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Abstract

We calculate the compressional- and shear-wave velocities of permafrost as a function of
unfrozen water content and temperature. Unlike previous theories based on simple
slowness and/or moduli averaging or two-phase models, we use a Biot-type three-phase
theory that considers the existence of two solids (solid and ice matrices) and a liquid
(unfrozen water). The compressional velocity for unconsolidated sediments obtained
with this theory is close to the velocity computed with Wood’s model, since Biot’s theory
involves a Wood averaging of the moduli of the single constituents. Moreover, the model
gives lower velocities than the well-known slowness averaging theory (Wyllie’s equation).
For consolidated Berea sandstone, the theory underestimates the value of the
compressional velocity below 08C. Computing the average bulk moduli by slowness
averaging the ice and solid phases and Wood averaging the intermediate moduli with the
liquid phase yields a fairly good fit of the experimental data. The proportion of unfrozen
water and temperature are closely related. Fitting the wave velocity at a given
temperature allows the prediction of the velocity at the whole range of temperatures,
provided that the average pore radius and its standard deviation are known.

Introduction

Knowledge of the physical properties of frozen soils is essential for the exploitation of
mineral resources in polar areas and quantification of the amount of drilling necessary
for the construction of highways and pipelines. Exploration in polar regions requires
the knowledge of permafrost properties, in particular the degree of freezing of the
interstitial water. This has a negligible effect on density and magnetic permeability,
precluding the use of gravimetric and magnetic techniques. Fortunately, freezing has a
marked effect on wave velocities (Timur 1968). Hence, seismic and acoustic logging
methods constitute the best way to quantify the degree of ice and water saturation.
Laboratory measurements of acoustic velocities in frozen porous media have been
reported by several researchers, notably Nakano, Martin and Smith (1972), King
(1977) and Kurfurst (1976). All of them observed a sharp increase in velocities as the
temperature was decreased below 08C, mainly in sandstone samples.

Velocity control of near-surface frozen sediments is essential for the interpretation of
seismic reflection surveys. In this sense, a suitable model relating seismic velocities to
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porosity and saturation is required. Timur (1968) proposed a three-phase time-
average equation based on slowness averaging (Wyllie’s equation) for modelling
consolidated permafrost sediments. Moreover, he found that as the temperature
decreases below 08C, the water contained in the large pores freezes first, and that the
freezing process ends between ¹218C and ¹228C, in accordance with the phase
diagram of the sodium chloride–water system. The problem of transition from
‘suspension’ to ‘compacted’ sediment was treated with combined models. For instance,
averaging bulk moduli weighted with the respective porosities (Voigt’s model (Voigt
1928)) gives a simple model for consolidated sediments, while averaging the
reciprocals of bulk moduli (Reuss’s model (Reuss 1929)) accounts for unconsolidated
media (e.g. Yin 1992). Zimmerman and King (1986) used the two-phase theory
developed by Kuster and Toksöz (1974), assuming that unconsolidated permafrost can
be approximated by an assemblage of spherical quartz grains embedded in a matrix
composed of spherical inclusions of water and ice. They first compute the effective
elastic moduli of the ice–water mixture with water playing the role of inclusion. This
yields a homogeneous medium where the sand grains are the inclusions.

A three-phase theory based on first principles has been recently proposed by
Leclaire, Cohen-Ténoudji and Aguirre-Puente (1994). The theory, hereafter called the
LCA model, assumes that there is no direct contact between solid grains and ice, since,
in principle, water tends to form a thin film around the grains. The theory predicts
three compressional waves and two shear waves and can be applied to unconsolidated
and consolidated media. Leclaire et al. (1994) also provide a thermodynamic
relationship between the proportion of unfrozen water and temperature. In this
work, we first compare Leclaire et al.’s (1994) model with the other theories, as a
function of water saturation. We then analyse the effect of temperature on wave
velocity and use the theory to fit experimental data obtained by Timur (1968) and
Zimmerman and King (1986).

