus, we model realistic attenuation levels by generalizing the
elastic moduli to time-dependent relaxation functions, which implies the introduction of
additional differential equations [3].

The Lagrangian formulation used by Leclaireet al.[17] holds for uniform porosity, since
they use the average displacements of the solid and fluid phases as Lagrangian coordinates
and the respective stress components as conjugate variables. In a two-phase porous medium
with non-uniform porosity, Biot [2] proposes as generalized coordinates the displacements
of the solid matrix and the variation of fluid content. In this case the corresponding conjugate
variables are the total stress components and the fluid pressure.

Biot’s poroviscoelastic differential equations have the formẇ = Mw , wherew is the
wavefield vector andM is the propagation matrix (the dot denotes time differentiation). As
in the poroacoustic case [6], all the eigenvalues ofM have negative real part. While the
eigenvalues of the fast waves have a small real part, the eigenvalues of the slow waves (in
the quasi-static regime) have a large real part. The presence of these quasi-static modes
makes the differential equationsstiff [14]. Thus, seismic and sonic modeling are unstable
when using explicit time integration methods. Carcione and Quiroga-Goode [6], in the
poroacoustic case, and Carcione [4], in the poroelastic case, solved this problem by using a
splitting or partition method. The propagation matrix can be partitioned into a stiff part and
a non-stiff part asM = M r +M s, wherer indicates the regular matrix ands the stiff matrix.
The stiff part is solved analytically and the non-stiff part is solved using a standard explicit
method. Snapshots and time histories are obtained by solving the equations of motion
with a direct grid algorithm based on the Fourier pseudospectral method for computing
the spatial derivatives (e.g., Carcione [4]). An example of wave propagation in a partially
frozen sandstone illustrates the potentialities of the theory and simulation algorithm.

2. EQUATIONS OF MOTION

In this section we obtain the velocity–stress formulation for 2-D wave propagation in a
frozen porous medium that may represent an ice- (or gas-hydrate)-bearing rock. Leclaire
et al.[17] assume that there is no direct contact between solid and ice. Here we have included
this contribution to the potential and kinetic energies, and the stiffening of the rock frame
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resulting from grain cementation by ice at freezing temperatures. More details can be found
in Carcione and Tinivella [8].

2.1. Conservation of Momentum

The equations of momentum conservation are deduced using Lagrange’s equations.
Substituting the generalized momenta (10) in [17] into Lagrange’s equations (13) in [17]
yields

σ
(1)
i x,x + σ (1)i z,z = ρ11v̇

(1)
i + ρ12v̇

(2)
i + ρ13v̇

(3)
i − b12

(
v
(2)
i − v(1)i

)− b13
(
v
(3)
i − v(1)i

)
,

σ
(2)
,i = ρ12v̇

(1)
i + ρ22v̇

(2)
i + ρ23v̇

(3)
i + b12

(
v
(2)
i − v(1)i

)+ b23
(
v
(2)
i − v(3)i

)
, (1)

σ
(3)
i x,x + σ (3)i z,z = ρ13v̇

(1)
i + ρ23v̇

(2)
i + ρ33v̇

(3)
i − b23

(
v
(2)
i − v(3)i

)+ b13
(
v
(3)
i − v(1)i

)
,

where subscripti representsx or z, theσ ’s are stress components, and thev’s are particle
velocities. The superscripts 1, 2, and 3 refer to solid grain, water, and ice, respectively, a
dot above a variable denotes time differentiation, and spatial derivatives with respect to
a variabley are indicated by the subscript, “y”. The friction terms in Eq. (1) have signs
opposite to those given in [17], otherwise the equations are physically unstable (wave
amplitude increases with time). The signs here coincide with those of Biot’s differential
equations (see Refs. [2, 4]) in the limit of full water saturation. The choice of the correct
signs can be based, for instance, on the signs of the eigenvalues of matrixS. They should
be negative to obtain attenuating solutions (see Eqs. (23) and (24)). Details of the material
properties are given in Appendix A.

The expressions for the density components, given in Appendix A, include the interac-
tion between the grains and the ice, assuming that the grains flow through the ice matrix
(described by the tortuositya13) and the ice flows through the rock frame (described bya31).
As is well known, the tortuosity is related to the difference between the microvelocity and
macrovelocity fields. If they are similar (i.e., for relatively rigid materials such as solids),
the tortuosities equal 1 and the contributions vanish. However, we assume that these terms
contribute to the kinetic energy when the solid and ice matrices are unconsolidated or rela-
tively unconsolidated, for which the tortuosities are greater than 1. As in the Biot theory, we
neglect the contributions due to the interaction between the solid phases and water (related
to the tortuositya12 anda32).

