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Abstract Wave anelasticity of the fast P wave at

mesoscopic scales is due to energy dissipation by

conversion to slow P diffusive modes at hetero-

geneities much smaller than the wavelength and much

larger than the pore size. We consider frames

composed of two minerals and study the dissipation

effects based on a generalized White plane-layered

model, where the interfaces satisfy mixed boundary

conditions, i.e., open, closed and partially-open pores.

We consider three models to obtain the effective

properties. Model 1 is based on effective mineral

properties, Model 2 is a generalization of Biot theory

to the case of two solids and one fluid, and Model 3 is

based on a generalization of White model to the case

of three layers. A particular case is that of closed pores

at the interface between the layers, where no flow

occurs and, consequently, there is no anelasticity and

the stiffness modulus is a real quantity and does not

depend on frequency. The type of boundary condition

highly affects the location of the relaxation peak,

which moves from high to low frequencies for

decreasing interface permeability. The first two mod-

els predict similar locations of the peaks and strength

(reciprocal of the quality factor). The results of Model

3 differ due to different distribution of the solid

phases, since the frames are not mixed at the pore scale

as in Models 1 and 2, but at a mesoscopic scale. These

solutions are useful to test modeling algorithms to

compute the effective P-wave modulus in more

general cases.

Article highlights

• The frames composed of two minerals are consid-

ered to analyze the dissipation effects based on a

generalized White plane-layered model.

• The three different models are analyzed to obtain

the properties perpendicular to layering.

• The type of boundary condition highly affects the

location of the relaxation peak, which moves from

high to low frequencies for decreasing interface

permeability.
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1 Introduction

Rocks such as sandstones are rarely composed of a

single mineral, because they may contain clay,

feldspar, dolomite, etc., in addition to quartz (Deer

et al. 2013). Gas-hydrate bearing sediments and

permafrost, for instance, are composed of three solids,

i.e., quartz, clay and gas hydrate (ice). The distribution

of the minerals and the scale of the heterogeneities

affect the anelastic properties of the rock. In seismic

exploration, these properties, represented by the wave

velocity and dissipation factor, are essential to obtain

information about the microstructure and fluid content

of reservoir rocks (e.g., Pride et al. 2003; Carcione

et al. 2018).

Theories that generalize the Biot theory to two solid

frames are available to obtain the seismic properties of

these media (e.g., Carcione et al. 2003, 2005; Gei and

Carcione 2003; Ba et al. 2016, 2017). We propose

canonical models based on poroelasticity and thin

plane layers to study these properties. These models

can be useful as reference solutions to test numerical

algorithms that compute the complex stiffness moduli

using, for example, finite-element quasi-static exper-

iments (Carcione 2014, Section 4.3). The problem is

to find the effective seismic properties, i.e., the

dispersion and attenuation related to the P-wave

stiffness modulus along the direction perpendicular

to layering. The properties parallel to layering and, in

general, the five independent stiffness components of

the equivalent transversely isotropic medium can be

obtained as in Cavallini et al. (2017, Section 3) on the

basis of the relaxed and unrelaxed elastic constants.

It is well known that mesoscopic loss (modulus

dispersion and attenuation) of the fast P wave is due to

a loss of energy by conversion to slow P diffusive

modes, when the heterogeneities are much smaller

than the wavelength but much larger than the pore size

[an alternative name for this mechanism is wave-

induced fluid-flow (WIFF) attenuation (Müller et al.

2010)]. In rocks, the presence of several minerals is an

additional cause of WIFF besides partial (patchy)

saturation and porosity (permeability) variations,

which implies heterogeneities in the dry-rock stiffness

moduli. We consider media composed of two minerals

to study the mesoscopic-loss effects, based on a

generalized White plane-layered model, where the

interface (contact between those media) is character-

ized by mixed boundary conditions. These include a

hydraulic interface permeability to model open, closed

and partially-open pores.

