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We propose a numerical algorithm for simulation of wave propagation in frozen
porous media, where the pore space is filled with ice and water. The model, based
on a Biot-type three-phase theory, predicts three compressional waves and two shear
waves and models the attenuation level observed in rocks. Attenuation is modeled
with exponential relaxation functions which allow a differential formulation based
on memory variables. The wavefield is obtained using a grid method based on the
Fourier differential operator and a Runge—Kutta time-integration algorithm. Since
the presence of slow quasistatic modes makes the differential equations stiff, a time-
splitting integration algorithm is used to solve the stiff part analytically. The modeling
is second-order accurate in the time discretization and has spectral accuracy in the
calculation of the spatial derivatives.e 2001 Academic Press

Key Words:wave simulation; frozen porous media; Biot-type theory; porovis-
coelasticity.

1. INTRODUCTION

Knowledge of the physical properties of frozen soils is essential for the exploitation
mineral resources in polar areas and quantification of the amount of drilling necessary
the construction of highways and pipelines. Another recent application concerns bott
simulating reflectors (BSR), which are shallow seismic anomalies caused by gas-hyd
sediments trapping underlying free gas-bearing sediments partially saturated with we
These applications require the knowledge of the degree of freezing of the interstitial wa
Freezing has a negligible effect on density and magnetic permeability, precluding the
of gravimetric and magnetic techniques, but have a remarkable effect on wave veloci
(see Timur [24], Carcione and Seriani [7]). Hence, seismic and acoustic logging meth
constitute the best way for quantifying the amount of ice and water.

A Biot-type three-phase theory based on first principles has been recently propose
Leclaireet al.[17]. The theory, which assumes that there is no direct contact between sc
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WAVE SIMULATION IN FROZEN POROUS MEDIA 677

grains (rock frame) and ice, predicts three compressional waves and two shear wave:
can be applied to unconsolidated and consolidated media. Leetait¢17] also provide a
thermodynamic relation between water proportion and temperature. Here, we generaliz
theory to include grain—ice interaction and grain cementation with decreasing tempera
and provide an explicit relation between water proportion and temperature. Moreover, |
well known that Biot-type theories do not appropriately model the levels of wave attent
tion observed in rocks [19]. Gurevid@t al.[12] performed experiments on a sample made
of sintered glass beads and used Biot’'s pore form factor as a fitting parameter to m
the amplitudes. This factor controls the behavior of the dynamic permeability/tortuos
function. However, although this approach successfully describes the wave propage
properties of synthetic porous media such as sintered glass beads, in natural porous r
such as sandstone, discrepancies between Biot theory and measurements are due to cc
pore shapes and the presence of clay, which are not present in synthetic media. This
plexity gives rise to a variety of relaxation mechanisms that contribute to the attenuat
of the different wave modes. Stoll and Bryan [23] show that attenuation is controlled
the anelasticity of the skeleton (friction at grain contacts and interaction with the fluid) a
by viscodynamic causes. Thus, we model realistic attenuation levels by generalizing
elastic moduli to time-dependent relaxation functions, which implies the introduction
additional differential equations [3].

The Lagrangian formulation used by Lecladteal.[17] holds for uniform porosity, since
they use the average displacements of the solid and fluid phases as Lagrangian coordi
and the respective stress components as conjugate variables. In a two-phase porous m
with non-uniform porosity, Biot [2] proposes as generalized coordinates the displaceme
of the solid matrix and the variation of fluid content. In this case the corresponding conjug
variables are the total stress components and the fluid pressure.

Biot's poroviscoelastic differential equations have the faim= Mw, wherew is the
wavefield vector an¥ is the propagation matrix (the dot denotes time differentiation). A
in the poroacoustic case [6], all the eigenvaluedohave negative real part. While the
eigenvalues of the fast waves have a small real part, the eigenvalues of the slow wave
the quasi-static regime) have a large real part. The presence of these quasi-static ir
makes the differential equatiossff [14]. Thus, seismic and sonic modeling are unstable
when using explicit time integration methods. Carcione and Quiroga-Goode [6], in t
poroacoustic case, and Carcione [4], in the poroelastic case, solved this problem by us
splitting or partition method. The propagation matrix can be partitioned into a stiff part a
anon-stiff parta8! = M, + Mg, wherer indicates the regular matrix asdhe stiff matrix.
The stiff part is solved analytically and the non-stiff part is solved using a standard expl
method. Snapshots and time histories are obtained by solving the equations of mc
with a direct grid algorithm based on the Fourier pseudospectral method for comput
the spatial derivatives (e.g., Carcione [4]). An example of wave propagation in a partic
frozen sandstone illustrates the potentialities of the theory and simulation algorithm.