Phenomenological and two-phase models

Several two-phase models have been adapted for modelling the wave velocity of a
three-phase medium. The basic material properties and their descriptions are listed in
Appendix A. All the models assume that the constituents move together, so that the
composite density is simply the volume-weighted average of the densities of the
constituents, given by

r ¼ fwrw þ firi þ fsrs; ð1Þ

provided that fw þ fi þfs ¼ 1 . The compressional- and shear-wave velocities are then
given by

VP ¼

���������������������
K þ 4G=3

r

s
; VS ¼

����
G
r

s
; ð2Þ

where K is the composite bulk modulus and G is the composite shear modulus.
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Voigt’s model

This model is based on bulk modulus averaging (isostrain assumption). The composite
moduli are given by

K ¼ fwKw þ fiKi þ fsKs ð3Þ

and

G ¼ fimi þ fsms: ð4Þ

Reuss’s model

Reuss’s model (Reuss 1929), also known as Wood’s model (Wood 1941), averages the
reciprocal of the bulk moduli (isostress assumption). The composite bulk modulus is
obtained from

1
K

¼
fw

Kw
þ

fi

Ki
þ

fs

Ks
ð5Þ

and the shear modulus is obtained from

1
G

¼
fi

mi
þ

fs

ms
ð6Þ

for fw ¼ 0 and G ¼ 0 for fw Þ 0. These equations have been proved useful for
emulsions and suspensions of solid particles in a continuous liquid phase
(unconsolidated sediments, see White 1965; Schön 1996).

Time-average model

Wyllie, Gregory and Gardner (1956) introduced the time-average formula, that
consists of slowness averaging. The composite moduli are obtained from���������������������

r

K þ 4G=3

r
¼ fw

�������
rw

Kw

r
þ fi

����������������������
ri

Ki þ 4mi=3

r
þ fs

����������������������
rs

Ks þ 4ms=3

r
ð7Þ

and ����
r

G

r
¼ fi

����
ri

mi

r
þ fs

�����
rs

ms

r
ð8Þ

if fw ¼ 0 and G ¼ 0 for fw Þ 0.
This model was applied by Timur (1968) to consolidated permafrost sediments.

Minshull et al.’s model

Application of Gassmann’s two-phase equation (Gassmann 1951) to permafrost
follows the work by Minshull, Singh and Westbrook (1994) who used the equation for
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modelling partially hydrated sediments. First, the time-average relationship is used to
determine the moduli K1 and G1 for full ice saturation,������������������������

r1

K1 þ 4G1=3

r
¼ fs

����������������������
rs

Ks þ 4ms=3

r
þ ð1 ¹ fsÞ

����������������������
ri

Ki þ 4mi=3

r
; ð9Þ

������
r1

G1

r
¼ fs

�����
rs

ms

r
þ ð1 ¹ fsÞ

����
ri

mi

r
; ð10Þ

where r1 ¼ fsrs þ (1 ¹ fs)ri. Secondly, Gassmann’s equation determines the moduli
for the water-filled sediment,

K2 ¹ Ksm ¼
ð1 ¹ Ksm=KsÞ

2

ð1 ¹ fsÞ=Kw þ fs=Ks ¹ Ksm=K2
s
; ð11Þ

G2 ¼ msm; ð12Þ

with r2 ¼ fsrs þ (1 ¹ fs)rw.
Finally, the moduli for partial saturation are obtained by slowness averaging as���������������������

r

K þ 4G=3

r
¼ ð1 ¹ sÞ

������������������������
r1

K1 þ 4G1=3

r
þ s

������������������������
r2

K2 þ 4G2=3

r
ð13Þ

and ����
r

G

r
¼ ð1 ¹ sÞ

������
r1

G1

r
þ s

������
r2

G2

r
; ð14Þ

where s ¼ fw/(1 ¹ fs) is the water saturation.

Zimmerman and King’s model

Zimmerman and King (1986) and King, Zimmerman and Corwin (1988) extended
the two-phase theory developed by Kuster and Toksöz (1974) for modelling
unconsolidated permafrost. They first compute the effective elastic moduli of the
ice–water mixture with water playing the role of inclusion. This yields a homogeneous
medium where the sand grains are the inclusions.

The moduli of the homogeneous medium are given by

Kh

Ki
¼

1 þ ½4miðKw ¹ KiÞ=ð3Kw þ 4miÞKiÿs
1 ¹ ½3ðKw ¹ KiÞ=ð3Kw þ 4miÞÿs

ð15Þ

and

Gh

mi
¼

ð1 ¹ sÞð9Kw þ 8miÞ

9Ki þ 8mi þ sð6Ki þ 12miÞ
; ð16Þ

where s ¼ fw/(1 ¹ fs) is the water concentration. In the second stage, the inclusion
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concentration is fs. The expressions of the elastic moduli are given by