We consider three models. Model 1 is based on

effective mineral properties obtained with the Hashin-

Shtrikmann bounds (e.g., Mavko et al. 2009) and then

application of theWhite model. A similar model is that

of Brown and Korringa (1975), who extended the

Gassmann equation to the case of a micro-inhomoge-

neous frame. While Gassmann’s equation contains

one elastic constant of the mineral, the extendedmodel

contains two such constants. Yet this model is seldom

used in geophysical practice, as the second constant is

hard to measure or infer independently [see, e.g., a

discussion in Zimmerman (1991, Eq. 6.7)].

Model 2 is a generalization of Biot theory to two

solids and one fluid, based on two mixed frames

(Carcione et al. 2000, 2003, 2005, 2010, Santos et al.

2004). As with Model 1, the White model yields the

effective properties to obtain the attenuation, depend-

ing on the interface hydraulic permeability. Model 3 is

based on a generalization of White model to the case

of three dissimilar porous layers (Norris 1993;

Cavallini et al. 2017). A particular case is that of

closed pores at the interface between the layers. This

case of no flow between the layers does not imply

anelasticity and the stiffness modulus is the Reuss

average of the Gassmannmoduli of the single layers as

predicted by Backus averaging (the high-frequency

limit of White model) (Backus 1962; White et al.

1975; Carcione et al. 2006; Carcione

2014, Section 7.13).

2 Theory

Let us consider a periodic system of two thin planar

layers, where each layer, denoted with the index j =

1,2, is a porous medium composed of two solids (i =

1,2) and a fluid (f). The fraction of solid i in layer j is

/ij such that

/1j þ /2j þ /j ¼ 1; ð1Þ
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where/j is the porosity in layer j. Solid 1 in layer 1 can

have different properties compared to solid 1 in layer

2, etc. The thickness of layer j is dj and the period is

D ¼ d1 þ d2, with pj ¼ dj=D, j ¼ 1; 2, being the

proportions of each layer. We consider three models

as shown in Fig. 1, which yield the P-wave complex

modulus, E, in the direction perpendicular to the

layering.

2.1 Model 1

Let us omit the layer index j for clarity. A simple

approach to obtain the plane-wave modulus normal to

the stratification, E, is first to use the Hashin-Shtrik-

man average to obtain the effective bulk and shear

moduli of the solid composing the frame in each single

layer, Ks and ls (e.g., see Mavko et al. 2009,

Fig. 4.17.2). Then, we use the mesoscopic-loss theory

of wave propagation through a periodic system of thin

plane layers, developed by White et al. (1975), whose

basic equations are given in ‘‘Appendix 1’’, where we

have introduced an interface permeability as addi-

tional property.

Let us denote the solid bulk and shear moduli by Ki

and li, respectively. A two-solid composite, with no

restriction on the shape of the two phases, has stiffness

bounds given by the Hashin and Shtrikman (1963)

equations,

Fig. 1 Three models of

mesoscopic attenuation.

Flow through layers

generates the Biot slow

(diffusive) wave, which is

responsible of the

attenuation of the fast P

wave by conversion to slow

P wave. Subindices ij denote
solid i in layer j.
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K�
HS ¼ K1 þ

b2

ðK2 � K1Þ�1 þ b1 K1 þ
4

3
lb

� ��1 ð2Þ

and

l�HS ¼ l1 þ
b2

ðl2 � l1Þ�1 þ b1 l1 þ
lb
6

9Kb þ 8lb
Kb þ 2lb

 !" #�1
;

ð3Þ

where b1 and b2 are the fractions of solid 1 and 2

(b1 þ b2 = 1), with b1 ¼ /1=ð1� /Þ. We obtain the

upper bounds when Kb and lb are the maximum bulk

and shear moduli of the single components, and the

lower bounds when these quantities are the corre-

sponding minimum moduli, i.e., we have the upper

bound if 1 is the stiffer medium and the lower bound is

obtained if 1 is the softer medium (Mavko et al. 2009).