2.2. Stress–Strain Relations

The 2-D constitutive equations are given by Eqs. (7) of [17], with the addition of the
terms corresponding to grain–ice interaction in the potential energy. Using the notation in
[17], these terms areC13θ1θ3 andµ13d

(1)
i j d(3)i j . We obtain

σ (1)xx = (K1+ µ1)ε
(1)
xx + (K1− µ1)ε

(1)
zz + C12θ2+ (C13+ 1

2µ13)ε
(3)
xx + (C13− 1

2µ13)ε
(3)
zz ,

σ (1)zz = (K1+ µ1)ε
(1)
zz + (K1− µ1)ε

(1)
xx + C12θ2+ (C13+ 1

2µ13)ε
(3)
zz + (C13− 1

2µ13)ε
(3)
xx ,

σ (1)xz = 2µ1ε
(1)
xz + µ13ε

(3)
xz ,

σ (2) = C12
(
ε(1)xx + ε(1)zz

)+ K2θ2+ C23
(
ε(3)xx + ε(3)zz

)
,
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σ (3)xx = (K3+ µ3)ε
(3)
xx + (K3− µ3)ε

(3)
zz + C23θ2+ (C13+ 1

2µ13)ε
(1)
xx + (C13− 1

2µ13)ε
(1)
zz ,

σ (3)zz = (K3+ µ3)ε
(3)
zz + (K3− µ3)ε

(3)
xx + C23θ2+ (C13+ 1

2µ13)ε
(1)
zz + (C13− 1

2µ13)ε
(1)
xx ,

σ (3)xz = 2µ3ε
(3)
xz + µ13ε

(1)
xz ,

θ2 = ε(2)xx + ε(2)zz , (2)

where theε’s are the usual strain components [21]. The expressions forKmax andµmax (see
Appendix A) can be found in Zimmerman and King [27, Eqs. (1) and (2), respectively],
with the subscriptm denotes ice,i denotes air, and the concentrationc is equal toφs. They
are the moduli of the ice matrix, with the water totally frozen and the solid replaced by
air. However, we assume that the rigidity modulus of the rock frameµsm is affected by the
cementation of the sand grains with ice. The equation, indicated in Appendix A, follows the
same percolation model used for the ice matrix [17]. The rigidityµsmK T is the Kuster and
Toksöz shear modulus of the rock frame with air as inclusion, with a concentration 1− φs.

A very thin and viscous water layer may transmit, depending on the frequency, shear
deformations from one matrix to the other. In this case, the coefficientsµ1, µ2, andµ13

become relaxation functions and should be replaced by the operatorsµ1∗, µ2∗, andµ13∗
(∗ denotes time convolution), withµav representing a Maxwell mechanical model with two
springs, whose stiffnesses areµs/(1− g1)φs andµi /(1− g3)φi , and a dashpot of viscosity
ηw/φw. The use of relaxation function requires the introduction of memory variables and
eight additional first-order differential equations [3]. Note that in [17], first the imaginary
part of the Maxwell complex modulus is neglected, and then, the related attenuation effects.
The additional differential equations are avoided here by using this approximation, i.e.,
replacingiωη by 2ωη in µav and takingω equal to the dominant frequency of the source.

The 3-D constitutive equations can be obtained by including the stress and strain com-
ponents corresponding to the third dimension (see Leclaireet al. [17]) and replacing the
coefficientsK1+ µ1 andK1− µ1 in Eq. (2) byK1+ 4µ1/3 andK1− 2µ1/3, respectively.
Similarly, C13+ µ13/2 andC13− µ13/2 are replaced byC13+ 2µ13/3 andC13− µ13/3,
respectively.

2.3. Velocity–Stress Formulation

The velocity–stress formulations are first-order (in the space and time variables) differen-
tial equations, where the unknown variables are the particle velocities and stress components.
The equations of momentum conservation can be rewritten as

v̇
(1)
i = γ115

(1)
i + γ125

(2)
i + γ135

(3)
i ,

v̇
(2)
i = γ125

(1)
i + γ225

(2)
i + γ235

(3)
i , (3)

v̇
(3)
i = γ135

(1)
i + γ235

(2)
i + γ335

(3)
i ,

where

5
(1)
i = σ (1)i x,x + σ (1)i z,z+ b12

(
v
(2)
i − v(1)i

)+ b13
(
v
(3)
i − v(1)i

)
,

5
(2)
i = σ (2),i − b12

(
v
(2)
i − v(1)i

)− b23
(
v
(2)
i − v(3)i

)
, (4)

5
(3)
i = σ (3)i x,x + σ (3)i z,z+ b23

(
v
(2)
i − v(3)i

)− b13
(
v
(3)
i − v(1)i

)
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are the rate of generalized momenta andγnm are the components of the symmetric matrixρ11 ρ12 ρ13

ρ12 ρ22 ρ23

ρ13 ρ23 ρ33

−1

. (5)

The equations corresponding to the stress components are obtained by differentiating
Eqs. (2) and noting that the rate of the strain components is [21]

ε̇
(m)
i j =

1

2

(
v
(m)
i, j + v(m)j,i

)
,

with m= 1, 2, 3.