K
Kh

¼
1 þ ½4GhðKs ¹ KhÞ=ð3Ks þ 4GhÞKhÿfs

1 ¹ ½3ðKs ¹ KhÞ=ð3Ks þ 4GhÞÿfs
ð17Þ

and

G
Gh

¼
ð6Kh þ 12GhÞms þ ð9Kh þ 8GhÞ½ð1 ¹ fsÞGh þ fsmsÿ

ð9Kh þ 8GhÞGh þ ð6Kh þ 12GhÞ½ð1 ¹ fsÞms þ fsGhÿ
: ð18Þ

Three-phase model

The theory developed by Leclaire et al. (1994) explicitly takes into account the
presence of the three phases. The three compressional velocities of the three-phase
frozen porous medium are given by

VPi ¼ Re
�����
Li

p� �h i¹1
; i ¼ 1; . . . ; 3; ð19Þ

where Re denotes the real part and Li are obtained from the following characteristic
equation:

AL3 ¹ ½r11B þ r22C þ r33D ¹ 2ðR11R23r23 þ R33R12r12ÞÿL
2

þ ½bR11 þ cR22 þ dR33 ¹ 2ðr11r23R23 þ r33r12R12ÞÿL ¹ a ¼ 0: ð20Þ

The velocities of the two shear waves are given by

VSi ¼ Re
�����
Qi

p� �h i¹1
; i ¼ 1; 2; ð21Þ

where Qi are obtained from the second-order equation

Q2r22m1m3 ¹ Qðm1b þ m3dÞ þ a ¼ 0: ð22Þ

The coefficients in (20) and (22) are given in Appendix B.
Assuming a Gaussian porosimetric distribution, the unfrozen water proportion fw

can be obtained as a function of temperature as

fw ¼ ð1 ¹ fsÞDr¹1ð2pÞ¹1=2
Z r0=lnðT0=TÞ

¹∞
exp ½¹ðr ¹ ravÞ

2
=ð2Dr2Þÿdr; ð23Þ

where r0 ¼ 2.28 × 10¹10 m, rav is the average pore radius and Dr is the standard
deviation (Leclaire et al. 1994). The temperature T is given in degrees Kelvin and
T0 ¼ 273 8K.

Examples

The material properties for an unconsolidated porous medium are given in Table 1 and
we assume a porosity 1 ¹ fs ¼ 0.4. The stiffnesses and densities are those given by
Zimmerman and King (1986) and, for completeness, the values of the permeabilities and
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water viscosity are given, though they do not greatly affect the wave velocities at low
frequencies. Figure 1 compares low-frequency compressional- and shear-wave velocities
versus water saturation fw/(1 ¹ fs), corresponding to the different theories. The curve
LCA1 corresponds to the fast wave and LCA2 and LCA3 to the slow waves. These are
generated by the out-of-phase motion between two of the three phases (Leclaire, Cohen-
Ténoudji and Aguirre-Puente 1995). Note that the theory assumes that there is no direct
contact between the solid substrate and ice, allowing a differential motion between the
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Table 1. Properties of unconsolidated permafrost.

Quartz rs = 2700 kg/m3 Ks = 44 GPa ms = 37 GPa ks0 = 10¹11 m2

Ice ri = 920 kg/m3 Ki = 8.4 GPa mi = 3.7 GPa ki0 = 5 × 10¹4 m2

Water rw = 1000 kg/m3 Kw = 2 GPa mw = 0 GPa h̄w = 1.798 × 10¹3 cP
Ksm = 0 GPa msm = 0 GPa rs = 180 mm r12 = 0.5 r23 = 0.5

Figure 1. Low-frequency (a) compressional-wave and (b) shear-wave velocities versus the
proportion of unfrozen water predicted by the different theories. The medium is unconsolidated
and its properties are given in Table 1. The curves corresponding to the three-phase theory are
labelled LCA, where LCA1 is the fast wave and LCA2 and LCA3 are the slow waves.



different phases. In order to obtain the curves, we have neglected the dependence of
water content on temperature. Actually, as indicated by (23) and illustrated in the
example below, a rigorous application of the theory implies the use of a precise
thermodynamic relationship between the proportion of unfrozen water and temperature.

