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The pure shear problem is one of relative mathematical simplicity and includes the essential physics
common to more complicated cases, where multiple and coupled deformations occur. In this sense,
the analysis of torsional waves serves as a pilot problem for investigating the influence of anisotropy
and/or anelasticity on solution behavior. We obtain the kinematic and dynamic properties of
torsional axially symmetric harmonic waves propagating in an infinitely long circular cylinder. The
medium is transversely isotropic and dissipative, with its symmetry axis coincident with the axial
axis of the cylinder. For an elastic cylinder each mode has a cutoff frequency and below that
frequency there is no propagation. For tubes made of quartz and aluminum Lucite, we found that the
existence of the cutoff frequencies depend on the degree of anisotropic attenuation, i.e., if the axial
quality factor is greater than the transverse quality factor, the modes propagate at all frequencies. In
contrast to the elastic case, the Poynting vector and the energy velocity have a component along the
radial direction, whose values depend on the transverse attenuation. The presence of intrinsic
attenuation confines the energy near the~elastic!cutoff frequencies while the radial distribution of
the energy is governed by the geometrical features of the cylinder. ©1998 Acoustical Society of
America.@S0001-4966~98!02002-5#

PACS numbers: 43.20.Jr, 43.20.Ks@JEG#
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INTRODUCTION

Laboratory measurements of wave propagation in cy
drical samples provide a method for estimating the ela
and anelastic properties of rocks and metals. For insta
intrinsic attenuation can be obtained from measurement
cylindrical bars~Kolsky, 1953; White, 1965; Blair, 1990
Tang, 1992!. Moreover, analysis of wave propagat
through hollow cylinders and tubes has many enginee
applications~Soldatos, 1994!, ranging from nondestructi
evaluation of oil and gas pipelines, acoustic teleme
~Drumheller, 1993!to attenuation of waves inside rigid pipe
containing acoustic liners~Greenspon and Singer, 1995!. In
the exploration industry, the interest resides in the propa
tion of pulses through drill strings, since these pulses
used as pilot signals for the data processing of seismogr
generated by the roller cone bit~Rector and Hardage, 1992

In this work, we compute the phase and energy velo
ties of torsional oscillations propagating in a lossy ani
tropic hollow cylinder. The theory is a generalization of pr
vious works~Mirsky, 1965a, b; Armenakas and Reitz, 197
Carcione and Seriani, 1994!where a purely elastic cylinde
was assumed.

I. THE GOVERNING EQUATIONS

The problem is solved in cylindrical coordinates (r ,w,z)
and an axially symmetric hollow cylinder of interior an
exterior radiia andb is assumed. This implies that the sym
metry axis of the medium coincides with the axial axis of t
cylinder ~z axis!. In this case, the wave field does not depe
on the azimuthal variablew.

a!Electronic mail: jcarcione@ogs.trieste.it
b!Electronic mail: gseriani@ogs.trieste.it
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In absence of body forces, the equations describing
motion of torsional viscoelastic waves are

rüw5] rswr1]zswz1
2

r
swr , ~1!

swr5ċ66* S ] ruw2
uw

r D , ~2!

swz5ċ44* ]zuw , ~3!

whereuw is the displacement component,swr and swz are
the stress components,r is the density, andc44 andc66 are
~time-dependent!relaxation functions. The symbol* denotes
time convolution,] spatial differentiation, and a dot above
variable time differentiation.

Since the torsional waves are decoupled from the qu
compressional and quasi-shear motions, they can be
scribed, as in the isotropic case, by a potential functionf,

uw52] rf. ~4!

Substituting the stresses into the conservation equation~1!,
and using Eq.~4!, we obtain the equation of motion,

rf̈5ċ44* ]zzf1ċ66* S ] rr f1
1

r
] rf D . ~5!

