Torsional waves in lossy cylinders
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The pure shear problem is one of relative mathematical simplicity and includes the essential physics
common to more complicated cases, where multiple and coupled deformations occur. In this sense,
the analysis of torsional waves serves as a pilot problem for investigating the influence of anisotropy
and/or anelasticity on solution behavior. We obtain the kinematic and dynamic properties of
torsional axially symmetric harmonic waves propagating in an infinitely long circular cylinder. The
medium is transversely isotropic and dissipative, with its symmetry axis coincident with the axial
axis of the cylinder. For an elastic cylinder each mode has a cutoff frequency and below that
frequency there is no propagation. For tubes made of quartz and aluminum Lucite, we found that the
existence of the cutoff frequencies depend on the degree of anisotropic attenuation, i.e., if the axial
quality factor is greater than the transverse quality factor, the modes propagate at all frequencies. In
contrast to the elastic case, the Poynting vector and the energy velocity have a component along the
radial direction, whose values depend on the transverse attenuation. The presence of intrinsic
attenuation confines the energy near thlastic)cutoff frequencies while the radial distribution of

the energy is governed by the geometrical features of the cylinderl9@€8 Acoustical Society of
America.[S0001-4966(98)02002-5]

PACS numbers: 43.20.Jr, 43.20.K¥EG]

INTRODUCTION In absence of body forces, the equations describing the

C ._motion of torsional viscoelastic waves are
Laboratory measurements of wave propagation in cylin-

drical samples provide a method for estimating the elastic )
and anelastic properties of rocks and metals. For instance, PUe=0rTor+ 92002 = Tt 1)
intrinsic attenuation can be obtained from measurements in

cylindrical bars(Kolsky, 1953; White, 1965; Blair, 1990; : Uy

Tang, 1992). Moreover, analysis of wave propagation  Ter= ¥ec* 5rU¢—T, (2
through hollow cylinders and tubes has many engineering

applications(Soldatos, 1994), ranging from nondestructive O 2= ,;044* XTI (3)

evaluation of oil and gas pipelines, acoustic telemetry

(Drumheller, 1993jo attenuation of waves inside rigid pipes Whereu, is the displacement component,, and o, are

containing acoustic linerGreenspon and Singer, 199351 the stress componentig,is the density, and,, and g are

the exploration industry, the interest resides in the propagaiime-dependentielaxation functions. The symbbldenotes

tion of pu|ses through drill Strings, since these pu|ses aréime COﬂVOlUtiOﬂ,(? spatial differentiation, and a dot above a

used as pilot signals for the data processing of seismogramyriable time differentiation.

generated by the roller cone iRector and Hardage, 1992). Since the torsional waves are decoupled from the quasi-
In this work, we compute the phase and energy velocicompressional and quasi-shear motions, they can be de-

ties of torsional oscillations propagating in a lossy aniso-scribed, as in the isotropic case, by a potential function

tropic hollow cylinder. The theory is a generalization of pre- U,=—9,¢ @)

vious works(Mirsky, 1965a, b; Armenakas and Reitz, 1973; 4 ree

Carcione and Seriani, 1994here a purely elastic cylinder Substituting the stresses into the conservation equéfipn

was assumed. and using Eq(4), we obtain the equation of motion,

. . 1
I. THE GOVERNING EQUATIONS PE=tagt 022+ ee*| I+ ﬂr¢> : 5

The problem is solved in cylindrical coordinates¢,z)
and an axially symmetric hollow cylinder of interior and |I. THE SOLUTION
exterior radiia andb is assumed. This implies that the sym-
metry axis of the medium coincides with the axial axis of the ~ The time-harmonic solution has the form
cylinder (z axis). In this case, the wave field does not depend

on the azimuthal variable. ¢=F(r.z)expeot), ®)

wherew is the angular frequency and- \—1. Substitution
2Electronic mail: jcarcione@ogs.trieste. it of Eq. (6) into Eq.(5) gives the generalized Helmholtz equa-
PElectronic mail: gseriani@ogs.trieste.it tion
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1 w2 lll. PHYSICAL VELOCITIES AND DISSIPATION
E ar(r &rF)‘F‘?zzF_"W F=0, (7) FACTORS
where The location of a pulse traveling in the axial direction
requires the explicit calculation of the energy velocity, since
_ /% ®) the concept of group velocity loses its physical meaning. The
Pss presence of attenuation considerably distorts the modulation

envelope of the puls¢e.g., Carcione, 1994). Besides the
presence of intrinsic attenuation, the energy velocity displays

Pas=7( ¢44)’ Pes=-7( %6) (9) local information not contained in the group velodigee the
discussion in Simmonest al., 1992).