The curves LCA1, M (Minshull et al. 1994), ZK (Zimmerman and King 1986) and
W (Wood’s model) in Fig. 1(a) meet and give Biot’s results at full water saturation, but
they give different values at full ice saturation. In particular, Wood’s velocity (W) is
very close to the velocity predicted by the LCA theory. This can be explained from the
fact that the average bulk moduli Kav and mav are very similar to Wood’s averages. All
the theories correctly predict the behaviour of the fast-wave velocity in a partially
frozen medium, i.e. velocity decreases for increasing water saturation. Note that the
time-average theory predicts a higher velocity than the other three theories. Moreover,
we observe that the velocity given by the curve LCA1 increases abruptly approaching
full ice saturation, as indicated by the nearly vertical segment of the curve. Finally, the
V (Voigt’s model) curve seems to overestimate the velocity.

On the other hand, the shear wave predicted by the LCA model propagates mainly
through the ice skeleton (LCA1 in Fig. 1b), and gives a lower velocity than that
predicted by Zimmerman and King’s model (ZK). This can be explained by the fact
that, in the LCA model, the ice and solid frames are not in direct contact, reducing the
stiffness of the composite. Both curves yield zero velocity for full water saturation, since
at this point the medium constitutes an unconsolidated mixture of sand and water.

Figure 2 shows the compressional-wave velocity versus temperature in (consolidated)
Berea sandstone. The dots correspond to experimental data measured by Timur (1968),
with the sample subjected to a uniaxial pressure of 313 atm and the pore fluid under
atmospheric pressure. The sample, with a porosity equal to 0.2, was first cooled to
¹238C, and then brought back to room temperature. Two curves, computed at 200 kHz,
are fitted to the experimental points. The properties, illustrated in Table 2, are taken from
Timur (1968) and Winkler (1985), assuming rav ¼ 10 mm and Dr ¼ 4 mm. The dotted
curve corresponds exactly to the LCA theory. As can be seen the velocity is
underestimated below 08C. The broken line, which fits the data fairly well, was obtained
from the three-phase model by computing the average bulk moduli as follows:

Kav ¼
1 ¹ fw

K 0
þ

fw

Kw

� �¹1

ð24Þ

and

mav ¼
1 ¹ fw

m0
þ

fw

2qhw

� �¹1

; ð25Þ

where

K 0 ¼
fsrs þ firi

fs þ fi
V 0

P
2
¹

4
3

V 0
S

2
� �

; ð26Þ

m0 ¼
fsrs þ firi

fs þ fi
V 0

S
2
; ð27Þ
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V 0
P ¼

fs

fs þ fi

1
rs

Ks

1 ¹ c1
þ

4
3

� �
ms

1 ¹ g1

� �� �¹1=2�

þ
fi

fs þ fi

1
ri

Ki

1 ¹ c3
þ

4
3

� �
mi

1 ¹ g3

� �� �¹1=2�¹1

ð28Þ

and

V 0
S ¼

fs

fs þ fi

1
rs

� �
ms

1 ¹ g1

� �¹1=2

þ
fi

fs þ fi

1
ri

� �
mi

1 ¹ g3

� �¹1=2� �¹1

: ð29Þ

Leclaire et al. (1994) computed the average moduli by extending Biot’s equations to
include the ice phase. This generalization involves a Wood averaging. In (24)–(29), we
use a time-average equation for computing the moduli of a solid-ice effective frame.
These moduli are then Wood averaged together with the water modulus for obtaining
Kav and mav. In fact, computing the average bulk moduli in this way increases the value
of the compressional velocity and the theory better fits Timur’s (1968) experimental
values below 08C. Moreover, the sharp velocity increase at 08C, observed in the
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Table 2. Properties of partially frozen Berea sandstone.

Quartz rs = 2650 kg/m3 Ks = 38.7 GPa ms = 39.6 GPa ks0 = 1.07 10¹13 m2

Ice ri = 920 kg/m3 Ki = 8.58 GPa mi = 3.32 GPa ki0 = 5 × 10¹4 m2

Water rw = 1000 kg/m3 Kw = 2.25 GPa mw = 0 GPa h̄w = 1.798 × 10¹3 cP
Ksm = 14.4 GPa msm = 13.1 GPa rs = 50 mm r12 = 0.5 r23 = 0.5

Figure 2. Compressional-wave velocity versus temperature in (consolidated) Berea sandstone at
200 kHz. The dots correspond to experimental data measured by Timur (1968). The dotted
curve corresponds exactly to the three-phase theory. The broken line, which fits the data fairly
well, was obtained from a modification of this model.



experiments, is a feature that theory predicts fairly well. This modification to the
original theory could be considered a cementation effect, where ice forms at grain
contacts and increases the stiffness of the matrix (e.g. Jacoby, Dvorkin and Liu 1996).

