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Abstract

In this work, we evaluate the general dispersion equation for axially symmetric
harmonic waves propagating in an infinitely long composite cylindrical system. In
particular, we study the velocity of the rotationally symmetric longitudinal and
torsional modes travelling axially through the system, in terms of the material
properties, and corresponding sizes (diameters) of the different shells. An application
is the analysis of the waves propagating through a drill string tool since they provides
useful information for the data processing of seismograms (recorded at the surface)
produced by the roller cone bit. For torsional oscillations, the phase velocity decreases
monotonically from infinity to the shear wave velocity as the frequency increases, and
the group velocity increases monotonically from zero to the shear velocity. On the other
hand, the phase velocity of the longitudinal modes are strongly dependent on the radial
dimensions and the presence of fluid inside the drill string. In this case (a tube filled
with mud), the vibration modes shift to the low frequencies.

1 Introduction

A fundamental problem in the classical theory of elasticity is the propagation of vibrations
through bodies having cylindrical concentric boundaries. The most simple and complemen-
tary cases were investigated by Pochhammer [5] (propagation through a rod in vacuum)
and Biot [1] (propagation through a hole in an infinite medium). In general, three types
of vibrations take place; these are classed as longitudinal, torsional and flexural [3]. The
study of the dynamic of more complicated multilayered shells has many applications, for
instance, in guided-wave ultrasonic delay lines, shells used as components in aircrafts, mis-
siles, solid-propellant rocket motors, etc.. In the exploration industry, the interest resides
in the propagation of signals through a borehole system. For instance, there is a need
of transmiting down-hole drilling information to the surface [2]. A simple model for the
analysis of the vibrations of a drill string tool in a borehole considers a system of concentric
cylindrical shells as illustrated in Figure 1. Then, the physics of wave propagation presents
many similarities with the previous cases. Basically, the problem is solved by probing the
elastic wave equation with a free harmonic wave and then determining the period (dis-
persion) equation by the requirement that an appropriate set of boundary conditions be
fulfilled. The solution for the drill string problem requires the numerical solution of the
period equation. In this work, we consider the propagation of axially symmetric fields,
then, the possible solutions involve torsional and longitudinal waves exclusively.
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F1G. 1. Cross-section of a borehole and drill string model

2 Displacements, Stresses and General Solutions

We consider axially symmetric borehole, formation, drill string and source (a cross-section
of the model is illustrated in Figure 1). Then, only the fundamental modes are excited
(n = 0) and the wavefield does not depend on the azimuthal variable. In circular cylindrical
coordinates (7,0, z) with z directed along the axis of the borehole, the displacements are
given in terms of the Helmholtz potentials ¢, 1 and x by [3]

Ur = 8r¢ i arazX)
Ug = _61‘1/))
1 9 1
U, = 6z¢ - ;ar(rarX) = 6z¢ - 6rX - ;arX)

where 0 denotes differentiation. For isotropic materials with Lamé constants A and p, the
relevant stress components read

Opr = A (35 + 0,u, + 6zuz> + 2u0, ur,
T

1 U
org = pro, (;u,g) = uo (arug - —Tq) ;
09z = /‘LBZUH)

0ry = w(0ur + O.us).
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Each potential obeys a wave equation of the type (A — ¢ 28y)f = 0, where for f = ¢,
c=a=+(+2u)/p, and for f =9 or f=x,¢c=p=+/plp. The operator A is the
Laplacian in cylindrical coordinates and p is the density.

The steady-state solution has the form

(®) f = R(r)Z(z) exp(wt),

where t is the time and w is the angular frequency. The axially symmetric general solutions
are [3]

(9) R(r) = AJo(kr) + BYy(kr), and Z(z) = Cexp(vyz)+ D exp(—1y2),

where Jo and Yy are the Bessel functions of the first and second kind, respectively, and
A,..., D are arbitrary constants. The quantities x and +y correspond to the radial and
vertical wavenumbers, such that

(10) k% = w?/c? — 72

3 Torsional Oscillations
These type of vibrations are characterized by the conditions that u, = u, =0 and ug is
independent of §. The motion is initiated by a torque. Different sections of the drill string
rotate with respect to each other without distortion. Since the mud, outside and inside the
string is considered as an ideal fluid, it does not affect the torsional oscillations. This is
due to the fact that the stress component o, vanishes at the steel-fluid interface, so it is
equivalent to a steel-vacuum interface.

The general solution for harmonic waves along the positive z-direction can be written

(11) P(r, 2,t,7,w) = [AoJo(ér) + BoYo(£r)] exp[r(wt — 72)],
where
(12) £ = /B -7

is the radial wavenumber. Substituting the potential into equations (2) and (5) we obtain

(13) ug = —[Ao0rJo(€ér) + B0, Yo(€r)] exp[r(wt — v2)],

ov0 = -1 [ o (023gr) ~ Y B (vi(er) - 200 )| expbn = 42
(14

At the inner and outer surfaces of the drill string we have the following boundary

conditions

(15) or9(r=a)=0, and oy(r=2>0)=0.

