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Wave propagation in poroelastic media is a subject that finds applications in many fields of
research, from geophysics of the solid Earth to material science. In geophysics, seismic methods
are based on the reflection and transmission of waves at interfaces or layers. It is a relevant
canonical problem, which has not been solved in explicit form, i.e., the wave response of a single
layer, involving three dissimilar media, where the properties of the media are described by Biot’s
theory. The displacement fields are recast in terms of potentials and the boundary conditions at the
two interfaces impose continuity of the solid and fluid displacements, normal and shear stresses,
and fluid pressure. The existence of critical angles is discussed. The results are verified by taking
proper limits—zero and 100% porosity—by comparison to the canonical solutions corresponding
to single-phase solid (elastic) media and fluid media, respectively, and the case where the layer
thickness is zero, representing an interface separating two poroelastic half-spaces. As examples, it
was calculated the reflection and transmission coefficients for plane wave incident at a highly
permeable and compliant fluid-saturated porous layer, and the case where the media are saturated

with the same fluid. © 2014 Acoustical Society of America. [http://dx.doi.org/10.1121/1.4875713]

PACS number(s): 43.20.Gp [OU]

. INTRODUCTION

The problem of reflection and refraction (transmission)
of waves at a layer has practical applications in many fields.
In geophysics, the topic is relevant in seismic methods, engi-
neering and soil mechanics, hydrogeology, and underwater
acoustics. In particular, in hydrocarbon exploration the layer
is a porous medium, sandstone for instance, whose properties
can be determined on the basis of multi-component seismic
data, by using processing techniques, amplitude variations
with offset (AVO) methods and inversion algorithms. The
literature is vast in the case of a single interface. The authors
attacked the problem for welded and non-welded interfaces
(cracks and fractures), in some cases considering wave ani-
sotropy and attenuation (Carcione, 1996, 1997, 1998;
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Carcione and Picotti, 2012), and in the poroelastic case using
Biot’s theory (Santos ef al., 1992), and a three-phase exten-
sion of this theory (Carcione et al., 2003; Rubino et al.,
2006; Santos et al., 2004). There are relatively many works
for a layer described by a single-phase (solid) case, e.g.,
Widess (1973) and Bakke and Ursin (1998) consider the nor-
mal incidence case for a thin layer, Juhlin and Young (1993)
studied AVO effects of a thin layer, while the effect of the
thickness of a sedimentary layer has been investigated by
Chung and Lawton (1995a,b). Carcione (2001) computes the
scattering response of a lossy layer having orthorhombic
symmetry and embedded between two isotropic half-spaces,
and Liu and Schmitt (2003) obtain the P-wave reflection
coefficient in isotropic lossless media as a function of the
incidence angle.

Ultrasonic properties of porous and permeable media
have been treated by Wu et al. (1990), Johnson et al. (1994),
Jocker and Smeulders (2009), and Fellah et al. (2013). In all
these articles the authors have compared theoretical predic-
tions with experimental data. In particular, Wu et al. (1990)
studied the reflection and transmission of elastic waves at an
interface between a fluid and a fluid-saturated porous
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medium and Fellah er al. (2013) analyzed fast and slow
waves transmitted through human cancellous bone sample.

To our knowledge, the explicit calculation of the coeffi-
cients for poroelastic media has not been addressed. Existing
methods are restricted to normal incidence and/or are based
on numerical algorithms (Allard et al., 1986; Pride et al.,
2002; Quintal et al., 2009; Schmidt and Tango, 1986). In
general, these works are based on a constitutive equation
described by Biot’s theory of poroelasticity (Biot, 1956,
1962; Carcione, 2007; Carcione et al., 2010), which is suffi-
ciently general to model the desired characteristics of wave
propagation, in particular, the presence of the P waves (type-
I and type-II compressional waves) and its effects on interfa-
ces (Dutta and Odé, 1979a,b, 1983; Plona, 1980).

We solve the scattering problem at all angles of inci-
dence for a single layer embedded between two half-spaces
with dissimilar media, where the properties of the media are
described by Biot’s theory of poroelasticity. The displace-
ment fields are recast in terms of potentials and the boundary
conditions at the two interfaces impose continuity of the
solid and fluid displacements, normal and shear stresses,
and fluid pressure. The methodology is analogous to that
presented in Santos et al. (1992); Rubino et al. (2006); and
Carcione (2001, 2007, Sec. 6.4). The results are verified for
specific limiting cases with already published theoretical
equations (Brekhovskikh, 1980; Carcione, 2007; Liu and
Schmitt, 2003; Pilant, 1979; Santos et al., 1992).