II. THE SOLUTION

The time-harmonic solution has the form

f5F~r ,z!exp~ivt !, ~6!

wherev is the angular frequency andi5A21. Substitution
of Eq. ~6! into Eq.~5! gives the generalized Helmholtz equ
tion
76003(2)/760/7/$10.00 © 1998 Acoustical Society of America
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1

b2r
] r~r ] rF !1]zzF1

v2

V2 F50, ~7!

where

b5Ap44

p66
~8!

and

p445F ~ ċ44!, p665F ~ ċ66! ~9!

are the complex stiffnesses, with the operatorF denoting the
time Fourier transform. Moreover,

V5Ap44

r
~10!

is the complex body wave velocity along the symmetry a
of the medium.

The general solution for time-harmonic waves along
positivez direction is

f~r ,z,t;g,v!5@A0J0~kr !1B0Y0~kr !#

3exp@i~vt2gz!#, ~11!

whereJ0 andY0 are Bessel functions of the first and seco
kinds, respectively, andA0 and B0 are arbitrary constants
The radial and vertical wave numbersk andg are related by

k25b2S v2

V22g2D . ~12!

Application of the boundary conditions at the inner and ou
surfaces of the cylinder,

swr~r 5a!50 and swr~r 5b!50, ~13!

imply

A0J2~ka!1B0Y2~ka!50, ~14!

A0J2~kb!1B0Y2~kb!50, ~15!

where the following properties were used:] rJ0(kr)
52kJ1(kr) and (] rr 2r 21] r)J0(kr)5k2J2(kr). Making
zero the determinant of the linear system gives the perio
dispersion equation

J2~ka!Y2~kb!2J2~kb!Y2~ka!50. ~16!

Equation~16! is identical to the purely elastic period dispe
sion, where the rootsk1 ,k2 ,...,kj ,... arereal. Abramowitz
and Stegun~1964, p. 374! give an approximate formula fo
the rootqj[kja that can be used forb/a,3. Here, we com-
pute the exact roots by using the Mathematica software.

The velocity of the lowest torsional mode is not appr
priately obtained from Eq.~16!. This mode corresponds t
k50 and the displacement to a rotation of each transve
section of the cylinder as a whole about its center@see, for
instance, Christensen~1982!, p. 47#. The dispersion of this
mode is caused by the intrinsic attenuation along the ra
direction. The phase velocity is

cp5@Re~V21!#21, ~17!

where Re denotes the real part.
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III. PHYSICAL VELOCITIES AND DISSIPATION
FACTORS

The location of a pulse traveling in the axial directio
requires the explicit calculation of the energy velocity, sin
the concept of group velocity loses its physical meaning. T
presence of attenuation considerably distorts the modula
envelope of the pulse~e.g., Carcione, 1994!. Besides th
presence of intrinsic attenuation, the energy velocity displ
local information not contained in the group velocity~see the
discussion in Simmonset al., 1992!.

A. Phase velocity and attenuation factor

The phase velocity and attenuation factor versus
quency corresponding to thej mode are

cp~v!5
v

Re~g!
and a~v!52Im~g!, ~18!

where

g~v!5
v

cp
2ia5p.v.S v2

V2~v!
2

kj
2

b2~v!
D 1/2

, ~19!

with p.v. denoting the principal value and Im the imagina
part.

The calculation of the phase velocity and attenuat
versus wavelength is not straightforward. Since

l~v![G~v!5
2p

Re@g~v!#
, ~20!

v5G21(l) and a formal solution is

cp~l!5
l

2p
G21~l! and a5Im$g@G21~l!#%. ~21!

However, relation~20! is, in general, not invertible. The
most simple procedure is to plot the pairs@cp(v),l(v)# and
@a~v!,l~v!#.