The averages of these bounds are

Ks ¼
1

2
ðKþ

HS þ K�
HSÞ; ls ¼

1

2
ðlþHS þ l�HSÞ: ð4Þ

We also need the dry-rock moduli, Km and lm, and the
permeability j of the layers. Krief et al. (1990) have

introduced a model (hereafter called Krief’s model)

which is consistent with the concept of critical

porosity, since the moduli should vanish above a

certain value of the porosity (usually from 0.4 to 0.5).

Carcione et al. (2000) confirmed that Krief’s empir-

ical model is successful at describing the dry-rock

moduli of consolidated sandstones. We have

Km ¼ Ksð1� /ÞA=ð1�/Þ; lm ¼ lsð1� /ÞA=ð1�/Þ;

ð5Þ

where A = 3 hereafter.

Permeability is related to porosity by the Kozeny-

Carman relation

ji ¼
j0i/

3

ð1� /Þ2
ð6Þ

(e.g., Mavko et al. 2009), where j0 is a reference

value. The average permeability is

j ¼ j1j2
j1 þ j2

: ð7Þ

In this model, the slow mode is due to the different

solids and fluid in each layer. If the two solids in each

layer are the same, the problem reduces to White’s

model (White et al. 1975).

2.2 Model 2

This model is based on the composite theory devel-

oped by Carcione et al. (2000, 2003, 2005) and Santos

et al. (2004), which is summarized in ‘‘Appendix 2’’.

Let us omit again the index j for clarity. The (low-

frequency) Gassmann bulk modulus of each layer

made of a composite medium is

KG ¼ Km þ a2M; a ¼ a1 þ a2; Km ¼ Km1 þ Km2;

ð8Þ

where M and ai are given in Eq. (24). Moreover,

Em ¼ Em1 þ Em2; Emi ¼ Kmi þ 4lmi=3; lm ¼ lm1 þ lm2;

ð9Þ

and the permeability of each layer is given by Eq. (7).

A suitable generalization for this model to obtain the

dry-rock (Krief) moduli is

Kmi ¼ ðKs=uÞbiKið1� /ÞA=ð1�/Þ;

lmi ¼ ðls=vÞbilið1� /ÞA=ð1�/Þ; i ¼ 1; 2;
ð10Þ

where Ks and ls are the above HS averages, and u ¼P2
i biKi and v ¼

P2
i bili are Voigt averages (see

Carcione et al. 2005).

Then, we apply White’s model (17) to obtain the

plane-wave modulus. As with Model 1, the slow mode

(flow at the interface) is due to the different solids and

fluids in each layer.

2.3 Model 3

The third approach considers two cases, where closed

and open boundary conditions are assumed at the

interfaces and the solids are unmixed (see Fig. 1). A

period is composed of four sublayers, where the

fractions are
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pij ¼
/ijdj

ð1� /jÞ
P

j dj
;

X
i

X
j

pij ¼ 1; ð11Þ

where i and j refer to the sublayer and layer,

respectively. As above, the approach requires the

dry-rock moduli of each sublayer, given by Krief’s

model,

Kmi ¼ Kið1� /ÞA=ð1�/Þ; lmi ¼ lið1� /ÞA=ð1�/Þ; i ¼ 1; 2:

ð12Þ

The permeability of each sublayer is given by Eq. (6).

We consider two sub-models.

Model 3.1 (closed boundary conditions) In this

case, there is no flow between the sublayers. For a

layered system, Backus averaging applies and the

effective modulus along the vertical direction is the

Reuss average

E ¼
X
i

X
j

pij
EGðijÞ

 !�1

; ð13Þ

where EG ¼ KG þ 4Km=3 is the P-wave modulus of

each sublayer (Carcione 2014; Eq. 4.11). In this case

there is no attenuation and the P-wave modulus does

not depend on frequency.