Figure 3 shows Timur’s (1968) experimental points for Berea sandstone, compared
with the phenomenological theories. As suggested by Zimmerman and King (1986),
their model, which works well for unconsolidated permafrost, cannot be directly
applied to consolidated permafrost; consequently, the predictions of (17) and (18) are
not shown in Fig. 3. Since the models do not consider the temperature dependence, we
have assumed that below freezing point, the pores are fully saturated with ice, and that
above freezing point the pores are water saturated. As can be appreciated, the best fit is
obtained with Minshull et al.’s (1994) model (M). Note that below 08C the time-
average curve coincides with the M curve.

Finally, Fig. 4 shows compressional velocity versus temperature, where we
attempted to fit the experimental velocity values corresponding to samples C2 and
C5 of Zimmerman and King (1986), which have a porosity of 0.4. The samples were
measured at 660 kHz, at a hydrostatic confining stress of 0.35 MPa and at a
temperature of approximately ¹58C. As in Fig. 2, the dotted line corresponds to
Leclaire et al.’s (1994) theory and the broken line to the modified three-phase model.
For the calculation, we have assumed that the porosimetric distribution has an average
radius of rav ¼ 30 mm and a standard deviation Dr ¼ 10 mm. Figure 5 shows the
proportion of unfrozen water fw as a function of temperature, computed from (23).
The temperature ¹58C corresponds to an unfrozen water content of 2.2 × 10¹6, in
contrast to the values, ranging between 0.09 and 0.17, predicted by Zimmerman and
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Figure 3. Compressional-wave velocity versus temperature in (consolidated) Berea sandstone.
The dots correspond to experimental data measured by Timur (1968) and the other curves to
the different phenomenological theories. These can be identified in the legend provided in
Fig. 1(a).



King (1986). This discrepancy could be due to the fact that (23) holds for fresh water.
To overcome this limitation, the quantity r0 can be used as a parameter in order to take
into account the salinity content of the pore water. As stated by Timur (1968), as the
ice crystallizes out as pure H2O, the sodium chloride concentration of the remaining
solution increases, thereby further lowering the freezing point. Hence, ice may be
thought of as forming on the walls of the larger pores and growing into the pore
spaces.

450 J.M. Carcione and G. Seriani

q 1998 European Association of Geoscientists & Engineers, Geophysical Prospecting, 46, 441–454

Figure 4. Compressional-wave velocity versus temperature, where we attempted to fit the
experimental velocity values corresponding to samples C2 and C5 of Zimmerman and King
(1986).

Figure 5. Proportion of unfrozen water versus temperature for an average pore radius of rav ¼

30 mm and a standard deviation Dr ¼ 10 mm.



Conclusions

Leclaire et al.’s (1994) three-phase theory is used for computing the wave velocity of
consolidated and unconsolidated permafrost. The model describes the phase transition
of the interstitial fluid between liquid state and solid state.

In principle, the predictions of the theory as a function of the proportion of unfrozen
water are close to the predictions of Wood’s (1941) model. However, fitting the
velocities for consolidated permafrost at different temperatures requires a slowness
averaging of the ice and solid phases when computing the average moduli. This
phenomenological modification of the theory, probably simulating grain cementation,
gives higher dilatational and shear moduli and could be implemented from first
principles by including the crossed terms (neglected in the theory) that are responsible
for the direct mechanical contact between the ice and solid phases.

Differences between the theoretical velocity and the experimental data may be due to
several factors not considered by the theory, for instance the presence of clay, water
salinity, dependence of the solid and ice moduli on temperature and cementation
between the grains. The influence of these factors will be investigated in future work.
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Appendix A

List of symbols

fs proportion of solid;
fw proportion of unfrozen water;
fi proportion of ice;
rs solid density;
rw water density;
ri ice density;
Ks solid bulk modulus;
Kw water bulk modulus;
Ki ice bulk modulus;
Ksm bulk modulus of the matrix formed by the solid phase;
Kmax Kuster–Toksöz’s bulk modulus;
Kim bulk modulus of the matrix formed by the ice: Kmax[fi/(1 ¹ fs)]3.8;
c1 consolidation coefficient for the solid: Ksm/fsKs;
c3 consolidation coefficient for the ice: Kim/fiKi;
Kav average bulk modulus: [(1 ¹ c1)fs/Ks þ fw/Kw þ (1 ¹ c3)fi/Ki]