This implies two equation with two unknowns, Ao and Bpy. Making the determinant equal
to zero and using properties of the Bessel functions gives the following dispersion equation:

(16) Ta(€a)Ya(€a) — Ja(£b)Y(£b) = 0.

Equation (16) was obtained by Gazis [4], and is identical in form to the frequency equation
of axially symmetric shear vibrations in plane strain (see [3]).
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F1G. 2. Phase velocity versus frequency for azially symmetric torsional waves

Let us consider a shear velocity 3 = 3300 m/s, and a = 5.43 cm and b = 6.35 cm..
The lowest torsional mode is not appropriately obtained from equation (16). This mode
corresponds to ¢2 = 0 and the displacement to a rotation of each transverse section of the
cylinder as a whole about its center. This motion is not dispersive and both the phase and
the group velocities are equal to (3.

The higher modes are obtained from the roots of equation (16) that can be written
as F(cp,w) = 0 where ¢, = w/v is the phase velocity. This is represented in Figure 2 for
the first ten propagating modes. From equation (12) and the fact that €2 > 0, the phase
velocity of the torsional waves is always greater than or equal to 8. Moreover, each mode
has a cut-off frequency below which propagation cannot take place. In fact, let us assume
that the roots of (16) are &1, £2,...,&j,.... Then, the phase velocity corresponding to the
7 mode is

1 £2 -1/2
(17) Cp:_:(ﬂ_g_;%> .

Then, the cut-off frequency for this mode is wéj = ﬂg{f
The group velocity is equal to ¢ = dw/dvy, which can be easily calculated from equation
(12). It yields

2
1 =23,
(18) Cg e

Then, this velocity is always smaller than the body wave velocity 8.
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Fi1Gc. 3. Group velocily versus frequency for azially symmetric torsional waves

4 Longitudinal Oscillations

We consider longitudinal oscillations where ug = 0 and u, and u, are independendent of 6.
The motion is confined to planes perpendicular to the string axis. The potentials are the
following:

(19) Formation { ¢ =B H(()(ll))(nlr)exp[z(wt ~2)]
x1 = D1Hy '(&17) exply(wt — v2)],
(20) Mud 1 { ¢a = [AaJo(kar) + B2Yo(kar)] exple(wt — v2)],
ce ¢3 = [AzJo(kar) + B3Yo(kar)] exp[r(wt — y2)]
(21) Stect { xa = [Cado(gar) + DaYo(£ar)] expla(wt — 2)],
(22) Mud 2 { ¢a = AgJo(kar) explr(wt — v2)],

where k and & are the P and S radial wavenumbers.
From equations (1)-(3), the displacements are

(23) u£n) = ApUn1 + BaUna + CpUnz + D, Upyg,

(24) ugn) = Anan + BnVnz + CnVnS + DnVn4)

where n = 1,...,4 denotes the medium, and the U,; and V,; different from zero are given
by

Uiy = —KlHl(l)(KlT), Ug = 1751H1(1)(517‘), Vig = ~17H(§1)(mr), Via = fle(l)(flT%




Usn = —kaJi(kar), Uzz = —k2Ya(kor), Vo= —1yJo(ker), Va2 = —17¥o(kar),
Usi = —kaJi(kar), Usy = —k3Yi(kar), Uss =vy€&aJ1(r), Usa = vy€sa(&ar),
Var = —1yJo(ksr), Vaz = —7Yo(kar), Vas =£€3Jo(ésr), Vaa= £3Yo (&),

Us = —kaJ1(kar), Var = —vyJo(kar),

where the factor exp[¢(wt — vz)] has been omited for clarity. The stress components folloy
from equations (4)-(7),

(25) 0'1(-1:) = Aanl = Ban2 + CanB + Dan4,

(26) 01(-2) = Ansnl + BnSn2 + CnSnS + Dnsnlh

where the coefficients different from zero are

K
Ryy = —(\v® + Eie) HSD (kar) + 2#1-:—31(1)('°1T),

1
Ryg = —2yv&y ;Hl(l)(ﬁl"‘) - leél)(Elr) ’

S12 = 21#17I€1H1(1)(K‘1T)a S1a = mébi(7’ - 512)H1(1)(51T)’
Ror = —Xao(7? + 63)Jo(kar),  Raz = —Xa(7” + K3)Yo(kar),

K
R3; = —(>\3’)’2 + E3K.§)J0(K,3’I‘) + 2#373*]1(537‘))
2 2 K3
R3y = —(Aa37® + E3k3)Yo(kar) + 2#373’1(537‘)»
1
Raz = —2137¢&3 [;Jl(fﬂ) - 53']0(63”)] )

R3q = 211373 ['}:Yl(fa"‘) — stO(fsT)] )

531 = 21#3’)’/(,3]1(K3T), 532 = 21#37K3Y1(K3T),
Sas = pata(y? — €3)1(éar),  Saa = paba(y® — €)V1(&r),
Ray = —Xa(v* + £3)Jo(kar),

where E, = A\ + 24, and the relations
(27) K2 = ki =7 kan £ = kg — 7"

have been used.
The field must satisfy the following boundary conditions:

