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Abstract

We obtain the dispersion equation for torsional axially symmetric harmonic waves
propagating in an infinitely long anisotropic circular cylinder. The material is transversely
isotropic, with its symmetry axis coincident with the axial axis of the cylinder. In
particular, we study the phase and group velocity of the torsional modes in terms of the
material properties, and corresponding sizes (radii). The fundamental mode is not
dispersive and has the vertical velocity of shear body waves c. The phase velocity of the
dispersive modes is infinite for infinite wavelengths, and for short wavelengths it is the
vertical velocity c. On the other hand, the group velocity is always smaller than c. The
differences between the isotropic and the anisotropic case can be substantial for tubes
made of iron or zinc.

1 Introduction

The study of the dynamics of hollow cylinders and tubes has many applications, e.g.,
guided-wave ultrasonic delay lines, shells used as components in aircraft, missiles,
solid-propellant rocket motors, etc. In the exploration industry, interest resides in the
propagation of pulses through drill strings. These pulses are used as pilot signals for the
data processing of seismograms (recorded at the surface) generated by the roller cone bit
[1, 2]. Since the materials that make up the tubes (metals, in general) are anisotropic, the
use of an isotropic constitutive equation may produce erroneous results.

In this letter, we compute the phase and group velocities of torsional oscillations
propagating in an anisotropic hollow cylinder. The wave equation combines the equation of
momentum conservation with the constitutive relations for transversely isotropic media.
The problem is solved in cylindrical coordinates (r, ¢, z) and an axially symmetric hollow
cylinder of interior and exterior radii a and b is assumed. This implies that the symmetry
axis of the medium coincides with the axial axis of the cylinder (z-axis). In this case, the
wave field does not depend on the azimuthal variable ¢.

In the absence of body forces, the equations describing the motion of torsional waves are

Pyity = 8,0, + 0,0, += Gy M
Uy

G = Cog (E),ulp — T) , and )

Cpz = €440, Uy _ 3)

where u,, is the displacement component, 6,, and o, are the stress components, p is the
density, and ¢, and cg are the elastic components. The symbol 0 denotes partial
differentiation with respect to the corresponding subindex, and ¢ is the time variable.

Since the torsional waves are decoupled from the quasi-compressional and quasi-shear
motions, they can be described, as in the isotropic case, by a potential function v,

Uy =—0,y . C))

Substituting the stresses into the conservation equation (1), and using (4), we obtain the
following wave equation:

PO, W = C4q0, Y +Cg6 (b,,w+ —}— b,\u) . )

Note that in the isotropic case ¢y = ¢g5 = M, the Lamé constant, equation (5) becomes
(A— B~20,)y = 0, where B = u/p, and

A=2,+10+d, ©)
is the Laplacian operator.
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2. The solution
The steady-state solution has the form

Vv = F(r,z) exp(lwr) , U]

where  is the angular velocity and 1 = vY~1. Substitution of equation (7) into equation (5)
gives the generalised Helmholtz equation

1 2
—27 03, F) +3, F + "C’—2F=0, ®)

o=/ ©

and ¢ = y/c,/p is the body wave phase velocity along the symmetry axis of the medium.
Assuming F(r,z) = R(r) Z(z), we separate variables and obtain the differential equations

where

29,,R +ro,R + «r)’R=0, (10)
0,Z+y2Z=0, (1)
where 5 i -
- '
K—a(c—z—y2) . (12)

The quantities x and vy are separation constants, and correspond to the radial and vertical
wavenumbers. The axially symmetric general solutions of equations (10) and (11) are

R(r) = AJy(kr) + BYy(xr) (13)
and
Z(z) = Cexpyz) + D exp(—1yz), (14)

respectively, where J, and Y, are Bessel functions of the first and second kinds
respectively, and 4,...,D are arbitrary constants.
The general solution for harmonic waves along the positive z-direction can be written as

V(r,z, 57, ©) = [AgJy(kr) + BeYy(cr)] exp [1 (ot — v2)] . (15)
Substituting this potential into equations (2) and (4) we obtain

| Uy = —[Ag0,Jy(kr) + Byd,Yo(xr)] exp[t(rt — v2)] (16)
an

Grp = —Cas [Ao(agJo(m) - M) + B, (a,zyo(xr) —M)] exp[i(r — v2)]. (17)

At the inner and outer surfaces of the cylinder we have the following boundary conditions

C,o(r=a) =0 and C,o(r=b)=0, (18)
respectively. This implies that

A [b,,]o(xa) - b'JOT(Ka)] + B, [b,,YO(Ka)— a'YOT(Ka)] =0 (19)
and
Ay [b,,JO(Kb)— a’—]Ob(K—b)] + Bo[b,,Yo(Kb)— a’YOT(Kb)] =0. (20)