¹1;
ms solid shear modulus;
mi ice shear modulus;
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msm shear modulus of the matrix formed by the solid phase;
mmax Kuster–Toksöz’s shear modulus;
mim shear modulus of the matrix formed by the ice: mmax [fi/(1 ¹ fs)]3.8;
ks0 solid matrix permeability;
ki0 ice matrix permeability;
q angular frequency: 2pf;
T water temperature in degrees Celsius;
h̄w viscosity of free water: 1.798 10¹3 exp (¹0.03753T ) (MKS units);
h average thickness of the unfrozen water layer: rs[(1 þ fw/fs)

1/3 ¹ 1];
hw viscosity of interstitial water: h̄w (450 þ h)/h, with h in angstroms;
x : (h/2) (qrw/hw)1/2;
Re[F(x)] : 1 þ (1/0.7178) exp [0.7178(x¹ 3.2)]/12, if x # 3.2;
Re[F(x)] : 0.5 þ {2 x þ exp [¹0.7178 (x¹ 3.2)]}/12, if x > 3.2;
Im[F(x)] : x/6;
hD dynamical viscosity of interstitial water: hw F(x);
g1 consolidation coefficient for the solid: msm/fsms;
g3 consolidation coefficient for the ice: mim/fimi;
mav average shear modulus: [( 1 ¹ g1)fs/ms þ fw/2qhw þ (1 ¹ g3)fi/mi]

¹1;
r12 geometrical aspect of the boundary separating solid from water;
r23 geometrical aspect of the boundary separating ice from water;
rs average radius of solid grains;
rav average radius of the capillary pore;
Dr standard deviation of the capillary pore.

Appendix B

Coefficients for the three-phase model

Additional expressions, corresponding to equations (20) and (22), are given below.

A ¼ R11R22R33 ¹ R2
23R11 ¹ R2

12R33;

B ¼ R22R33 ¹ R2
23;

C ¼ R11R33;

D ¼ R11R22 ¹ R2
12;

a ¼ r11r22r33 ¹ r2
23r11 ¹ r2

12r33;

b ¼ r22r33 ¹ r2
23;

c ¼ r11r33;
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d ¼ r11r22 ¹ r2
12;

R11 ¼ ½ð1 ¹ c1Þfsÿ
2Kav þ Ksm þ

4
3

f½ð1 ¹ g1Þfsÿ
2mav þ msmg;

R12 ¼ ½ð1 ¹ c1ÞfsÿfwKav;

R22 ¼ f2
wKav;

R23 ¼ ½ð1 ¹ c3ÞfiÿfwKav;

R33 ¼ ½ð1 ¹ c3Þfiÿ
2Kav þ Kim þ

4
3

f½ð1 ¹ g3Þfiÿ
2mav þ mimg;

r11 ¼ fsrs þ ða12 ¹ 1Þfwrw ¹ ıb1=q;

r12 ¼ ¹ða12 ¹ 1Þfwrw þ ıb1=q;

r22 ¼ ða12 þ a23 ¹ 1Þfwrw ¹ ıðb1 þ b3Þ=q;

r23 ¼ ¹ða23 ¹ 1Þfwrw þ ıb3=q;

r33 ¼ firi þ ða23 ¹ 1Þfwrw ¹ ıb3=q;

b1 ¼ hDf2
w=ks;

b3 ¼ hDf2
w=ki;

ks ¼ ks0f
3
w=ð1 ¹ fsÞ

3;

ki ¼ ki0½ð1 ¹ fsÞ=fiÿ
2ðfw=fsÞ

3;

a12 ¼ r12ðfsrÞ=ðfwrwÞ þ 1;

a23 ¼ r23ðfir
0Þ=ðfwrwÞ þ 1;

r ¼ ðfwrw þ firiÞ=ðfw þ fiÞ;

r0 ¼ ðfwrw þ fsrsÞ=ðfw þ fsÞ;

m1 ¼ ½ð1 ¹ g1Þfsÿ
2mav þ msm;

m3 ¼ ½ð1 ¹ g3Þfiÿ
2mav þ mim:

The expressions for Kmax and mmax can be found in Zimmerman and King (1986)
(equations (1) and (2), respectively), with the subscript m corresponding to ice,
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subscript i corresponding to air and the concentration c equal to fs. They are the
moduli of the ice matrix, with the water totally frozen and the solid replaced by air.
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Gassmann F. 1951. Über die Elastizität poröser Mediem. Vierteljahrsschr. Naturforsch. Ges.
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