The paper is organized as follows. Biot’s theory is
reviewed first. Then, we illustrate the methodology and finally
we present the examples. The final equations are verified with
limiting cases consisting of a single interface in poroelastic
media and a layer, where the media can be solids or fluids.
The examples are relevant for applications in reflection
seismology.

Il. BIOT’S THEORY

We consider a porous solid saturated by a viscous com-
pressible fluid and assume that the whole aggregate is iso-
tropic. Let U and Uy be the averaged displacement vectors of
the solid and fluid parts of the medium, respectively. Then,
W is defined as the averaged relative fluid displacement per
unit volume of bulk material,

W:(b(Uf_U)» (1)

where ¢ is the effective porosity.

Let ¢;; and 0;; denote the strain tensors of the solid and
the bulk material, respectively, and let P denote the fluid
pressure. Following Biot (1956, 1962), the stress-strain rela-
tions can be written as

iy = 2pe(U) + 6§(4.V - U+ DV - W), i,j=1,2,3,
P =-DV-U-MV-W 2)
(Carcione, 2007). Here, u is the wet-rock shear modulus of
the bulk material, considered to be equal to the shear modu-

lus of the dry-rock. The grains are characterized by density
ps, bulk modulus K and shear modulus g, while the fluid by
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ps Ky and viscosity 1. The grains are assumed to form an
elastic porous matrix characterized by a porosity ¢, perme-
ability x, bulk modulus K,, and shear modulus u,,. The
Lamé constants of the saturated rock are 4. and p. The con-
stants /., D, and M in Eq. (2) can be written as (Carcione,
2007; Dutta and Odé, 1979a,b, 1983)

Km - !
g1 K (220 PN b
K, K, Ky
2
Kc':Km+a2M; /LL:Kl_gl'[ (3)
Next, let
Py = (1= ¢)ps + dps 4)

be the mass density of the bulk material. Also, let g and b
denote the mass and viscous coupling coefficients between
the solid and fluid phases (Berryman, 1980, 1982; Dutta and
0Odé, 1979a,b, 1983):

g="g K’Sz(%)’ )

where S is known as the structure factor. Then, assuming
constant coefficients y, 4., D, and M in Eq. (2), Biot’s equa-
tions of motion can be stated as (Biot, 1956, 1962; Carcione,
2007)

V.-6=HN( -U)—uV x(VxU)+DV(V-W)
U W
~ o T e

~VP; =DV(V-U)+MV (V- -W)

O*U O*w oW
“Prae e Yoy ©

where H, = /. + 2pu.

A plane wave analysis shows that in this type of media
two compressional waves (type-I and type-II waves) and one
shear of S-wave can propagate (Biot, 1956).

lll. REFLECTION AND TRANSMISSION
COEFFICIENTS

The fluid-saturated system consists of three media, €,,
n =1, 2, 3 with different properties as shown in Fig. 1. Let
z =0 be the boundary between Q; and Q,, and z =/ the
boundary between €, and 3, and consider a type-I com-
pressional plane wave in Q; incident at z = 0 with an angle
0;1 with respect to the vertical z axis. Following Santos et al.
(2004) and Dutta and Odé (1983), we represent the incident,
reflected, and transmitted waves using potentials.

For Q; the potentials of the solid and relative fluid dis-
placement are given by

@ = Ane W),
Vi = B!, ™)
where
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FIG. 1. (Color online) Geometry of the two half-spaces and the embedded
layer.

q;; = gi1[sin(0i1), cos(0i1)]

is the complex wave vector determining the polarization
direction.

Let qofc), q)” s ‘P;L , and zpﬁy be the compressional and
shear potentials of the solid and relative fluid displacement,

for the reflected waves in Q. They are given by

(p;(*(lr) = ,( ) giler—ql)x) +A£;>ei(wt7q£'2>.x)’
(p](‘l) = I(S‘) l<wt q” )7
(1) — ( ) l(lut q ) .x) (1) 1(wt7qg).x)
Ve +B,, 7
) = Bg)el(wpq;: 5 .

where the subscript r indicates the reflected wave, ¢ indicates
compressional wave and s shear wave, the super-index (1)
refers to medium 1. Subscripts 1 and 2 indicate type-I and
type-1I waves, respectively.