and

are the complex stiffnesses, with the operatodenoting the

time Fourier transform. Moreover, A. Phase velocity and attenuation factor
D The phase velocity and attenuation factor versus fre-
V= /M (10)  quency corresponding to tjemode are
p
is the complex body wave velocity along the symmetry axis  Cp(w)= Re(7) and a(w)=—Im(y), (18)
of the medium. Y
The general solution for time-harmonic waves along thewhere
positive z direction is ° 2 ka 12
(1,2,t;7,0) =[ AgJo(Kr) + BoYo(kr)] He)= o m a= PV G2y Bow)| (19)
xXexd u(wt—1yz)], (11)  with p.v. denoting the principal value and Im the imaginary

whereJ, andY, are Bessel functions of the first and secondpart'_l_h lculati f the oh locit d at fi
kinds, respectively, ané, and B, are arbitrary constants. € ca clu a Itcr)1n' 0 tetp'ar?t(fa ve 03' yS.an attenuation
The radial and vertical wave numbéesand y are related by Versus wavelength Is not straightforward. since
o? N —
w)= w)= —_—,

v 72) : (12) Re y(w)]

— 71 . .
Application of the boundary conditions at the inner and outer” G~*(\) and a formal solution is
surfaces of the cylinder,

k2= 52 (20)

cp(x)zz)‘—wefl(x) and a=Im{y[G1\)]}. (21)

ou(r=a)=0 ando,(r=b)=0, (13)
imply However, relation(20) is, in general, not invertible. The
most simple procedure is to plot the pdicg(w),A(w)] and
AoJa(ka) +BoYa(ka) =0, (14)  [a(w)\Mw)].

where the following properties were usediJo(kr)
=—kJy(kr) and @, —r 19,)Jo(kr)=k2J,(kr). Making _ _ .
zero the determinant of the linear system gives the period or ~ Calculation of the energy velocity and quality factor re-

B. Energy velocity and quality factor

dispersion equation quires energy considerations. The Umov—Poynting theorem,
or energy balance equation, for time-harmonic fields in
Jo(ka)Ya(kb) —Jo(kb)Yo(ka)=0. (16) anisotropic-viscoelastic medigCarcione and Cavallini,
Equation(16) is identical to the purely elastic period disper- 1993)is
sion, where the root&; ,ks,... K;,... arereal. Abramowitz div P—210((€e5) —(€,)) + w(eg) =0, (22)

and Stegur(1964, p. 374 give an approximate formula for ) ] .
the rootq;=k;a that can be used fdy/a<3. Here, we com- whereP is the complex Umov—Poynting vector defined as
pute the exact roots by using the Mathematica software. P=—13.0*, (23)
The velocity of the lowest torsional mode is not appro-
priately obtained from Eq(16). This mode corresponds to
k=0 and the displacement to a rotation of each transverse (e,)=2puT-U* (24)
section of the cylinder as a whole about its cerfsmre, for
instance, Christensef1982), p. 41. The dispersion of this
mode is caused by the intrinsic attenuation along the radial  (e,)=Re(#) and (egq)=2 Im(¥) (25)
direction. The phase velocity is

with X the stress tensor,
is the time-average kinetic energy density,

are the time-average stored and dissipated energy densities,
c,=[Re(V " H] ™, (17)  respectively, with

where Re denotes the real part. #=1iST.p.s* (26)
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the complex energy densit{s the strain vector, ang the

cylindrical systems and has a component in the radial direc-

complex stiffness matrix. The asterisk used as superscrigion. This component vanishes in the purely elastic case,

denotes complex conjugation, the symbpbrdinary matrix
multiplication, and the superscript, transpose.
The Poynting vector is

P= _%(0'<pzéz+ a-qorél’)uz . (27)

Substituting the potentidlL1)into Eq.(4) and using Eq(14)
gives

u,=kAgR; exp(—az)exd tw(t—2/cy)], (28)
where
Jo(ka) .
Ri(kr)zJi(kr)—in(kr), i=1,2. (29)

Note thatR,(ka) =0 and by virtue of the dispersion equation

since Impgg) =0. At r=a andr=b, R, vanishes and using
Eq. (10),

20 ReyWV?)
Ve~ W+ 77 Re(V?) =

The quality factor can be obtained as the ratio of twice the
stored energy to the dissipated energy, giving

_ 2(es)  Re(pa)|yI?+k* Re(Pes) (Rp/Ry)?