B. Energy velocity and quality factor

Calculation of the energy velocity and quality factor r
quires energy considerations. The Umov–Poynting theor
or energy balance equation, for time-harmonic fields
anisotropic-viscoelastic media~Carcione and Cavallini,
1993! is

div P22iv~^es&2^ev&!1v^ed&50, ~22!

whereP is the complex Umov–Poynting vector defined a

P52 1
2S–u̇* , ~23!

with S the stress tensor,

^ev&5 1
4ru̇T

•u̇* ~24!

is the time-average kinetic energy density,

^es&5Re~E ! and ^ed&52 Im~E ! ~25!

are the time-average stored and dissipated energy dens
respectively, with

E5 1
4S

T
–p–S* ~26!
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z,
the complex energy density,S the strain vector, andp the
complex stiffness matrix. The asterisk used as supersc
denotes complex conjugation, the symbol–, ordinary matrix
multiplication, and the superscriptT, transpose.

The Poynting vector is

P52 1
2~swzêz1swr êr !u̇w* . ~27!

Substituting the potential~11! into Eq.~4! and using Eq.~14!
gives

uw5kA0R1 exp~2az!exp@iv~ t2z/cp!#, ~28!

where

Ri~kr !5Ji~kr !2
J2~ka!

Y2~ka!
Yi~kr !, i51,2. ~29!

Note thatR2(ka)50 and by virtue of the dispersion equatio
~16!, R2(kb)50. The stress components are given by E
~2! and ~3!,

swz52igkp44A0R1 exp~2az!exp@iv~ t2z/cp!#,
~30!

swr52k2p66A0R2 exp~2az!exp@iv~ t2z/cp!#. ~31!

Then,

P5 1
2vk2uA0u2R1~p44gR1êz2ip66kR2êr !exp~22az!.

~32!

From Eq.~26!, the complex energy density is

E5 1
4~p44uSwzu21p66uSwr u2!, ~33!

where

Swz5]zuw and Swr5] ruw2
uw

r
~34!

are the strain components. Using Eq.~28! we obtain

E5 1
4k

2uA0u2~p44ugu2R1
21p66k

2R2
2!exp~22az!. ~35!

The kinetic energy density is simply

^ev&5 1
4rv2k2uA0u2R1

2 exp~22az!. ~36!

In contrast to unbounded homogeneous and elastic me
the average kinetic and potential energy densities are di
ent in elastic cylinders. This is shown in the Appendix.

The energy velocityve is the ratio of the average powe
flow density Re(P) to the mean energy density^ev1es&.
Then,

ve5
Re~P!

^ev1es&

5
2v@Re~gp44!R1

2êz1k Im~p66!R1R2êr #

rv2R1
21ugu2R1

2 Re~p44!1k2R2
2 Re~p66!]

. ~37!

Equation~37! becomes

ve5
2v@Re~gp44!êz1k Im~p66!~R2 /R1!êr #

rv21ugu2 Re~p44!1k2 Re~p66!~R2 /R1!2]
. ~38!

Note that the dependence on the radial variabler is con-
tained inR2 /R1 . While the energy velocity is constant for
plane wave in unbounded media, it is a function ofr for
762 J. Acoust. Soc. Am., Vol. 103, No. 2, February 1998
ipt

s.

ia,
r-

cylindrical systems and has a component in the radial dir
tion. This component vanishes in the purely elastic ca
since Im(p66)50. At r 5a and r 5b, R2 vanishes and using
Eq. ~10!,

ve5
2v Re~gV2!

v21ugu2 Re~V2!
êz . ~39!

The quality factor can be obtained as the ratio of twice
stored energy to the dissipated energy, giving

Q5
2^es&

^ed&
5

Re~p44!ugu21k2 Re~p66!~R2 /R1!2

Im~p44!ugu21k2 Im~p66!~R2 /R1!2 . ~40!

At r 5a and r 5b Eq. ~40! reduces to

Q5
Re~p44!

Im~p44!
, ~41!

that is, the quality factor of the shear body wave traveli
along the symmetry axis of the medium.

IV. EXAMPLES

We use a phenomenological model based on a viscoe
tic rheology. The theory assumes a single standard lin
solid element describing the anelastic deformations ass
ated with the axial direction (n51) and the radial direction
(n52). We take

p445c44M1 , p665c66M2 , ~42!

where the complex moduli can be expressed as

M n~v!5
AQ0n

2 11211 ivQ0nt0

AQ0n
2 11111 ivQ0nt0

. ~43!