The period equation follows by making zero the determinant of the linear system.
Moreover, using the properties of the cylinder functions (e.g., [3], p.694), we obtain

2 (<) — kJy(ka) Z¥(ka) — k¥,(ca)

det 2 2. =0, (21)
;J,(Kb) — KkJy(kb) ;Y](Kb) - xYy(xbd)|

T
° (k@) Yy(cb) — Jy(<b)Yy(kca) = 0. @2)
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~ A similar period equation was obtained by Gazis [4] for an isotropic hollow cylinder, for
which o =1. This result and equation (12) indicate that the period equation of an
anisotropic cylinder of interior and exterior radii a and b is the same as the period equation
of an isotropic cylinder of interior and exterior radii aa and ab, and rigidity p = cyy.

The velocity of the lowest torsional mode is not appropriately obtained from equation
(22). This mode corresponds to k =0, and the displacement to a rotation of each
transverse section of the cylinder as a whole about its center. This motion is not dispersive
and both phase and group velocities are equal to ¢, the body wave phase velocity along the
vertical direction.

The velocities of the dispersive modes are obtained from the roots of equation (22) that
can be written as P(c,, ®) = 0 where ¢, = w/y is the phase velocity. Assume that the roots

P
of (22) are ¥, K,,..., Kj,... . Then, the phase velocity corresponding to the j mode is
1 K2 j ty ponding

A 217
cp=$=c[1+(2;t_a)] , ‘ 23)
where A = 2m/y is the wavelength. The group velocity is equal to ¢, = do/dy, which can
easily be calculated from equation (12). It yields
2 : -
c,=+%. (24)

8 Cp

The phase velocity is infinite for infinite wavelengths, and for short wavelengths it is the
body wave velocity c. On the other hand, the group velocity is always smaller than c.

We consider two materials: iron, with ¢4 = 116GPa, p = 7.87g/cm3 and o = 1.55; and
zinc, with ¢4y = 39.6GPa, p = 7.14g/cm3 and a. = 0.77. The calculations were carried out
for a thickness to mean-radius ratio #/R = Va, where h = b—a and R = (b+a)/2. Figures 1
and 2 represent the phase (a) and group (b) velocities versus wavelength for torsional
oscillations. The first and third modes are shown, with the broken lines corresponding to
the isotropic case (L = cy4).

The differences between the isotropic and the anisotropic case can be substantial. For
instance, consider the group velocity of the first mode for iron (Figure 1b), and a
wavelength equal to twice the tube thickness (h/A = 112). Since ¢ = 3839m/s, the velocity

2017
" | Iron
17.
| o =155
15 1
1|1
2.5
o I\\
< 10 =
& |\\
7.5
AN
S
NN~
2.5 e
a
07 05 I 15 2 hi
1 —————
==
%_,— /

Cg/C
A ~
AN
N
\
\
\
\

04 5 >
[ / A7 Iron
/ 7’

02— <

yd a =155

b. o

0 0.5 1 1.5 2 hiA

Figure 1. Phase a. and group b. velocities of torsional waves in an iron tube (first and third modes).
The broken lines correspond to the isotropic case.
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Figure 2. Phase a. and group b. velocities of torsional waves in an zinc tube (first and third modes).
The broken lines correspond to the isotropic case.

for isotropic torsional waves is ¢, = 2687m/s, and that for anisotropic waves is C =
3225m/s. On the contrary, for zinc, the isotropic velocity is greater than the anisotropic
velocity. The maximum difference between the isotropic and anisotropic group velocities

of the first mode is obtained for #/A a¢ 0.3 for iron tubes, and /A ~ 0.4 for zinc tubes.

3 Conclusions

The calculations show that, for wavelengths comparable to the tube thickness, the
difference between the isotropic and anisotropic group velocities can exceed 500m/s (e. g,
in a cylinder made of iron). On the other hand, the period equation of an anisotropic
cylinder of interior and exterior radii @ and b is the same as the period equation of an
isotropic cylinder of interior and exterior radii 0. and a.b and shear velocity vcalp, where
@ = ycyylces. This result indicates that experiments interpreted with the isotropic period
equation will either underestimate or overestimate the radii, depending on whether a < 1
or a > 1, respectively. Moreover, if the interior and exterior radii are known, and the axial
shear velocity y/c44/p is obtained from measurements on the fundamental mode, the elastic
constant cgs can be estimated from the velocity of the dispersive modes, by using o as a
fitting parameter.
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