2. EQUATIONS OF MOTION

In this section we obtain the velocity—stress formulation for 2-D wave propagation ir
frozen porous medium that may represent an ice- (or gas-hydrate)-bearing rock. Lecl
etal.[17] assume thatthere is no direct contact between solid and ice. Here we have inclt
this contribution to the potential and kinetic energies, and the stiffening of the rock fral
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resulting from grain cementation by ice at freezing temperatures. More details can be fo
in Carcione and Tinivella [8].

2.1. Conservation of Momentum

The equations of momentum conservation are deduced using Lagrange’s equati
Substituting the generalized momenta (10) in [17] into Lagrange’s equations (13) in [
yields

1 1 l 2 l 3 1
2 1 2 . (3 2 1 2 3
( ) p]ZU( ) + ,OZZU( ) + ,02:3Ui( ) + bjz(Ui( ) - Ui( )) + b23(Ui( ) — Ui( )), (1)

3 3 1 2 3 3 1
.(X)x +U.(Z)Z = /)131)( '+ pzav )+ ,0330 bzs( @yl )) + blS(Ui( - Ui( >),

where subscript representx or z, theo's are stress components, and tfeare particle
velocities. The superscripts 1, 2, and 3 refer to solid grain, water, and ice, respectivel
dot above a variable denotes time differentiation, and spatial derivatives with respec
a variabley are indicated by the subscripty™ The friction terms in Eq. (1) have signs
opposite to those given in [17], otherwise the equations are physically unstable (w
amplitude increases with time). The signs here coincide with those of Biot's different
equations (see Refs. [2, 4]) in the limit of full water saturation. The choice of the corre
signs can be based, for instance, on the signs of the eigenvalues of &athgy should
be negative to obtain attenuating solutions (see Egs. (23) and (24)). Details of the mats
properties are given in Appendix A.

The expressions for the density components, given in Appendix A, include the inter:

tion between the grains and the ice, assuming that the grains flow through the ice me
(described by the tortuosiys) and the ice flows through the rock frame (describeddy.
As is well known, the tortuosity is related to the difference between the microvelocity al
macrovelocity fields. If they are similar (i.e., for relatively rigid materials such as solids
the tortuosities equal 1 and the contributions vanish. However, we assume that these t
contribute to the kinetic energy when the solid and ice matrices are unconsolidated or r
tively unconsolidated, for which the tortuosities are greater than 1. As in the Biot theory,
neglect the contributions due to the interaction between the solid phases and water (re
to the tortuositya;, andagsy).

2.2. Stress—Strain Relations

The 2-D constitutive equations are given by Eqgs. (7) of [17], with the addition of th
terms corresponding to grain—ice interaction in the potential energy. Using the notatior
[17], these terms ar€136165 and 150" d>. We obtain

oY = (K + el + (K — p1)eld 4+ Ciobp + (Ciz+ 1p13)€ld + (Ciz — 1p13)el?,
ol = (Ky+ el + (Ky — pa)eld + Ciobp + (Ciz+ 1p13)eld + (Ciz — 1p13)eld,
+ Mlség),

0@ =Cuz (€] +€) + Kot + Caz(ely +€) .

ol = 2136
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oY = (Kz+ 13)eld + (K3 — 113)€l + Coal + (C1z3 + 1u13)elY) 4 (Ciz — 1paz)ell,

0¥ = (Ka+ 13)eld + (K3 — 113)€d + Coafly + (C13 + 1p13)elY) 4 (Ciz — tpaz)ely,

0¥ = 2uzeld + pagel?,

b = 2 + €2, )

where the:’s are the usual strain components [21]. The expressionsfak andumax (see
Appendix A) can be found in Zimmerman and King [27, Egs. (1) and (2), respectivel
with the subscriptn denotes ice, denotes air, and the concentratiois equal tops. They
are the moduli of the ice matrix, with the water totally frozen and the solid replaced
air. However, we assume that the rigidity modulus of the rock framgis affected by the
cementation of the sand grains with ice. The equation, indicated in Appendix A, follows 1
same percolation model used for the ice matrix [17]. The rigidity k1 is the Kuster and
Toksdz shear modulus of the rock frame with air as inclusion, with a concentrationsl

A very thin and viscous water layer may transmit, depending on the frequency, sh
deformations from one matrix to the other. In this case, the coefficients,, and 13
become relaxation functions and should be replaced by the operatars.,*, andpisx
(x denotes time convolution), with,, representing a Maxwell mechanical model with two
springs, whose stiffnesses arg/ (1 — 91)¢s andui /(1 — g3)¢i, and a dashpot of viscosity
nw/¢w- The use of relaxation function requires the introduction of memory variables a
eight additional first-order differential equations [3]. Note that in [17], first the imaginat
part of the Maxwell complex modulus is neglected, and then, the related attenuation effe
The additional differential equations are avoided here by using this approximation, i
replacingi wn by 2wn in u,, and takings equal to the dominant frequency of the source.