(39)

= = . (40
(e M(pad T+ IE I(pea) (R /R)Z 40
At r=a andr=b Eq. (40) reduces to
_ Re(p4a)
B IM(pgg)’ (41)

(16), Ry(kb)=0. The stress components are given by Eqsthat is, the quality factor of the shear body wave traveling

(2) and(3),
0 o= — LYKP1AORL expl— az)exfww(t—2/cy)],
30)
0= —k?PeeAoR, exp — az)exf to(t—2/c,)].  (31)
Then,
P=3wk? Ag|?R1(PasyR1E,— tPesk RoE ) eXp — 2Z).
(32)
From Eq.(26), the complex energy density is
Z= 3P4l Syzl >+ Pod Syrl P, (33)
where
S,z=dUu, and S, =du,— % (34)
are the strain components. Using E&8) we obtain
£= K Aol?(Pad 7I*RI+ Peck®RO) exp( —2a2).  (35)
The kinetic energy density is simply
(€,)=1pw?K?|Ag|’R: exp —2az). (36)

along the symmetry axis of the medium.

IV. EXAMPLES

We use a phenomenological model based on a viscoelas-
tic rheology. The theory assumes a single standard linear
solid element describing the anelastic deformations associ-
ated with the axial directiony(=1) and the radial direction
(v=2). We take

P24=C4aM1, Pee=CecM2, (42)
where the complex moduli can be expressed as
2 .
\/ +1-1+i1wQq,7
My(w): QOV QO 0 (43)

VQ3,+1+1+iwQq,7o

The quality factorQ, , associated with of each moduli, is
equal to the real part d¥l, divided by its imaginary part.

The curveQ, () has its peak abo=1/7y, and the value

of Q, at the peak i9q,. The high-frequency limit corre-

sponds to the elastic case with,— 1. The relaxation func-

tions associated with the complex stiffnesses atg,

In contrast to unbounded homogeneous and elastic media;, C44X1 and 6= Ceex2, Where

the average kinetic and potential energy densities are differ-

ent in elastic cylinders. This is shown in the Appendix.

The energy velocity, is the ratio of the average power

flow density Re(P) to the mean energy densjgy+ ).
Then,

_ Re(P)
Ve e, T eq)

20[ Re( yP4s) REE,+ K IM(Pgg) R1R2E: ]

- . (37

PR+ /R Relpe) +KRE Relpeg] . ")
Equation(37) becomes

20[Re(yP4s)€,+k IM(pge)(R2/Ry) € ] (38)

Vo= .
¢ pw’+|y]* Re(Pag) +k* Re(Pee) (Ry/Ry)?]
Note that the dependence on the radial variablis con-

tained inR, /R, . While the energy velocity is constant for a

plane wave in unbounded media, it is a functionrofor
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S S
Xv(t)={m—(W—l)exq—tlf(”)) H(t), (44)
Ty Ty
with H(t) the Heaviside function, and
T
T@:QO [VQ3,+1=1]. (45)
Ov
We introduce the anisotropic loss parameter
Qo1
=—_— 46
7= Qo (46)
and assume thatyp=1.28., where B,.=pB(w—®)
= \C44/Cee:

We consider two materialsee Thomsen, 1986); quartz,
with ¢4,=53.21 GPa,p=2.65 gricmi, B.=1.21 andQq,
=100; and aluminum-Lucite composite with,=3.4 GPa,
p=1.86 gricnd, B..=0.53 andQy;= 10. The calculations are
carried out for samples havirg=1 cm andb=2 cm. If g;
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FIG. 1. Quartz: normalized phase velocity and attenuation versus frequency f (MHz)

corresponding to the first and third propagation mo@estinuous and bro-
ken lines, respectively The normalization constant is the axial elastic ve-
locity c=(c44/p)*2 The thin broken lines are the respective elastic phase
velocities.

4

FIG. 2. Quartz: normalized displacement field for mode 3 as a function of
frequency and radial distance. The upper picture corresponds @ and
the lower picture tz=0.1 m. The normalization constant is the displace-

=k;a, the first three roots of the dispersion equaiid@) are ~ ment atf=1MHz, r=a andz=0.
q,=3.4069,7q,=6.4278, andq;=9.5228. These roots are
independent of the material properties.

A. Quartz

mode 1

Normalized phase velocity and attenuation versus fre-
quency corresponding to the first and third propagation
modes are represented in Fig. (@ontinuous and broken
lines, respectively). The thin broken lines are the respective
elastic phase velocities, that tend to infinity at the cutoff
frequenciesf,=201 kHz andf.=561kHz [y=0 in Eqg.
(12)]. There are no cutoff frequencies in the viscoelastic
case, although the attenuations beléware so high that
wave propagation is precluded in practice. 3

Figure 2 represents the normalized displacement field f (MHz) .
(32) for mode 3 as a function of frequency and radial dis- 4
tance(from r =a to r=b). The upper picture corresponds to mode 3
z=0 and the lower picture ta=0.1 m. In this case, the
strong attenuation below th@lastic) cutoff frequency pre-
vents any particle motion. Moreover, the viscoelasticity
causes the dissipation at high frequencies. ;