Formation — Mud 1 (r = R) u) = 42 o) = 5(2)

T ] T

US) =0,

(28) Mud 1 — Steel (r = b) u?) = u®), o) = o®

D, o =0,

Steel — Mud 2 (r = a) ul®) = ol o® =o®) o8 =y,

Tr Tr ) TZ




, Vaa = —VYYO(KZT))
,  Usq = 17&3Y1(&ar),
Vaa = €3Yo(ar),

)

. stress components follow
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FI1G. 4. Phase velocity versus frequency for longitudinal waves in a rod made of steel

The problem has 9 unknowns, By, Dy, Aa, B,, A3, B3, C3, D3 and A4, with 9 boundary
conditions. The determinant of the set of nine homogeneous linear equations must vanish,
giving the following dispersion equation:

ha(R) Uya(R) —Un(R) —Uxn(R) 0 0 0 0 0
]‘ilg(R) R14(R) —R21(R) —Rzz(R) 0 0 0 0 0
S12(R)  S14(R) 0 0 0 0 0 0 0
0 0 Un(b)  Us(b) —Usi(b) —Usp(b) —Us3(b) —Usa(b) 0
0 0 Ry(b)  Raa(b) —Rai(b) —Raa(b) —Raz(b) —Raa(b) 0(=0
0 0 0 0 Su(b)  Su(b)  Ssa(b)  Ssa(b) 0
0 0 0 0 U;;l(a) U32(a) U33((1) U34((1) —U41(a)
0 0 0 0 R31(a) R32((1,) R33(a) R34(ﬂ.) —R41((L)
(29) 0 0 0 0 531(0,) 532((1) S33((L) 534(4) 0

We are interested in the wave traveling through the steel. In particular the fundamental
mode, that in a rod of radius b (¢ = 0) and at the low-frequency limit, has the velocity
Crod = VY /p3, where Y = u3(3X3 4+ 2p3)/ (A3 + p3) is the Young modulus. The dispersion
relation corresponding to the rod is

(30) —Ra1(b) —Ras(b)
Sa1(b)  Saa(b)

=0.
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FI1G. 5. Phase velocily versus frequency for longitudinal waves in a tube made of steel.

In the case of a tube (a # 0), the dispersion relation is

(31)

If we take into consideration the mud inside the tube, the equation is

—R31(b) —Ray
S31(b)
(32) Us1(a)
R31(a)
531(0.)

The dispersion relation of the system Mud 1-Steel-Mud 2 corresponds to the lower 6 X 6
matrix (at the right side) in equation (29). We consider the following material properties:
steel shear velocity, f3 = 3300 m/s; steel compressional velocity, s = 6000 m/s; steel
density, p3 = 8 g/cm?; mud velocity, agy = 1500 m/s; mud density, ps = 2 g/cm?; tube
inner an outer radii, @ = 5.43 cm and b = 6.35 cm, respectively. These values give a rod
velocity of c.;q = 5286 m/s. The phase velocity versus frequency for the rod is shown in
Figure 4, whence it is clear that the fundamental mode travels with velocity cg at very low
frequencies. Also illustrated in the Figure are the higher modes of vibration. The phase
velocity corresponding to the empty tube is represented in Figure 5. As can be seen, the
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F16. 6. Phase velocily versus frequency for longitudinal waves in a tube filled with mud.

velocity of the fundamental mode is the same as in the rod at very low frequencies, but
it decreases more rapidly for higher frequencies. The horizontal line (no dispersion) is a
solution of the period equation corresponding to the steel phase velocity. The inclusion of
the mud inside the string [equation (32)] produces a shift of the higher vibration modes
towards the low frequencies, as can be appreciated in Figure 5.

The continuation of this research involves the calculation of the longitudinal phase and
group velocities corresponding to the different composite systems (including that of Figure
1) and, in particular, the influence that the different material properties and the radial
dimensions exert on the fundamental mode traveling through the drill string.

References

1 M. A. Biot, Propagation of elastic waves in a cylindrical bore containing a fluid, J. Appl. Phys.,
23, 1952, pp. 997-1005. ‘

2 J. M. Carcione and P. Carrion, 3-D radiation paltern of the drilling bit source in finely stratified
media, Geophys. Res. Letters, 19, 1992, pp. 717-720.

3 A. G. Eringen, and E. S. Suhubi, Elastodynamics, Vol II, Linear theory, Academic Press, New
York, 1975.

4 D. C. Gazis, Three-dimensional investigation of the propagation of waves in hollow circular
cylinders. I. Analytical foundation, J. Acous. Soc. Am., 31, 1959, pp. 568-573.

5 L. Pochhammer, Uber die fortpflanzungsgeschwindigkeiten kleiner fchwingungen in einem
unbegrenzien isotropen kreiszylinder, J. reine angew. Math., 81, 1876, pp. 324-336.




	20140113182707247
	20140113182809554