The quality factorQn , associated with of each moduli, i
equal to the real part ofM n divided by its imaginary part.
The curveQn

21(v) has its peak atv051/t0 , and the value
of Qn at the peak isQ0n . The high-frequency limit corre-
sponds to the elastic case withM n→1. The relaxation func-
tions associated with the complex stiffnesses arec44

5c44x1 andc665c66x2 , where

xn~ t !5F t2
~n!

t1
~n!2S t2

~n!

t1
~n!21D exp~2t/t2

~n!!GH~ t !, ~44!

with H(t) the Heaviside function, and

t6
~n!5

t0

Q0n
@AQ0n

2 1161#. ~45!

We introduce the anisotropic loss parameter

h5
Q01

Q02
~46!

and assume that h51.2b` , where b`5b(v→`)
5Ac44/c66.

We consider two materials~see Thomsen, 1986!; quart
with c44553.21 GPa,r52.65 gr/cm3, b`51.21 and Q01

5100; and aluminum-Lucite composite withc4453.4 GPa,
r51.86 gr/cm3, b`50.53 andQ01510. The calculations are
carried out for samples havinga51 cm andb52 cm. If qj
762J. M. Carcione and G. Seriani: Torsional waves in cylinders
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5kja, the first three roots of the dispersion equation~16! are
q153.4069,q256.4278, andq359.5228. These roots ar
independent of the material properties.

A. Quartz

Normalized phase velocity and attenuation versus
quency corresponding to the first and third propagat
modes are represented in Fig. 1~continuous and broken
lines, respectively!. The thin broken lines are the respec
elastic phase velocities, that tend to infinity at the cut
frequencies f c5201 kHz and f c5561 kHz @g50 in Eq.
~12!#. There are no cutoff frequencies in the viscoelas
case, although the attenuations belowf c are so high that
wave propagation is precluded in practice.

Figure 2 represents the normalized displacement fi
~32! for mode 3 as a function of frequency and radial d
tance~from r 5a to r 5b!. The upper picture corresponds
z50 and the lower picture toz50.1 m. In this case, the
strong attenuation below the~elastic!cutoff frequency pre-
vents any particle motion. Moreover, the viscoelastic
causes the dissipation at high frequencies.

The modulus of the normalized energy velocity, vers
frequency and radial distance, is represented in Fig. 3.
surface practically shows the axial component of the ene
velocity vector, since the radial component is very sm
The energy velocity vanishes where there is no particle m
tion ~see Fig. 2!. These minima in the energy velocity are
due to the elasticity but to the geometrical features of
cylinder. As can be seen, the energy velocity displays lo
information not contained in the group velocity. It can
shown that the elastic energy velocity, when defined as

FIG. 1. Quartz: normalized phase velocity and attenuation versus frequ
corresponding to the first and third propagation modes~continuous and bro-
ken lines, respectively!. The normalization constant is the axial elastic v
locity c5(c44 /r)1/2. The thin broken lines are the respective elastic ph
velocities.
763 J. Acoust. Soc. Am., Vol. 103, No. 2, February 1998
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FIG. 2. Quartz: normalized displacement field for mode 3 as a function
frequency and radial distance. The upper picture corresponds toz50 and
the lower picture toz50.1 m. The normalization constant is the displac
ment atf 51 MHz, r 5a andz50.

FIG. 3. Quartz: modulus of the normalized energy velocity, versus
quency and radial distance. The normalization constant is the axial el
velocity c5(c44 /r)1/2.
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FIG. 4. Quartz: distribution of the energy along the radial distance, as a function of frequency. The left pictures correspond to the mean ener
^ev1es& and the right pictures are the dissipated energy densities^ed&. The normalization constante0 is the total energy atf 51 MHz, r 5a andz50.
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ratio of the time average of the power per cross section
the time average of the total energy per unit length of cy
der, equals the group velocity~e.g., Achenbach, 1973, pp
214!.