Model 3.2 (open boundary conditions) The solu-

tion, if flow is assumed between all the layers, was

obtained, implicitly, by Norris (1993) for n layers in a

period and by Cavallini et al. (2017) for three

dissimilar layers per period. The case of four layers

requires to develop the theory explicitly as in the last

work. Since this case involves a lengthy development,

it is left as future research. To illustrate the differences

between models, we consider an example, where two

sublayers have the same properties, i.e., a period

consist of three layers. The solution is given by

Eq. (61) in Cavallini et al. (2017) (E ¼ p33) after

solving a lineal system (Eq. 64).

To characterize the anelasticity of the P wave

normal to layering, we consider

c ¼ ReðEÞ; ð14Þ

as the measure of dispersion, and the quality factor

Q ¼ ReðEÞ
ImðEÞ ð15Þ

or the dissipiation factor 1000/Q, to quantify the

attenuation (e.g., Carcione 2014).

3 Examples

Table 1 gives the properties of the layers and we

consider three values of the hydraulic permeability of

the interface: �j = 0 (closed pores),1 (open pores) and

10�14 m2 s/kg (mixed or partially open pores).

Figure 2 shows the results of Models 1 and 2, which

have the same dissipation factor in practice, with

relaxation peaks at seismic frequencies and slightly

different P-wave moduli, but in practical (experimen-

tal) terms these moduli are similar. Decreasing the

interface permeability moves the peak to lower

frequencies and when the value is zero (closed case)

there is no anelasticity, with the predicted modulus

equal to the Reuss average of the Gassmann moduli of

the single layers, which is also the high-frequency

limit of the White model. Note that the amount of

dispersion of the open and mixed cases are the same,

as shown in Fig. 3 for several values of �j. However,
since the attenuation factor is A � pf=ðcQÞ (Carcione
2014, Eq. 2.123), where f is the frequency and c is the

wave velocity, we have A1=A2 � f1=f2. If f1 � f2,

Table 1 Material

properties.
Medium K (GPa) l (GPa) d (cm) / g (cP) j0 (darcy)

Layer 1 10

Solid 1 40 38 0.5 – 10

Solid 2 8 4 0.2 – 10

Fluid 2.25 0 0.3 1 –

Layer 2 5

Solid 1 40 35 0.6 – 5

Solid 2 30 20 0.3 – 5

Fluid 0.5 0 0.1 100 –
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A1 � A2. Figure 2 somehow validates both models,

since from a practical viewpoint the results are similar,

mainly the attenuation, with the difference that Model

2 is a generalization of the Biot theory to the case of

two frames from first principles and predicts

additional waves. Therefore, in more general cases,

where there is no analytical solution, the two models

may differ, with Model 2 predicting more realistic

results due to mesoscopic losses (WIFF attenuation),

Fig. 2 Dispersion

coefficient and dissipation

factor, corresponding to

Models 1 and 2 for different

values of the interface

hydraulic permeability [�j =

0 (closed pores), 1 (open

pores) and 10�14 m2 s/kg

(mixed)]. The properties of

the media are listed in

Table 1 (A= 3). The peaks at

low frequencies correspond

to the mixed boundary

condition
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for instance an extension of the White model to the

case of two minerals (or frames).

Let us now consider open boundary conditions at

the interfaces and that solid 21 is the same as solid 11

(see Fig. 1). Then, there are three sublayers in Model 3

and we can apply the theory developed by Cavallini

et al. (2017) (Model 3.2). Figure 4 compares the

results of Models 1 and 2 with those ofModel 3. In this

case, Models 1 and 2 (black and red symbols) yield a

similar result. Model 3.2 predicts the same amount of

Fig. 3 Dispersion

coefficient and dissipation

factor, corresponding to

Model 1 for different values

of the interface hydraulic

permeability (units are m2

s/kg). The properties of the

media are listed listed in

Table 1 (A= 3)
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anelasticity and the location of the relaxation peak in

the same frequency band, compared to the first two

models (0.28 versus 0.14 Hz), despite the fact that the

solid phases are segregated, unlike in Models 1 and 2,

where the frames are mixed. As expected, Model 3.1

shows no anelasticity. The fact that the first two

models yield very similar results is because they are

consistent with the Hashin-Shtrikman equations.