2.4. Extension to the Poroviscoelastic Case

Wave velocities are generally expected to be lower at low frequencies, typical of seis-
mic measurements, than at high frequencies, typical of laboratory experiments. Since the
magnitude of this effect cannot be entirely described by Biot-type theories [19], additional
relaxation mechanisms are required to model the velocity dispersion. Measurements of
dry-rock velocities contain all the information about pore shapes and pore interactions, and
their influence on wave propagation. Low-frequency wet rock velocities can be calculated
by using the equivalent of the Gassmann relations of the three-phase theory, i.e., the low-
frequency limit of the dispersion relation [5, 10]. High-frequency wet-rock velocities are
then given by the unrelaxed velocities. Since dry-rock velocities are practically frequency
independent, the data can be obtained from laboratory measurements.

Viscoelasticity is introduced into the poroelastic equations for modeling a variety of
dissipation mechanisms. One of these mechanisms is the squirt flow [2, 20] by which a
force applied to the area of contact between two grains produces a displacement of the
surrounding fluid in and out of this area. Since the fluid is viscous, the motion is not
instantaneous and energy dissipation occurs.

We generalize the effective moduli of the rock frame,K1 andµ1, and the ice matrix,K3

andµ3, to time-dependent relaxation functions and assume that the other coefficients in the
potential energy are frequency independent. The following terms in Eq. (2) are considered,
Kmζ

(m), µmξ
(m), andµmε

(m)
xz , whereζ (m) = ε(m)xx + ε(m)zz andξ (m) = ε(m)xx − ε(m)zz , m= 1, 3.

Denoting, in general, these terms byMε, Mε is replaced byψ ∗ ε,t in the viscoelastic case,
where

ψ(t) = M

(
1+ 1

L

L∑
l=1

ϕl

)−1 [
1+ 1

L

L∑
l=1

ϕl exp(−t/τσ l )

]
H(t), (6)

with H(t) the Heaviside function,

ϕl = τεl

τσ l
− 1, (7)

andτεl andτσ l are sets of relaxation times. Equation (6) corresponds to a parallel connection
of standard linear solid elements. For high frequencies (t = 0+)ψ = M .
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As in the single-phase viscoelastic case [3], we introduce memory variables to avoid the
time convolutions. This approach implies the substitution

Mε → Mε +
L∑

l=1

el ,

whereel , l = 1, . . . , L , are the memory variables, which satisfy

el ,t = − 1

τσ l

M

(
L +

L∑
m=1

ϕm

)−1

ϕl ε + el

 . (8)

The calculation of the phase velocity and attenuation factor requires a Fourier transfor-
mation of the constitutive equations to the frequency domain, which implies the subs-
titution

M → M̄,

where

M̄ = M

(
L +

L∑
l=1

ϕl

)−1 L∑
l=1

1+ iωτεl
1+ iωτσ l

, (9)

with ω the angular frequency. The relaxation times can be expressed in terms of aQ-factor
Ql and a reference frequencyfl as

τεl = 1

2π fl Ql

[√
Q2

l + 1+ 1
]

(10)

and

τσ l = 1

2π fl Ql

[√
Q2

l + 1− 1
]
. (11)

3. NUMERICAL ALGORITHM

The velocity–stress differential equations can be written in matrix form as

ẇ = Mw + s, (12)

where

w = [v(1)x , v(2)x , v(3)x , v(1)z , v(2)z , v(3)z , σ (1)xx , σ
(1)
zz , σ

(1)
xz , σ

(2), σ (3)xx , σ
(3)
zz , σ

(3)
xz , {e}

]>
(13)

is the unknown velocity–stress vector,{e} represents the set of memory variables,

s= [0, 0, 0, 0, 0, 0, s(1)xx , s
(1)
zz , s

(1)
xz , s

(2), s(3)xx , s
(3)
zz , s

(3)
xz , {0}

]>
(14)

is the source vector, andM is the propagation matrix containing the spatial derivatives and
material properties.
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For application of the source, we consider three main cases:

1. Frame sources. s(2) = 0, and the various combinations ofs(m)xx , s(m)zz , ands(m)xz giving a
horizontal force, a vertical force, an explosive source, and a pure shear source, all applied
to the rock frame (m= 1) or to the ice matrix (m= 3).

2. Fluid-volume injection.The frame sources equal to zero, ands(2) 6= 0.
3. Bulk source.This case assumes that the energy is partitioned between the three phases

and that the shear sources vanish; that is,s(1)xx = s(1)zz = s(2) = s(3)xx = s(3)zz .