The 3-D constitutive equations can be obtained by including the stress and strain c
ponents corresponding to the third dimension (see Lectdisd. [17]) and replacing the
coefficientsK; + w3 andKy — w1 in Eq. (2) byKy + 4p1/3 andKy — 211 /3, respectively.
Similarly, C13 + p13/2 andCq3 — u13/2 are replaced b3 + 2113/3 andCiz — 13/3,
respectively.

2.3. Velocity—Stress Formulation

The velocity—stress formulations are first-order (in the space and time variables) differ
tial equations, where the unknown variables are the particle velocities and stress compon
The equations of momentum conservation can be rewritten as

o = yull? + yall? + yisll®,
'( = )/121_1( by J/22H( )+ V23H(3) 3
0 = a1 + Y2311 @ + yaall,

where

@ _ @ (€ @ _ (1) o _ (1)
II; |xx+0|zz+b12( )+bl ( ),
2 2 2 2 3
Hi( ) U(- ) _ bio (U-( ) v_(l)) _ b23(vi( ) vi( ))’ (4)

3 _ B (3 (2 (3 (3 1)
1_[i = |xx+U|zz+b ( Vi T )_bl3(vi — U )
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are the rate of generalized momenta ard are the components of the symmetric matrix
-1
P11 P12 P13
P12 P22 P23 | - 5)
P13 P23 P33

The equations corresponding to the stress components are obtained by differentic
Egs. (2) and noting that the rate of the strain components is [21]

1
- (m) (m) (m)
Eij Zé(vi’j +vj,i ),

withm=1, 2, 3.

2.4. Extension to the Poroviscoelastic Case

Wave velocities are generally expected to be lower at low frequencies, typical of se
mic measurements, than at high frequencies, typical of laboratory experiments. Since
magnitude of this effect cannot be entirely described by Biot-type theories [19], additior
relaxation mechanisms are required to model the velocity dispersion. Measurement
dry-rock velocities contain all the information about pore shapes and pore interactions,
their influence on wave propagation. Low-frequency wet rock velocities can be calcula
by using the equivalent of the Gassmann relations of the three-phase theory, i.e., the
frequency limit of the dispersion relation [5, 10]. High-frequency wet-rock velocities al
then given by the unrelaxed velocities. Since dry-rock velocities are practically frequer
independent, the data can be obtained from laboratory measurements.

Viscoelasticity is introduced into the poroelastic equations for modeling a variety
dissipation mechanisms. One of these mechanisms is the squirt flow [2, 20] by whic
force applied to the area of contact between two grains produces a displacement of
surrounding fluid in and out of this area. Since the fluid is viscous, the motion is n
instantaneous and energy dissipation occurs.

We generalize the effective moduli of the rock frarkg,andu1, and the ice matrixKs
andpus, to time-dependent relaxation functions and assume that the other coefficients in
potential energy are frequency independent. The following terms in Eq. (2) are considel
Km¢ ™, umé™, andumel®, where¢ ™ = €™ + M andé™ = M — ™ m =1, 3.
Denoting, in general, these terms ¢, Me is replaced by} « € ; in the viscoelastic case,
where

-1
1< 1<
Y(t) =M <1+ T ;¢.> 1+ I;gol exp(—t/7,1) | H(), (6)
with H (t) the Heaviside function,
o=t _1, (7)
Tsl

andz, andz,, are sets of relaxation times. Equation (6) corresponds to a parallel connect
of standard linear solid elements. For high frequendies 0™)y = M.



WAVE SIMULATION IN FROZEN POROUS MEDIA 681

As in the single-phase viscoelastic case [3], we introduce memory variables to avoid
time convolutions. This approach implies the substitution

L

Me — M6+Za,
=1

whereg, | =1, ..., L, are the memory variables, which satisfy
1 L o
Qr=- M <L+Z¢m> pe+al. (8)
o m=1

The calculation of the phase velocity and attenuation factor requires a Fourier trans
mation of the constitutive equations to the frequency domain, which implies the sul
titution

M— M,

where

L -1 .
— 1+iwtg
M =M <L+§¢'> 2 Tian, ©)

with @ the angular frequency. The relaxation times can be expressed in terni fafcior
Q, and a reference frequendyas