Fig. 4 Comparison of the

dispersion coefficient and

dissipation factor for the

three models. The boundary

condition at the interfaces of

Models 1, 2 and 3.2 is open

and that of Model 3.1 is

closed. The properties of the

media are listed in Table 1,

but solid 21 has been

replaced with solid 11 (A=
3). The results of Models 1

and 2 are almost identical
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Next, we consider the same comparison of Fig. 4

but replacing solid 22 with solid 21 (see Table 1),

keeping the same proportion (/22 = 0.3). In this case

(see Fig. 5), Models 1 and 2 predict the same peak

location but different peak values of the dissipation

factor and slightly different P-wave moduli, although

from an experimental point of view these differences

are difficult to measure. On the other hand, Model 3.2

Fig. 5 Same as Fig. 3, but

solid 22 has been replaced

with solid 21 (see Table 1)
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predicts a peak of similar strength in the same

frequency band.

However, Model 3.2 is essentially different from

the first two, not only because the frames are

segregated, but because the fluids are also distributed

at the mesoscopic scale. In this sense, theWhite model

for thin layers has mesoscopic loss due to these two

factors. Let us consider the proportions and properties

listed in Table 2, where in Layer 2 there is a different

fluid for each sublayer (oil and gas), with different

mineral properties as well. In order to use Models 1

and 2, we consider that the effective fluid properties in

Layer 2 are given by the Reuss and arithmetic

averages, for the modulus and viscosity, i.e.,

Kf2 ¼
Kf12Kf22

Kf12 þ Kf22
; g2 ¼

1

2
ðg12 þ g22Þ: ð16Þ

Figure 6 shows the comparison. While the results of

Models 1 and 2 coincide and show a single peak,

Model 3.2 predicts two relaxation peaks and a lower

P-wave modulus. As mentioned above the reason is

the different spatial distribution of the solid and fluid

phases. In particular, the attenuation in Model 3.2 is

higher because of the wave-induced fluid diffusion

between fluids 1 and 2 (oil and gas), an effect absent in

Models 1 and 2, since the mixing with the Reuss

(harmonic) average excludes the presence of the slow

diffusive mode. Unlike the classical White model, the

results of Model 3.2 show two relaxation peaks (see

the explanation in Cavallini et al. 2017).

4 Conclusions

Rocks are composed of many minerals, which affect

the seismic properties of thin layering, which here are

quantified as modulus dispersion and quality factor.

Three different models are considered to obtain the

properties perpendicular to layering. They are based

on (1) effective properties, (2) Biot-type theory with

two mixed frames, and (3) Biot layers with segregated

frames. All the models use the White mesoscopic

model. The first two models, together with an exten-

sion of the White model to the case of partially closed

pores at the interfaces, indicate that the location of the

relaxation peaks is highly dependent on the interface

permeability. Decreasing this quantity moves the

peaks to lower frequencies, till the medium becomes

lossless for closed pores (no flow).

The general results indicate that Models 1 and 2

predict the same properties in practice, i.e., if subject

to experimental measurements. On the other hand,

Model 3 with close pores predicts no attenuation,

while with open pores the strength and location of the

relaxation peak differ from those of the first two

models, due to the fact that the frames (and the fluids if

there is partial saturation) are segregated at the

mesoscopic scale. This study clarifies some aspects

of the effects of mineral composition on the seismic

properties, namely dispersion and attenuation and

provides solutions to test numerical codes, but unfor-

tunately there are no laboratory experiments or field

data that consider the analyzed geometry and rheology

to compare. A more rigorous analytical solution is to

extend the White model to the case of two mineral (or

two frames), a task that will be achieved in a future

paper, as well the extension to the anisotropic

Table 2 Material

properties.
Medium K (GPa) l (GPa) d (cm) / g (cP) j0 (darcy)

Layer 1 10

Solid 33 30 0.7 – 10

Fluid 2.2 0 0.3 1 –

Layer 2 5

Solid 1 33 30 0.35 – 5

Fluid 1 0.5 0 0.15 400 –

Solid 2 10 6 0.35 – 5

Fluid 2 0.0096 0 0.15 0.15 –
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(transversely isotropic) case, based on the relaxed and

unrelaxed elasticity constants.
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Fig. 6 Comparison of the

dispersion coefficient and

dissipation factor for the

properties given in Table 2.