The solution to Eq. (12) subject to the initial conditionw(0) = w0 is formally given by

w(t) = exp(tM)w0+
∫ t

0
exp(t ′M)s(t − t ′) dt′, (15)

where exp(tM) is called evolution operator.
As in the poroacoustic case [6], the eigenvalues ofM have negative real parts and differ

greatly in magnitude because of the terms containing the friction coefficientsb12 andb23. The
presence of large eigenvalues, together with small eigenvalues, indicates that the problem
is stiff. The differential equations are solved using the splitting algorithm introduced by
Carcione and Quiroga-Goode [6] for two-phase poroacoustic media and by Carcione [4]
for two-phase poroelastic media, and generalized here for three-phase porous media. The
propagation matrix can be partitioned as

M = M r +M s, (16)

where subscriptr indicates the regular matrix and subscripts the stiff matrix. Only the first
six differential equations corresponding to the particle velocities in Eq. (3) are stiff. Let us
discretize the time variable ast = ndt, wheredt is the time step. The evolution operator
can be expressed as exp(M r +M s)t . It is easy to show that the product formula

exp(M dt) = exp

(
1

2
M s dt

)
exp(M r dt) exp

(
1

2
M s dt

)
(17)

is second-order accurate indt (see Gourlay [11] and Vreugdenhil [25]). Equation (17) allows
us to solve the stiff part separately. Using the Kronecker product “⊗” of two matrices yields

M s =
(

I2⊗ S 0

0 0

)
, (18)

whereI2 is the 2× 2 identity matrix. We should solve

v̇i = Svi , (19)

for each Cartesian componenti , where

vi =
[
v
(1)
i , v

(2)
i , v

(3)
i

]>
, (20)

and

S11 = b12(γ12− γ11)+ b13(γ13− γ11),

S12 = b12(γ11− γ12)+ b23(γ13− γ12),
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S13 = b23(γ12− γ13)+ b13(γ11− γ13),

S21 = b12(γ22− γ12)+ b13(γ23− γ12),

S22 = b23(γ23− γ22)+ b12(γ12− γ22), (21)

S23 = b23(γ22− γ23)+ b13(γ12− γ23),

S31 = b12(γ23− γ13)+ b13(γ33− γ13),

S32 = b12(γ13− γ23)+ b23(γ33− γ23),

S33 = b23(γ23− γ33)+ b13(γ13− γ33).

The solution of Eq. (19) is

vi (τ ) = exp(Sτ) vi (0), (22)

where exp(Sτ) can be obtained analytically by solving a set of three recurrent ordinary
differential equations [22], which gives

exp(Sτ) = I3 − 1− eλ1τ

λ1
S +

(
1− eλ2 τ

)
λ1−

(
1− eλ1 τ

)
λ2

λ1λ2 (λ1− λ2)
S · (S− λ1I3), (23)

with {0, λ1, λ2} the eigenvalues of matrixSandI3 the 3× 3 identity matrix. The eigenvalues
are

λ1 = 1

2
[tr(S)−

√
[tr(S)]2− 4E], λ2 = tr(S)− λ1, (24)

where

E = S13S21− S11S23− S13S31+ S23S31+ S11S33− S21S33.

The regular operator exp(M r τ) is approximated with a fourth-order Runge–Kutta solver
[4]. The output vector is

wn+1 = w∗ + τ
6
(11+ 212+ 213+14), (25)

where

11 = M r w∗ + sn,

12 = M r
(
w∗ + τ

211
)+ sn+1/2,

13 = M r
(
w∗ + τ

212
)+ sn+1/2,

14 = M r (w∗ + τ13)+ sn+1,

andw∗ is the intermediate output vector obtained after the operation with the stiff evolution
operator.

Note that the two operations with (17) implies

exp(2M dt) = exp

(
1

2
M s dt

)
exp(M r dt) exp(M s dt) exp(M r dt) exp

(
1

2
M s dt

)
. (26)
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TABLE I

Material Properties for Frozen Berea Sandstone

Media Density (kg/m3) Bulk modulus (GPa) Shear modulus (GPa)

Grain ρs = 2650 Ks = 38.7 µs = 39.6 κs0 = 1.07× 10−13 m2

Ice ρi = 920 Ki = 8.58 µi = 3.32 κi 0 = 5× 10−4 m2

Water ρw = 1000 Kw = 2.25 µw = 0 ηw = 1.798 cP∗

∗1 cP= 0.001 Pa· s.

Then,n− 1 stiff operations can be saved inn time steps, if only snapshots of the wavefield
at n dt are to be computed. Moreover,n(1− 1/m) stiff operations can be saved when
computing seismograms with a sampling rate ofm time steps.