1
Td =m[\/QF+1+1] (10)

and
1 I

3. NUMERICAL ALGORITHM

The velocity—stress differential equations can be written in matrix form as
W=Mw + s, (12)

where

W= [, @, o

@

oD @

0@ y®

0P, oD

s Uxx o

()

(€]
22+ 0;

XZ >

@ 45O

s Uxx o

(3

o o 0,5, (78), {e}]T (13)

is the unknown velocity—stress vectég} represents the set of memory variables,
-
s=1[0,0,0,0,0,0,53). s}, 57,57, 55, 57,57, {0}] (14)

is the source vector, ar is the propagation matrix containing the spatial derivatives an
material properties.
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For application of the source, we consider three main cases:

1. Frame sources.'® = 0, and the various combinationsgf’, s{T, ands{™ giving a
horizontal force, a vertical force, an explosive source, and a pure shear source, all apy
to the rock framerf = 1) or to the ice matrixrf = 3).

2. Fluid-volume injectionThe frame sources equal to zero, @& 0.

3. Bulk sourceThis case assumes that the energy is partitioned between the three ph
and that the shear sources vanish; thag{i$,= s = s@ =53 =53,

The solution to Eq. (12) subject to the initial conditimi0) = wg is formally given by
t

w(t) = exp(tM)wg +/ expt’'M)s(t —t")dt’, (15)
0

where ex|gtM) is called evolution operator.

As in the poroacoustic case [6], the eigenvaluebldiave negative real parts and differ
greatly in magnitude because of the terms containing the friction coeffitigrgadb,s. The
presence of large eigenvalues, together with small eigenvalues, indicates that the prol
is stiff. The differential equations are solved using the splitting algorithm introduced |
Carcione and Quiroga-Goode [6] for two-phase poroacoustic media and by Carcione
for two-phase poroelastic media, and generalized here for three-phase porous media
propagation matrix can be partitioned as

M =M, + Mg, (16)

where subscript indicates the regular matrix and subscsphe stiff matrix. Only the first
six differential equations corresponding to the particle velocities in Eq. (3) are stiff. Let
discretize the time variable as= ndt, wheredt is the time step. The evolution operator
can be expressed as ékfpy + My)t. Itis easy to show that the product formula

exp(M dt) = exp<;MSdt> exp(M, dt) exp<;Msdt) a7

is second-order accuratedi(see Gourlay [11] and Vreugdenhil [25]). Equation (17) allows
us to solve the stiff part separately. Using the Kronecker prodgitof two matrices yields

,®S0
Ms=< 0 0)» (18)

wherel ; is the 2x 2 identity matrix. We should solve
Vi = Sv, (19)
for each Cartesian componénwhere
vi = [ 0?6, (20)
and

S11 = bra(y12 — y11) + b1a(yiz — y10),
S12 = bra(y11 — y12) + b2s(yiz — yi2),
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S13 = b23(y12 — y13) + P13(y11 — y13),
So1 = b12(y22 — y12) + b13(y2s — y12),
S22 = bo3(v23 — ¥22) + br2(y12 — v22), (21)
S23 = bo3(v22 — ¥23) + b13(v12 — 29),
Sa1 = b12(y23 — y13) + P13(vs3 — y13),
Ss2 = b12(y13 — ¥23) + b23(v33 — 129),
Sg3 = b23(v23 — ¥33) + b13(y13 — ¥33)

The solution of Eq. (19) is
Vi(7) = exp(St) vi (0), (22)

where ex|§St) can be obtained analytically by solving a set of three recurrent ordina
differential equations [22], which gives

1— e’ S 4+ (1—62”2T))»1 — (1—62‘11))xz

exp(Sr) =13 —
N 3 A Atda (A1 — A2)

S-(S—nl3), (23)

with {0, A1, Ao} the eigenvalues of matr&andl s the 3x 3identity matrix. The eigenvalues
are

A= %[tr(S) —VItr(9]2—4E], i =1tr(S) — A4, (24)

where

E =S3591— S1193— Si3Ss1 + $3S1 + S11S3 — $1S3.

The regular operator exWl, t) is approximated with a fourth-order Runge—Kutta solvel
[4]. The output vector is

Wl = w4 %(Al +2A5+ 2A3 + Ay), (25)

where
AL =Mw* 4+ 9",
Ay =M (W* + 5A;) 4812,
Az =M, (W* + 5A;) 4812,

Ay = M, (W* 4+ TAg) + "L

andw* is the intermediate output vector obtained after the operation with the stiff evoluti
operator.
Note that the two operations with (17) implies

1 1
exp(2M dt) = exp(éMsdt> exp(M, dt) exp(Ms dt) exp(M, dt) exp(EMsdt). (26)
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TABLE |
Material Properties for Frozen Berea Sandstone

Media Density (kg/)  Bulk modulus (GPa)  Shear modulus (GPa)

Grain ps = 2650 Ks =387 s = 39.6 kg = 1.07 x 1078 m?
Ice o =920 K; = 8.58 wi =3.32 Kip =5 x 107* n?
Water p» = 1000 K, =225 e =0 N, = 1.798 cP

*1cP=0.001 Pas.