The modulus of the normalized energy velocity, versus VelC .75
frequency and radial distance, is represented in Fig. 3. The
surface practically shows the axial component of the energy
velocity vector, since the radial component is very small.
The energy velocity vanishes where there is no particle mo-
tion (see Fig. 2). These minima in the energy velocity are not
due to the elasticity but to the geometrical features of the

Cylmder' As can be seen, the energy VeIOCIty dlsplays IOCall—'IG. 3. Quartz: modulus of the normalized energy velocity, versus fre-

information not ContQiHEd in the group velocity. _|t can be guency and radial distance. The normalization constant is the axial elastic
shown that the elastic energy velocity, when defined as theelocity c=(c/p)Y2

2
f (MHz)
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FIG. 4. Quartz: distribution of the energy along the radial distance, as a function of frequency. The left pictures correspond to the mean energy density
(e, + €5 and the right pictures are the dissipated energy dengitigs The normalization constar, is the total energy at=1 MHz, r=a andz=0.

ratio of the time average of the power per cross section and Figure 4 shows the distribution of the energy along the
the time average of the total energy per unit length of cylin-radial distance, as a function of frequency. The left pictures
der, equals the group velocitye.g., Achenbach, 1973, pp. correspond to the mean energy density+ ) and the right

214). pictures are the dissipated energy densitiep. The first
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FIG. 6. Aluminum Lucite: phase velocity and attenuation curves versus
frequency, corresponding to the first and third propagation m@zeginu-

ous and broken lines, respectively). The normalization constant is the axial
elastic velocityc=(c,,/p) Y The thin broken lines are the respective elas-

FIG. 5. Quartz: quality factors versus frequency and radial distance. tic phase velocities.

-
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mode 1 APPENDIX: ENERGY BALANCE

In unbounded media diR= —2a-P (Carcione and Cav-
allini, 1993). If there are no losses, E@2) implies that the
average kinetic energy equals the average potential energy.
An analysis based on E(R2) shows that this is not the case
for cylinders. In order to verify the energy balance E2R)

+]
we explicitly calculate the divergence of the Poynting vector
(32). This can be written as
P=P.&+P.z,, (A1)
where
i 3 2
P=p/RiR; exp(—2az), p,=— > wk®|Ao|*Pes
(A2)
and
a

P,=p, R} exp—2az), p,=3 wk?Aol?ypas. (A3)

We have that

z
f (MHz)

P
div P=9,P,+ — +4,P,. (Ad)
FIG. 7. Aluminum Lucite: quality factors versus frequency and radial dis- r
tance.

For computing the radial derivatives we use the following
mode is approximately 200 times stronger than the thirdecurrence relation for the cylinder functiongz), wherez
mode, and both modes carry more energy at the high freis complex andv any number(not necessarily an integer):
guencies. This happens at the onset of the perturbation (

=0), since forz#0 the high frequencies are attenuated by  z¢' =v7,—2z7, = —vZ+27, ;. (A5)
the viscoelastic effects and the motion is confined near the
(elastic)cutoff frequenciesFig. 2). We obtain

Finally, the quality factors are represented in Fig. 5.
They have a minimum value ai,, the location of the re-

1
laxation peak. The location of the minima along the radial ~ 4,P,=pk| RZ—R5— = R;R, |exp(—2az). (AB)
direction coincide with the positions of zero particle motion r
(see Fig. 2).
Then,

It is important to distinguish between two attenuation
effects. One is of viscoelastic nature, that is reflected in the
shape of the quality factors surface as a function of fre-  div P=[(kp:—2ap,)Ri—kpRilexp —2az). (A7)
quency. The other is geometrical effect that produce the
minima along the radial direction and causes the strong afNote that in the elastic case the kinetic energy is not equal to
tenuation below the elastic cutoff frequenciese Fig. 1).  the potential energyin average), since

B. Aluminum Lucite (e)—(€g)=— % k*|Aq|%Cee( RZ—R3). (A8)

In contrast to quartz, this material hgs<1, and there- ] ] ) ] )
fore, the attenuation is higher along the axial direction. Dug1oWeVer, using properties of the cylinder functions, it can be
to this fact, the physics of wave propagation is different.Shown that
Figure 6 shows the phase velocity and attenuation curves
versus frequency. In this case, there is a cutoff frequency
even in the presence of anelasticity. The displacements en-
ergy densities and energy velocity surfaces are similar to
those of quartz. The quality factors are represented in Fig. 7Then, integration of Eq(A8) over the cross section of the
They have a minimum value aé,, the location of the re- cylinder is zero sincd&,(ka)=0 andR,(kb)=0. This is in
laxation peak, and, unlike quartz, the surfaces presentsgreement with the result obtained by Achenbél®v73, pp.
maxima along the radial direction. 214).

f [R2(kr)—R3(kr)Jrdr=krRy(kr)Ry(kr), (A9)
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