The spatial derivatives are calculated with the Fourier method by using the fast Fourier
transformation [9]. This approximation is infinitely accurate for bandlimited periodic func-
tions with cutoff spatial wavenumbers which are smaller than the cutoff wavenumbers of
the mesh.

4. EXAMPLES

We consider wave propagation in a frozen sandstone with a porosity of 20%. The data (see
Table I) correspond to Berea sandstone, with the properties given by Timur [24] and Winkler
[26]. Figure 1 shows the water proportionφw as a function of temperature, computed from
Eq. (A.4), assuming thatrav = 10 µm, 1r = 10 µm, andr0 = 0.04µm. At −1◦C the
water proportion is 10% (50% water saturation and 50% ice saturation). The dry-rock bulk
and shear moduli at full water saturation are 14.4 and 13.1 GPa, respectively. By virtue
of the percolation model, the rock-frame shear modulus at−1◦C is 26.1 GPa. We assume
thata13 = a31 = 1 and that there is no friction between the rock frame and ice matrix. It is
important to note that the velocities of the slow waves greatly depend on the values of the
tortuosities.

FIG. 1. Water proportion as a function of temperature.
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In the first example we assume no losses due to viscoelastic effects. We consider a
357× 357 mesh with square cells and a grid spacing of 14 m. The perturbation has a
dominant frequency of 12.5 Hz. It is a combination of bulk sources and shear forces in the
rock frame and ice matrix, and fluid-volume injection in the fluid. Figure 2 shows the phase
velocities of the five wave modes versus water proportion, where the compressional waves
are labeled P1, P2, and P3, and the shear waves are labeled S1 and S2. The different pictures
correspond to (a)η = 0, (b)η 6= 0, and (c)η 6= 0 andκi 0 = κs0. The first case is unrealistic
but allows the verification of the modeling algorithm by calculating the travel times of the
different waves (see Fig. 3a). The dots indicate the velocities at 50% water saturation. The
values of the velocities are 4124 m/s for P1, 2511 m/s for S1, 1227 m/s for P2, 386 m/s for
S2, and 255 m/s for P3. A representation of the curves in Fig. 2b versus the logarithm ofφw

shows that the velocities of the P2 and S2 waves are zero at very low water content. At full
water saturation three waves propagate, and their velocities are those predicted by Biot’s
theory. The second case corresponds to realistic values of the rock-frame and ice-matrix
permeabilities [17]; one of the slow waves (P3) is quasistatic. In the third case we assume
that the ice-matrix permeability equals the rock-frame permeability and show that the other
slow waves also become quasistatic modes. This fact may implicitly reflect the presence of
clay particles. They reduce both the porosity and the permeability of the rock, and increase
the surface area by increasing the attenuation of the slow waves [16]. The attenuation factors
(see Appendix A) are between 8 and 60 nepers/m for the quasistatic modes, while those of
the propagating waves are between 10−9 and 10−8 nepers/m; i.e., these waves are lossless
in practice.

Snapshots of the wavefield corresponding to the three cases are shown in Figs. 3a, 3b, and
3c. Waves S2 and P3 are aliased, since the mesh “supports” a minimum velocity of 700 m/s
according to the Nyquist criterion. As can be appreciated, the snapshots are in agreement
with the predictions of the theory. Leclaireet al. [18] verified the existence of four of the
five waves by performing ultrasonic experiments in water-saturated glass powder (they did
not observe the P3 wave). According to Leclaireet al. [18], the energy of the P2 and S2
waves propagates mainly in the ice matrix when the medium is almost frozen. Since these
waves have low attenuation (at high frequencies, 500 kHz), they consider these waves to
be of the first kind. We observe here that these waves become quasistatic when both the
rock-frame and the ice-matrix permeabilities are relatively low [case (c)]; otherwise they
are propagating waves. On the other hand, the P3 wave is quasistatic when only one of the
permeabilities is low.

Figure 4 shows snapshots of the vertical particle velocity at 0.68 ms corresponding to the
fluid (a) and ice matrix (b) (the particle velocity of the rockframe is shown in Fig. 3a). The
energy of the slow waves P2 and S2 propagates mainly in the ice, as stated in Leclaireet
al. [18]. The ratio of maximum amplitude in (b) to maximum amplitude in (a) is 276. The
situation by which ice grows in a frozen rock, such as Berea sandstone, is probably different
from the case observed by Leclaireet al. [18] in uncosolidated glass powder. Thus, it is
possible that the P2 and S2 waves cannot be observed, in general, in real consolidated rocks.