Then,n — 1 stiff operations can be savedririme steps, if only snapshots of the wavefield
at ndt are to be computed. Moreover(1 — 1/m) stiff operations can be saved when
computing seismograms with a sampling ratemaime steps.

The spatial derivatives are calculated with the Fourier method by using the fast Fou
transformation [9]. This approximation is infinitely accurate for bandlimited periodic func
tions with cutoff spatial wavenumbers which are smaller than the cutoff wavenumbers
the mesh.

4. EXAMPLES

We consider wave propagation in a frozen sandstone with a porosity of 20%. The data
Table I) correspond to Berea sandstone, with the properties given by Timur [24] and Wink
[26]. Figure 1 shows the water proportigp as a function of temperature, computed from
Eg. (A.4), assuming that, = 10 um, Ar = 10 um, andry = 0.04 um. At —1°C the
water proportion is 10% (50% water saturation and 50% ice saturation). The dry-rock b
and shear moduli at full water saturation are 14.4 and 13.1 GPa, respectively. By vir
of the percolation model, the rock-frame shear modulusBaC is 26.1 GPa. We assume
thata;3 = az; = 1 and that there is no friction between the rock frame and ice matrix. It |
important to note that the velocities of the slow waves greatly depend on the values of
tortuosities.

@
[N
|

0.15

Pw
(=)
-

0.05

o
=)

-30 -20 -10 0 10
T(°C)

FIG. 1. Water proportion as a function of temperature.
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In the first example we assume no losses due to viscoelastic effects. We consid
357 x 357 mesh with square cells and a grid spacing of 14 m. The perturbation ha
dominant frequency of 12.5 Hz. It is a combination of bulk sources and shear forces in
rock frame and ice matrix, and fluid-volume injection in the fluid. Figure 2 shows the pha
velocities of the five wave modes versus water proportion, where the compressional w:
are labeled P1, P2, and P3, and the shear waves are labeled S1 and S2. The different pi
correspondto (a) = 0, (b)n # 0, and (c)y # 0 andkjg = k<. The first case is unrealistic
but allows the verification of the modeling algorithm by calculating the travel times of tt
different waves (see Fig. 3a). The dots indicate the velocities at 50% water saturation.
values of the velocities are 4124 m/s for P1, 2511 m/s for S1, 1227 m/s for P2, 386 m/s
S2, and 255 m/s for P3. A representation of the curves in Fig. 2b versus the logarifm of
shows that the velocities of the P2 and S2 waves are zero at very low water content. At
water saturation three waves propagate, and their velocities are those predicted by B
theory. The second case corresponds to realistic values of the rock-frame and ice-m
permeabilities [17]; one of the slow waves (P3) is quasistatic. In the third case we assl
that the ice-matrix permeability equals the rock-frame permeability and show that the ot
slow waves also become quasistatic modes. This fact may implicitly reflect the presenc
clay particles. They reduce both the porosity and the permeability of the rock, and incre
the surface area by increasing the attenuation of the slow waves [16]. The attenuation fa
(see Appendix A) are between 8 and 60 nepers/m for the quasistatic modes, while tho:
the propagating waves are between®@nd 10°® nepers/m; i.e., these waves are lossles
in practice.

Snapshots of the wavefield corresponding to the three cases are shown in Figs. 3a, 3k
3c. Waves S2 and P3 are aliased, since the mesh “supports” a minimum velocity of 700
according to the Nyquist criterion. As can be appreciated, the snapshots are in agree
with the predictions of the theory. Leclaie al. [18] verified the existence of four of the
five waves by performing ultrasonic experiments in water-saturated glass powder (they
not observe the P3 wave). According to Lecladteal. [18], the energy of the P2 and S2
waves propagates mainly in the ice matrix when the medium is almost frozen. Since tt
waves have low attenuation (at high frequencies, 500 kHz), they consider these wave
be of the first kind. We observe here that these waves become quasistatic when botl
rock-frame and the ice-matrix permeabilities are relatively low [case (c)]; otherwise th
are propagating waves. On the other hand, the P3 wave is quasistatic when only one c
permeabilities is low.