Models 1 and 2 are based on

mixed frames, whereas in

Model 3.2 the frames are

segregated
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Appendix 1: White’s plane-layer theory

with partially-open pore boundary conditions

The model is a stack of two thin alternating porous

layers of thickness d1 and d2, such that the period of

the stratification is D ¼ d1 þ d2 and the proportions of

media 1 and 2 are p1 ¼ d1=D and

p2 ¼ 1� p1 ¼ d2=D, respectively. Each layer is a

porous medium composed of one solid and one fluid.

The complex and frequency dependent P-wave stiff-

ness for partially open boundary conditions is

E ¼ 1

EG
þ 2ðr2 � r1Þ2

ixDðI1 þ I2 þ 1=�jÞ

" #�1

; ð17Þ

where �j is the hydraulic permeability (per unit length)

of the interface [see Eq. (19) below for a demonstra-

tion], x is the angular frequency, and omitting the

layer subindex j for clarity,

r ¼ aM
EG

; I ¼ g
ja

coth
ad

2

� �
; a2 ¼ ixg

jKE
; KE ¼ MEm

EG
;

ð18Þ

for each single layer (White et al. 1975; Carcione and

Picotti 2006) [see also Carcione (2014, Eq. 7.453)],

where j is the permeability, g is the fluid viscosity,

EG ¼ ðp1=EG1 þ p2=EG2Þ�1
, EGj ¼ KGj þ ð4=3Þlmj

and Emj ¼ Kmj þ ð4=3Þlmj,
M�1

j ¼ ðaj � /jÞ=Ksj þ /j=Kfj, aj ¼ 1� Kmj=Ksj,

KGj ¼ Kmj þ a2j Mj, with j = 1 and 2 being the two

single layers, respectively. Modulus EG is obtained at

high frequencies or �j ! 0. If �j ! 1, we have the

case of open-pore boundary conditions, i.e., complete

flow across the interfaces, which is the case of the

classical White model.

Equation (17) is based on the boundary condition

pf1 � pf2 ¼
1

�j
_w3 ð19Þ

Carcione 2014; Eq. 7.404, where pf1 and pf2 are the

fluid pressures in layers 1 and 2, respectively, andw3 is

the relative vertical displacement of the fluid with

respect to the solid, which is continuous (the dot above

a variable denotes time differentiation). It is straight-

forward to show that the discontinuity (19) in the fluid

pressure at the interface leads to Eq. (17), based on

Eqs. 7.443–7.447 in Section 7.13 of Carcione (2014).

The meaning of �j is explained in Deresiewicz and

Skalak (1963) as partially communicating pores

between the two media, but can also be related to a

thin layer at the interface characterized by the

permeability �j. An example is a mud cake much

thinner than the wavelength in a borehole (Rosenbaum

1974). A similar Eq. (17) was obtained by Qi et al.

(2014), where 1=�j is interpreted as an additional

interface impedance due to capillary forces, i.e.,

exclusively related to the fluids. However, the effect

of capillary forces must be considered in the whole

pore space to obtain realistic results, as in Santos et al.

(2019). Biot’s theory does not hold when the rock is

saturated by two-phase fluids, since capillary pressure

effects and interaction between flows are ignored.

Capillary pressure is responsible for the existence of

the additional slow wave, where the relative motions

between the two fluid phases induce additional energy

losses not present in the case of single-phase fluids.