Johnson [15] has shown that several waves exist in a porous medium under two conditions:
(i) the phases have a percolating structure; i.e., it is possible to find a continuous path between
two points arbitrarily spaced, and (ii) one of the phases is a fluid. He also studied the case of
a solid/solid heterogeneous material and has shown that vibration was not possible at some
frequencies. The main reason is that no flow or relative motion of one phase with respect to
the other is possible in the solid/solid case. In the present model, we observe the following:
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FIG. 2. Phase velocities of the five wave modes propagating in partially frozen Berea sandstone versus
water proportion, where (a) corresponds toη = 0, (b) toη 6= 0, and (c) toη 6= 0 andb13 = b12 (κi 0 = κs0). The
compressional waves are labeled P1, P2, and P3, and the shear waves are labeled S1 and S2. The dots indicate the
velocities at 50% water saturation, where the values of the velocities are 4124 m/s for P1, 2511 m/s for S1, 1227 m/s
for P2, 386 m/s for S2, and 255 m/s for P3.
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FIG. 3. Snapshots of the rock-frame vertical particle velocity at 0.68 s, corresponding to three cases illustrated
in Fig. 2. The mesh has 351× 351 grid points and the source is applied at grid point (178, 178). The compressional
waves are labeled P1, P2, and P3, and the shear waves are labeled S1 and S2.
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FIG. 4. Snapshots of the vertical particle velocity at 0.68 ms for the fluid (a) and ice matrix (b). The simulation
corresponds to case (b) in Fig. 1.

(i) P1 and S1 are the usual body waves which we observe in the acoustics of material
media. They correspond to all the phases moving in phase and propagate irrespective of the
values of the viscosity and permeabilities.

(ii) P2 is the Biot wave. It is a propagation mode for full water saturation andb12 = 0
(the case in Fig. 2a, i.e., zero viscosity or infinite rock-frame permeability) and a quasistatic
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TABLE II

Phase Velocities and Attenuation Factors

Poroelastic Poroviscoelastic

Wave V (km/s) α (neper/km) V (km/s) α (neper/km)

P1 4.116 8.5× 10−6 4.288 0.36
P2 0.964 1.24× 10−2 0.968 0.17
P3 2.5× 10−3 31200 2.5× 10−3 31200
S1 2.488 8.2× 10−5 2.615 0.73
S2 0.363 3.1× 10−2 0.363 3.4× 10−2

mode for full water saturation andb12 6= 0 (assuming realistic values of viscosity and
permeability, i.e., the case in Fig. 2b).

(iii) P2 (and S2) is a propagation mode in the presence of ice (excludingφw = 0, as
mentioned before when discussing Fig. 2b). This means that this mode becomes a wave with
increasing freezing and propagates mainly in the ice frame, as predicted by the snapshots
in Fig. 4.

(iv) P3 is quasistatic at zero and full water saturations, even in the absence of friction
between the phases. This wave could probably be observed in synthetic partially frozen
materials and under very particular conditions, e.g., a fluid of negligible viscosity (obviously
not water) and a highly permeable porous medium.

FIG. 5. Snapshot of the rock-frame vertical particle velocity at 0.68 s, where the upper half-space is poro-
viscoelastic and the lower half-space is poroelastic. The compressional waves are labeled P1, P2, and P3, and the
shear waves are labeled S1 and S2.
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(v) The condition of no slow-wave motion in the solid/solid case (the case of a totally
frozen medium (φw = 0)) is shown in Fig. 2b, i.e., for very low water saturation (the
velocities of P2 and S2 vanish atφw = 0, as mentioned before). The limiting caseφw = 0
requires further investigation by recasting the dispersion relation in analytic form.

In the last example we assume that the rock frame is viscoelastic, with one relaxation
mechanism (L = 1) corresponding to each effective modulus,K1 andµ1. The Q-factor
parameters in Eqs. (10) and (11) areQ(K1) = 30 and Q(µ1) = 20, and the reference
frequencies aref (K1) = f (µ1) = 12.5 Hz. Table II compares the values of the phase
velocities and attenuation factors for the poroelastic and poroviscoelastic cases [case (b)].
Rock-frame viscoelasticity mainly affects the waves of the first kind. Figure 5 shows a
snapshot of the rock-frame vertical particle velocity at 0.68 s, where the upper half-space
is poroviscoelastic and the lower half-space is poroelastic. The attenuation of the P1 and
S1 waves in the upper half-space is evident.

5. CONCLUSIONS

We have developed a numerical algorithm for wave simulation in a frozen rock. The
differential equations are based on a three-phase Biot-type theory and include viscoelastic
effects to describe realistic attenuation values. Low rock-frame and ice-matrix permeabili-
ties make the slow waves quasi-static and the governing equations stiff. They are partitioned
into a non-stiff part and a stiff part, which are solved by a standard explicit time-integration
algorithm and analytically, respectively. The resulting algorithm is second-order accurate in
time and has spectral accuracy in the space variable. The algorithm, which allows general
material variability but assumes uniform porosity, provides snapshots and time histories
of the rock-frame, ice-matrix, and water particle velocities and corresponding stress com-
ponents. The differential equations of motion for non-uniform porosity require a careful
derivation of the stress–strain relations in terms of the relevant thermodynamic potential.
This aspect of the problem will be developed in a forthcoming publication.