Figure 4 shows snapshots of the vertical particle velocity at 0.68 ms corresponding to
fluid (a) and ice matrix (b) (the particle velocity of the rockframe is shown in Fig. 3a). Tt
energy of the slow waves P2 and S2 propagates mainly in the ice, as stated in Lefclai
al. [18]. The ratio of maximum amplitude in (b) to maximum amplitude in () is 276. Th
situation by which ice grows in a frozen rock, such as Berea sandstone, is probably diffe
from the case observed by Leclageal. [18] in uncosolidated glass powder. Thus, it is
possible that the P2 and S2 waves cannot be observed, in general, in real consolidated 1

Johnson [15] has shown that several waves existin a porous medium under two conditi
(i) the phases have a percolating structure;i.e., itis possible to find a continuous path betv
two points arbitrarily spaced, and (ii) one of the phases is a fluid. He also studied the cas
a solid/solid heterogeneous material and has shown that vibration was not possible at
frequencies. The main reason is that no flow or relative motion of one phase with respe:
the other is possible in the solid/solid case. In the present model, we observe the follow
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FIG. 2. Phase velocities of the five wave modes propagating in partially frozen Berea sandstone vel
water proportion, where (a) correspondsjte= 0, (b) ton # 0, and (c) ton # 0 andb,; = by, (kio = k). The
compressional waves are labeled P1, P2, and P3, and the shear waves are labeled S1 and S2. The dots indi
velocities at 50% water saturation, where the values of the velocities are 4124 m/s for P1, 2511 m/sfor S1, 122"
for P2, 386 m/s for S2, and 255 m/s for P3.
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FIG. 3. Snapshots of the rock-frame vertical particle velocity at 0.68 s, corresponding to three cases illustr
in Fig. 2. The mesh has 354 351 grid points and the source is applied at grid point (178, 178). The compressior
waves are labeled P1, P2, and P3, and the shear waves are labeled S1 and S2.
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FIG.4. Snapshots of the vertical particle velocity at 0.68 ms for the fluid (a) and ice matrix (b). The simulati
corresponds to case (b) in Fig. 1.

(i) P1 and S1 are the usual body waves which we observe in the acoustics of mate
media. They correspond to all the phases moving in phase and propagate irrespective ¢
values of the viscosity and permeabilities.

(i) P2 is the Biot wave. It is a propagation mode for full water saturationtapd= 0
(the case in Fig. 2a, i.e., zero viscosity or infinite rock-frame permeability) and a quasist:



WAVE SIMULATION IN FROZEN POROUS MEDIA 689

TABLE Il
Phase Velocities and Attenuation Factors
Poroelastic Poroviscoelastic
Wave V (km/s) a (neper/km) V (km/s) a (neper/km)
P1 4.116 8.5¢ 10°° 4.288 0.36
P2 0.964 1.24¢< 1072 0.968 0.17
P3 2.5x 103 31200 2.5x 1073 31200
S1 2.488 8.2 10°° 2.615 0.73
S2 0.363 3.1x 1072 0.363 3.4x 1072

mode for full water saturation anih, # 0 (assuming realistic values of viscosity and
permeability, i.e., the case in Fig. 2b).

(i) P2 (and S2) is a propagation mode in the presence of ice (exclugling 0, as
mentioned before when discussing Fig. 2b). This means that this mode becomes a wave
increasing freezing and propagates mainly in the ice frame, as predicted by the snap:s
in Fig. 4.

(iv) P3is quasistatic at zero and full water saturations, even in the absence of frict
between the phases. This wave could probably be observed in synthetic partially fro
materials and under very particular conditions, e.g., a fluid of negligible viscosity (obviou:
not water) and a highly permeable porous medium.

Poro-viscoelastic

Poro-elastic

FIG. 5. Snapshot of the rock-frame vertical particle velocity at 0.68 s, where the upper half-space is pc
viscoelastic and the lower half-space is poroelastic. The compressional waves are labeled P1, P2, and P3, a
shear waves are labeled S1 and S2.
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(v) The condition of no slow-wave motion in the solid/solid case (the case of a tota
frozen medium ¢, = 0)) is shown in Fig. 2b, i.e., for very low water saturation (the
velocities of P2 and S2 vanish@t, = 0, as mentioned before). The limiting cagg = 0
requires further investigation by recasting the dispersion relation in analytic form.