These effects induce changes in phase velocities and

dissipation factors.

The peak relaxation frequency is approximately

given by

fp ¼
8jKE

pgd2
; ð20Þ

where j and KE are obtained harmonic (Reuss)

averages, and g as arithmetic average.

The slow P wave is the cause of the attenuation,

with a diffusivity constant D ¼ jMEm=ðgEGÞ (Car-

cione 2014), and diffusion length Lr =
ffiffiffiffiffiffiffiffiffiffi
D=x

p
. The

fluid pressures are equilibrated if Lr is comparable to

the layer period. For small Lr for instance (high

frequencies), there is not enough time for the pressures

to equilibrate, causing anelasticity. Sincex ¼ 2pf and
f = D=ð2pL2r Þ, substituting D into this equation, the

transition frequency (20) is obtained for a diffusion

length Lr ¼ Lj=4.

Appendix 2: Constitutive equations for a three-

phase composite medium (two solids and one fluid)

The stress–strain relation has been derived by Car-

cione et al. (2005). We have
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rð1Þkl ¼ ðKG1 � /a1b1MÞh1 þMða1 � /b1Þ a2h2 � fð Þ½ �
þ2�l1d

ð1Þ
kl þ l12d

ð2Þ
kl ;

rð2Þkl ¼ ðKG2 � /a2b2MÞh2 þMða2 � /b2Þ a1h1 � fð Þ½ �
þ2�l2d

ð2Þ
kl þ l12d

ð1Þ
kl ;

pf ¼ Mðf� a1h1 � a2h2Þ;
ð21Þ

where r denotes stress components, pf is the fluid

pressure, h denotes dilatations, f ¼ �/ðhf � b1h1 �
b2h2Þ is the variation of fluid content, dkl are the

components of the deviatoric strain tensor and / is the

porosity.

Particularly, the relative displacement of the fluid

relative to the solids is

wk ¼ /w½u
ðf Þ
k � ðb1u

ð1Þ
k þ b2u

ð2Þ
k Þ�; ð22Þ

where u denotes displacements, such that f ¼ �div w,

and the strain components are

2�
ðiÞ
kl ¼ u

ðiÞ
k;l þ u

ðiÞ
l:k ; d

ðiÞ
kl ¼ �

ðiÞ
kl �

1

3
dklhi; �

ðiÞ
kk ¼ hi:

ð23Þ

The material properties are

KG1 ¼ Km1 þ a21M; KG2 ¼ Km2 þ a22M;

M ¼ a1 � b1/
K1

þ a2 � b2/
K2

þ /
Kf

� ��1

;

�l1 ¼ ½ð1� g1Þ/1�
2 �lþ lm1; g1 ¼ lm1=ð/1l1Þ;

�l2 ¼ ½ð1� g2Þ/2�2 �lþ lm2; g2 ¼ lm2=ð/2l2Þ;

l12 ¼ ð1� g1Þð1� g2Þ/1/2 �l;

�l ¼ ½ð1� g1Þ/1=l1 þ /=ðixgÞ þ ð1� g2Þ/2=l2��1;

ai ¼ bi �
Kmi

Ki
; bi ¼

/i

1� /
; b1 þ b2 ¼ 1;

ð24Þ

where Kf is the fluid modulus and g is the fluid

viscosity; bi is the fraction of solid i per unit volume of

total solid, and gi are consolidation coefficients of the

frames.

The total stress is

rkl ¼ rð1Þkl þ rð2Þkl � /pf dkl ¼ ½ðKG1 þ a1a2MÞh1 þ ðKG2

þ a1a2MÞh2 �Mða1 þ a2Þf�dkl

þ ð2�l1 þ l12Þd
ð1Þ
kl þ ð2�l2 þ l12Þd

ð2Þ
kl ;

ð25Þ

where dkl is Kronecker’s delta.
The theory predicts two additional slow P waves

and a slow S wave. More details can be found in

Carcione et al. (2003).
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