FIG. 5. Quartz: quality factors versus frequency and radial distance
764 J. Acoust. Soc. Am., Vol. 103, No. 2, February 1998
d
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Figure 4 shows the distribution of the energy along t
radial distance, as a function of frequency. The left pictu
correspond to the mean energy density^ev1es& and the right
pictures are the dissipated energy densities^ed&. The first

FIG. 6. Aluminum Lucite: phase velocity and attenuation curves ver
frequency, corresponding to the first and third propagation modes~continu-
ous and broken lines, respectively!. The normalization constant is the a
elastic velocityc5(c44 /r)1/2. The thin broken lines are the respective ela
tic phase velocities.
764J. M. Carcione and G. Seriani: Torsional waves in cylinders
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mode is approximately 200 times stronger than the th
mode, and both modes carry more energy at the high
quencies. This happens at the onset of the perturbatioz
50), since forzÞ0 the high frequencies are attenuated
the viscoelastic effects and the motion is confined near
~elastic!cutoff frequencies~Fig. 2!.

Finally, the quality factors are represented in Fig.
They have a minimum value atv0 , the location of the re-
laxation peak. The location of the minima along the rad
direction coincide with the positions of zero particle moti
~see Fig. 2!.

It is important to distinguish between two attenuati
effects. One is of viscoelastic nature, that is reflected in
shape of the quality factors surface as a function of f
quency. The other is geometrical effect that produce
minima along the radial direction and causes the strong
tenuation below the elastic cutoff frequencies~see Fig. 1!.

B. Aluminum Lucite

In contrast to quartz, this material hash,1, and there-
fore, the attenuation is higher along the axial direction. D
to this fact, the physics of wave propagation is differe
Figure 6 shows the phase velocity and attenuation cu
versus frequency. In this case, there is a cutoff freque
even in the presence of anelasticity. The displacements
ergy densities and energy velocity surfaces are simila
those of quartz. The quality factors are represented in Fig
They have a minimum value atv0 , the location of the re-
laxation peak, and, unlike quartz, the surfaces pres
maxima along the radial direction.

FIG. 7. Aluminum Lucite: quality factors versus frequency and radial d
tance.
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APPENDIX: ENERGY BALANCE

In unbounded media divP522a–P ~Carcione and Cav-
allini, 1993!. If there are no losses, Eq.~22! implies that the
average kinetic energy equals the average potential ene
An analysis based on Eq.~22! shows that this is not the cas
for cylinders. In order to verify the energy balance Eq.~22!
we explicitly calculate the divergence of the Poynting vec
~32!. This can be written as

P5Pr êr1Pzêz , ~A1!

where

Pr5prR1R2 exp~22az!, pr52
i

2
vk3uA0u2p66

~A2!

and

Pz5pzR1
2 exp~22az!, pz5

1
2 vk2uA0u2gp44. ~A3!

We have that

div P5] r Pr1
Pr

r
1]zPz . ~A4!

For computing the radial derivatives we use the followi
recurrence relation for the cylinder functionsC (z), wherez
is complex andn any number~not necessarily an integer!:

zC n85nC n2zC n1152nC 1zCv21 . ~A5!

We obtain

] r Pr5prkS R1
22R2

22
1

r
R1R2Dexp~22az!. ~A6!

Then,

div P5@~kpr22apz!R1
22kprR2

2#exp~22az!. ~A7!

Note that in the elastic case the kinetic energy is not equa
the potential energy~in average!, since

^es&2^es&52 1
4 k4uA0u2c66~R1

22R2
2!. ~A8!

However, using properties of the cylinder functions, it can
shown that

E @R1
2~kr !2R2

2~kr !#rdr5krR1~kr !R2~kr !, ~A9!

Then, integration of Eq.~A8! over the cross section of th
cylinder is zero sinceR2(ka)50 andR2(kb)50. This is in
agreement with the result obtained by Achenbach~1973, pp.
214!.

-
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