In the last example we assume that the rock frame is viscoelastic, with one relaxat
mechanism I = 1) corresponding to each effective modull(s, and ;. The Q-factor
parameters in Eqgs. (10) and (11) aggK;) = 30 andQ(u1) = 20, and the reference
frequencies aref (Ky) = f(uy1) = 125 Hz. Table Il compares the values of the phase
velocities and attenuation factors for the poroelastic and poroviscoelastic cases [case
Rock-frame viscoelasticity mainly affects the waves of the first kind. Figure 5 shows
shapshot of the rock-frame vertical particle velocity at 0.68 s, where the upper half-sp
is poroviscoelastic and the lower half-space is poroelastic. The attenuation of the P1
S1 waves in the upper half-space is evident.

5. CONCLUSIONS

We have developed a numerical algorithm for wave simulation in a frozen rock. T
differential equations are based on a three-phase Biot-type theory and include viscoel:
effects to describe realistic attenuation values. Low rock-frame and ice-matrix permeat
ties make the slow waves quasi-static and the governing equations stiff. They are partitic
into a non-stiff part and a stiff part, which are solved by a standard explicit time-integrati
algorithm and analytically, respectively. The resulting algorithm is second-order accurat:
time and has spectral accuracy in the space variable. The algorithm, which allows gen
material variability but assumes uniform porosity, provides snapshots and time histol
of the rock-frame, ice-matrix, and water particle velocities and corresponding stress ct
ponents. The differential equations of motion for non-uniform porosity require a caref
derivation of the stress—strain relations in terms of the relevant thermodynamic poten
This aspect of the problem will be developed in a forthcoming publication.

APPENDIX A

Theory of Partially Ice- (Gas Hydrate)-Saturated Porous Media
A.1l. List of Symbols

a1 tortuosity for water flowing through the rock frame

a3 tortuosity for water flowing through the ice matrix

a1z tortuosity for solid grains flowing through the ice matrix
ag; tortuosity for ice flowing through the rock frame

b1o 7)11)(1512,) /Ks

biz friction coefficient between the rock frame and ice matrix
b3 77w¢5) /Ki

c; consolidation coefficient for the solid; = Kgm/¢sKs

c3 consolidation coefficient for the icez = Kim/¢i K

Crz (1-c)ospuKay

Ciz (1—c)(d— Ca)psohi Kay

Coz (1-C3)diduKay

fi  viscoelastic reference frequency
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O1 consolidation coefficient for the solid; = usm/dsits
O3 consolidation coefficient for the icgg = wim/ i ii
Ks solid bulk modulus

Kuw water bulk modulus

Ki ice bulk modulus

K1 [(1 - Cl)(bs]zKau + Ksm

KZ ¢5; Kav

Ks [(1 - c2)¢i]°Kay + Kim

Ksm  bulk modulus of the matrix formed by the solid phase

Kmax Kuster-Tok®Zz's bulk modulus for the ice matrix

Kim bulk modulus of the matrix formed by the id€jm = Kmax¢i /(1 — ¢5)]>8
Kay average bulk modulua, = [(1 — ¢p)¢ps/Ks + ¢ /Ky + (1 — Ca)gi /K]t

Q Q-factor parameter

ro1 geometrical aspect of the boundary separating solid from water
r3 geometrical aspect of the boundary separating ice from water
law average radius of the capillary pore

Ar standard deviation of the capillary pore

Nw water viscosity

Kso rock-frame permeability

Kio ice-matrix permeability

Ks KSO(ISS;/(]- - ¢s)3

Ki Kiol (1 — ¢s) /1% (du /bs)*

Us solid shear modulus

Ui ice shear modulus

M1 [(1 - gl)ﬁbs]zﬂav + Usm

H13 (1 - 901 — g3)psPi av

U3 [(1— g)¢i1%1ar + Lim

usmkT Kuster—Tokez's shear modulus for the rock frame

psm  rock-frame shear modulugsm = [1smk T — ismoll¢i /(1 — ¢)1>8 + psmo
Umax Kuster—Tokez's shear modulus for the ice matrix

Mim shear modulus of the matrix formed by the ipgy, = pmaxd @i /(1 — ¢5)]38
tay  average shear modulyss, =[(1 — g1)ds/ s +dw/iwn,+(1 — g3)¢i /] *

1) angular frequencyy = 2 f

s proportion of solid

bw proportion of water

i proportion of ice

Os solid density

Ow water density

Oi ice density

P11 dspsuz + (21 — Dy pw + (831 — D)gi pi
P12 —(az21 — Dowpow

P13 —(a13 — Dsps — (az1 — D pi

022 (221 + @23 — Dopy o

023 —(az23 — Dowow

033 dipidgy + (823 — 1Py pw + (A13 — Dsps
Tq| viscoelastic relaxation time

Tyl viscoelastic relaxation time
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A.2. Tortuosities

Following Berryman [1] and Leclairet al. [17], we express the tortuosity parameters
as

dsp i’

ap = rio+1, a3 = ks raz+1, (A.1)
wPw w Pw
where
— PwPw + Gi pi r_ PwPw + Psps
¢w + ¢i ' ¢w + ¢s ’

andrpyy characterize the geometrical features of the pores {/2 for spheres). This
approximation is based on the fact that the three phases are mechanically decoupled
serve that, for instancey, — 1 for ¢,, — 1 and that, — oo for ¢,, — 0, as expected
(see [1]).