APPENDIX A

Theory of Partially Ice- (Gas Hydrate)-Saturated Porous Media

A.1. List of Symbols

a21 tortuosity for water flowing through the rock frame
a23 tortuosity for water flowing through the ice matrix
a13 tortuosity for solid grains flowing through the ice matrix
a31 tortuosity for ice flowing through the rock frame
b12 ηwφ

2
w/κs

b13 friction coefficient between the rock frame and ice matrix
b23 ηwφ

2
w/κi

c1 consolidation coefficient for the solid,c1 = Ksm/φsKs

c3 consolidation coefficient for the ice,c3 = Kim/φi Ki

C12 (1− c1)φsφwKav

C13 (1− c1)(1− c3)φsφi Kav

C23 (1− c3)φiφwKav

fl viscoelastic reference frequency
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g1 consolidation coefficient for the solid,g1 = µsm/φsµs

g3 consolidation coefficient for the ice,g3 = µim/φiµi

Ks solid bulk modulus
Kw water bulk modulus
Ki ice bulk modulus
K1 [(1− c1)φs]2Kav + Ksm

K2 φ2
wKav

K3 [(1− c3)φi ]2Kav + Kim

Ksm bulk modulus of the matrix formed by the solid phase
Kmax Kuster-Toks¨oz’s bulk modulus for the ice matrix
Kim bulk modulus of the matrix formed by the ice,Kim = Kmax[φi /(1− φs)]3.8

Kav average bulk modulus,Kav = [(1− c1)φs/Ks + φw/Kw + (1− c3)φi /Ki ]−1

Ql Q-factor parameter
r21 geometrical aspect of the boundary separating solid from water
r23 geometrical aspect of the boundary separating ice from water
rav average radius of the capillary pore
1r standard deviation of the capillary pore
ηw water viscosity
κs0 rock-frame permeability
κi 0 ice-matrix permeability
κs κs0φ

3
w/(1− φs)

3

κi κi 0[(1− φs)/φi ]2(φw/φs)
3

µs solid shear modulus
µi ice shear modulus
µ1 [(1− g1)φs]2µav + µsm

µ13 (1− g1)(1− g3)φsφiµav

µ3 [(1− g3)φi ]2µav + µim

µsmK T Kuster–Toks¨oz’s shear modulus for the rock frame
µsm rock-frame shear modulus,µsm= [µsmK T− µsm0][φi /(1− φs)]3.8+ µsm0

µmax Kuster–Toks¨oz’s shear modulus for the ice matrix
µim shear modulus of the matrix formed by the ice,µim = µmax[φi /(1− φs)]3.8

µav average shear modulus,µav= [(1− g1)φs/µs+φw/ iωηw+(1− g3)φi /µi ]−1

ω angular frequency,ω = 2π f
φs proportion of solid
φw proportion of water
φi proportion of ice
ρs solid density
ρw water density
ρi ice density
ρ11 φsρsa13+ (a21− 1)φwρw + (a31− 1)φiρi

ρ12 −(a21− 1)φwρw
ρ13 −(a13− 1)φsρs − (a31− 1)φiρi

ρ22 (a21+ a23− 1)φwρw
ρ23 −(a23− 1)φwρw
ρ33 φiρi a31+ (a23− 1)φwρw + (a13− 1)φsρs

τεl viscoelastic relaxation time
τσ l viscoelastic relaxation time
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A.2. Tortuosities

Following Berryman [1] and Leclaireet al. [17], we express the tortuosity parameters
as

a12 = φsρ

φwρw
r12+ 1, a23 = φiρ

′

φwρw
r23+ 1, (A.1)

where

ρ = φwρw + φiρi

φw + φi
, ρ ′ = φwρw + φsρs

φw + φs
,

and rmm′ characterize the geometrical features of the pores (r = 1/2 for spheres). This
approximation is based on the fact that the three phases are mechanically decoupled. Ob-
serve that, for instance,a12→ 1 for φw → 1 and thata12→∞ for φw → 0, as expected
(see [1]).

By analogy, we may consider that

a13 = φiρ
′′

φsρs
r13+ 1, a31 = φsρ

′′

φiρi
r31+ 1, (A.2)

where

ρ ′′ = φiρi + φsρs

φi + φs
.

However, this approximation should be used with caution, and it is convenient in most of
the cases to usea13 anda31 as free parameters, as well as the friction coefficientb13 between
the solid grains and the ice.