By analogy, we may consider that

a3 = d riz+1, Ay = fsp rai+1, (A.2)
sPs &i pi
where
¢i +¢s '

However, this approximation should be used with caution, and it is convenient in most
the cases to usg 3 andag; as free parameters, as well as the friction coeffidignbetween
the solid grains and the ice.

A.3. Water Proportion versus Temperature

Assuming a Gaussian porosimetric distribution, the water propagijoran be obtained
as a function of temperature as

ro/In(To/T)
bw = (1—¢o)A / exp[—(r —ra,)?/(2Ar?)]dr, (A.3)
0

wherer , is the average pore radiusr is the standard deviatiom,is the temperature given
in Kelvin, andTy = 273 K [13, 17]. The quantityy = 0.228 nm in the ideal case, but here
itis used as a parameter to take into account the salinity content of the pore water. As st
by Timur [24], as the ice crystallizes out as purgH the sodium chloride concentration
of the remaining solution increases, thereby further lowering the freezing point. Hence,
may be thought of as forming on the walls of the larger pores and growing into the pc
spaces. This effect is modeled by Eq. (A.3).

The constanA is obtained after normalization of the Gaussian probability function fron
r =0tor = oco. Thus, we obtain

erf() +erfm)  _ ro/In(To/T) _ Fav

w = 1—57, ) = .
() (1—¢s) JAr n, N NI,

1+ erf(n) (A-4)
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APPENDIX B

Phase Velocities and Attenuation Factors

The calculation of the phase velocities and attenuation factors follows the approacl
[17] and is valid for the 2-D and 3-D cases. The three compressional velocities are gi

by
Vpi = [Re(/AD]™Y, i=1,....3 (B.1)
where Re takes the real part afvdare obtained from the following characteristic equation:
A3detR) — A%a+ Ab —det(p) =0,

detR) = Ri1Rx2Rs3 — R53R11 — RZ,Rss — R%3Ra2 + 2R12Re3Ry3,
a=a t+a+az,
a1 = pr1det(R ) + p22det(Rsj) + pazdet(Rs,),
a2 = —2(p23Re3R11 + p12R12Rs3 + p13R13Re2),
ag = 2(p23R13R12 + p13R12Re3 + £12R23R13),
detRs,) = Ri1Rx — R,
detR,) = Ry2Rss — R,
det(Rsi) = Ri1Rss — RE,
det(p) = Pr1P22Pa3 — Dagbi1 — Paoi3s — PiaP2z + 2P12P23P13,
det(ps,) = Pr1P2z — iy
det(pi,) = P2b3s — Pags
det(psi) = 11033 — Pra,
b =bi + by + bs,
by = Ry1det(p,) + Ro2det(psi) + Razdet(psy),
b2 = —2(Rp3p23p11 + Ri2012033 + Ri3p13p22),
bs = 2(Rosp13p12 + Rizp12023 + Ri2023013).

Moreover, the two shear velociti&g; are given by
Vsi =[Re(v/Q)]™' i=12 (B.2)
whereg; are the complex solutions of the equation

Q%a’ — Qb +det(p) = 0,

a' = p2detiusi),

b' = w1 detpin) + nsdetps,) — 21113P13022 + 21413012023,
det(usi) = paps — pis.
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The stiffness matrix is given by

Ri1 Rz Rus Ki4nin Cio Ci3
R=| Rz Ry Rxa|= C2 Kz Cas ,
Riz Roz Ras Cis Cos Ksz+nus

wheren = 1 (2-D case) on = 4/3 (3-D case) and the bar indicates the complex viscoelast
modulus. The mass density matrix is

P11 P12 P13
p=| P12 P22 P23
P13 023 P33
p11 — i(b12 + b13) /@ p12+ib12/w p13+ib1z/w
= p12 +ib12/w p22 — 1 (D12 + b3)/w p23 +ib3/w
P13+ ib1z/w 023+ ib23/w 033 — i (b3 + b13)/w

The P-wave and S-wave attenuation factors are given by

api = —wlm(\/Aj), i=123 (B.3)
and
asi = —wlm(y/ i), i=12 (B.4)
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