A.3. Water Proportion versus Temperature

Assuming a Gaussian porosimetric distribution, the water proportionφw can be obtained
as a function of temperature as

φw = (1− φs)A
∫ r0/ln(T0/T)

0
exp[−(r − rav)

2/(21r 2)]dr, (A.3)

whererav is the average pore radius,1r is the standard deviation,T is the temperature given
in Kelvin, andT0 = 273 K [13, 17]. The quantityr0 = 0.228 nm in the ideal case, but here
it is used as a parameter to take into account the salinity content of the pore water. As stated
by Timur [24], as the ice crystallizes out as pure H2O, the sodium chloride concentration
of the remaining solution increases, thereby further lowering the freezing point. Hence, ice
may be thought of as forming on the walls of the larger pores and growing into the pore
spaces. This effect is modeled by Eq. (A.3).

The constantA is obtained after normalization of the Gaussian probability function from
r = 0 to r =∞. Thus, we obtain

φw = (1− φs)
erf(ζ )+ erf(η)

1+ erf(η)
, ζ = r0/ln(T0/T)√

21r
− η, η = rav√

21r
. (A.4)
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APPENDIX B

Phase Velocities and Attenuation Factors

The calculation of the phase velocities and attenuation factors follows the approach in
[17] and is valid for the 2-D and 3-D cases. The three compressional velocities are given
by

VPi = [Re(
√
3i )]

−1, i = 1, . . . ,3, (B.1)

where Re takes the real part and3i are obtained from the following characteristic equation:

33 det(R)−32a+3b− det(ρ̃) = 0,

det(R) = R11R22R33− R2
23R11− R2

12R33− R2
13R22+ 2R12R23R13,

a = a1+ a2+ a3,

a1 = ρ̃11 det(Riw)+ ρ̃22 det(Rsi)+ ρ̃33 det(Rsw),

a2 = −2(ρ̃23R23R11+ ρ̃12R12R33+ ρ̃13R13R22),

a3 = 2(ρ̃23R13R12+ ρ̃13R12R23+ ρ̃12R23R13),

det(Rsw) = R11R22− R2
12,

det(Riw) = R22R33− R2
23,

det(Rsi) = R11R33− R2
13,

det(ρ̃) = ρ̃11ρ̃22ρ̃33− ρ̃2
23ρ̃11− ρ̃2

12ρ̃33− ρ̃2
13ρ̃22+ 2ρ̃12ρ̃23ρ̃13,

det(ρsw) = ρ̃11ρ̃22− ρ̃2
12,

det(ρiw) = ρ̃22ρ̃33− ρ̃2
23,

det(ρsi) = ρ̃11ρ̃33− ρ̃2
13,

b = b1+ b2+ b3,

b1 = R11 det(ρiw)+ R22 det(ρsi)+ R33 det(ρsw),

b2 = −2(R23ρ̃23ρ̃11+ R12ρ̃12ρ̃33+ R13ρ̃13ρ̃22),

b3 = 2(R23ρ̃13ρ̃12+ R13ρ̃12ρ̃23+ R12ρ̃23ρ̃13).

Moreover, the two shear velocitiesVSi are given by

VSi = [Re(
√
Äi )]

−1, i = 1, 2, (B.2)

whereÄi are the complex solutions of the equation

Ä2a′ −Äb′ + det(ρ̃) = 0,

a′ = ρ̃22 det(µsi),

b′ = µ1 det(ρiw)+ µ3 det(ρsw)− 2µ13ρ̃13ρ̃22+ 2µ13ρ̃12ρ̃23,

det(µsi) = µ1µ3− µ2
13.
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The stiffness matrix is given by

R ≡

 R11 R12 R13

R12 R22 R23

R13 R23 R33

 =
 K̄ 1+ nµ̄1 C12 C13

C12 K2 C23

C13 C23 K̄3+ nµ̄3

 ,
wheren = 1 (2-D case) orn = 4/3 (3-D case) and the bar indicates the complex viscoelastic
modulus. The mass density matrix is

ρ̃ ≡

 ρ̃11 ρ̃12 ρ̃13

ρ̃12 ρ̃22 ρ̃23

ρ̃13 ρ̃23 ρ̃33



=

ρ11− i(b12+ b13)/ω ρ12+ ib12/ω ρ13+ ib13/ω

ρ12+ ib12/ω ρ22− i (b12+ b23)/ω ρ23+ ib23/ω

ρ13+ ib13/ω ρ23+ ib23/ω ρ33− i (b23+ b13)/ω

 .
The P-wave and S-wave attenuation factors are given by

αPi = −ωIm(
√
3i ), i = 1, 2, 3 (B.3)

and

αSi = −ωIm(
√
Äi ), i = 1, 2 (B.4)
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