In Q,, the potentials are

(P(2> A() i(wr— q[I ) .x) +A(2> 1(wt7q522>»x)’

tc t1

(p1<s) — A<s) l(wt—q,Y ~x)7

y? = pPile-ai’n | g2 jior—a7x)
@) _ g gtor-a’s)

02 = AD (-0 4 gD gilor—ax)

) =AY o= %),

Y@ = p@ie-aix | g2 gior—qx)

Y = B](,?gl(wt*qff)-x)’ o

the subscript ¢ indicating the transmitted wave.
Finally, potentials in Q3 are expressed by

o = AV ile-ai'n) | 4B pilor—a7x)
o) = A(S)e“"”*qf.?) x)

Vi) = Bj;
y =

1(wt q/l X) +B( ) 1(wt7q}23>.x)

)

1((1)t—(:|,(Y : ) (10)
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In general, we determine q; = (1, B;;) = qy[sin(0;),
cos(0y)], 1 =1i,r,t,and j = 1,2, s for each kind of wave.

The solid and relative fluid vectors U") = (U, UM)
and W = (W W") in Q,, n=1,2,3 are given by
(Santos et al., 1992)

Doy’ Dol
= Vo, + Vol + (—

0z = Ox
=uy +U) +Uy) + U, (11
0 0
V=V + vy +( g : gx>

=w +w +wl) +wl, (12)

@)
v = vod + (- 205 2051 ) | g0
0z = Ox

992 0o
I L
0z Ox

— P +u? +u? +u? + U2 +U?

t1 7 7 rs

o (s2> 9 (Sz)
= Vi + (— Vo W) oy

( 3¢(2) a¢(2)>
A\ 0z = Ox

=W w4 wd +wd e w e w®

1 99y 9
V(ﬂﬁf)+< R 8;)

=uY +u¥ + U, (15)

AR >
3) — (3) Vs rs
Vi + ( 0z = Ox

=wi e wy +w. (16)

13)

(14)

Here Ul(j”) and Wl(j"), I=i,rt, j=1,2,s, denote the
type-1 P wave, type-II P wave, and shear wave components
of U™ and W, respectively. The super-index (1) denotes
any variable associated with the medium Q,,.

The boundary conditions at the interfaces located at
z =0 and z = & impose continuity of the solid and fluid dis-
placements, continuity of the normal and shear stress, and
continuity of the fluid pressure (Dutta and Odé, 1983; Santos
et al., 2004). Therefore, at z =0 and z = h we impose the
conditions

U’(Y”) _ U)((nJrl)7 (17)

Ul =ulh, (18)

O'S?) = g£?+1), (19)

(;(f}) — U.E?H)v (20)
(n) (n+1)

Ppt =P, 1)
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WO = WD, =12, (22)

The amplitude of the reflection and transmission coeffi-
cients Rj(-l) and Tj@, j=1,2,s, for the different waves are
defined as the ratio of the solid-displacement amplitude of
the corresponding wave and that of the incident wave (Dutta
and Odé, 1983; Santos et al., 2004), i.e,

A
R = @
' Ai'g;
and
),
) =17 (24)
‘ Aj'4;

Using Egs. (7)—-(10) to obtain expressions for each of
the pairs mentioned above and substituting them in Eq. (6)
leads us to the following relationships between the ampli-
tudes of the solid and the relative amplitudes to the fluid
(Santos et al., 2004):

By =y"A, j=12s, I=r1 n=123,
Bii = yudin, (25)
with
] o
(1) 2 ()" gy

An),_””w_('?)H"_ 1,2, n=12
))Ul T 2 7 J=L4 n=1,z,

(q,(;)) D — p;")wz

] L
. oy — (qf»]”) aY
Vit =7 5 =,

(C],(ll)) D) — ,oj(fl)a)2

] L
(0 oo = (a) 1"
Vi =T 5 =, j=12 n=23,

() DO — pfer

(1) ()2 _ ) o2
jo ) — et

p(’l)wz

(1) ()2 _ ) o2

po = (@) = py” n=2,3.
P

The boundary conditions (17)—(22) require that the
phase factors at the interfaces z = 0 and z = / are the same:

1 1 2 2 2 2
Lit = X1<<1> = X:(Q) = Xg) = }551) = sz) = Xt(s) = Xf'l)

2 3 3 3
=== =45 =10 =1 (26)

which represents Snell’s law and allows us to obtain the
reflected and transmitted angles 0; for each type of wave as
a function of the incidence angle 0;;.
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Application of the boundary conditions (17)—(22) and
Snell’s law Eq. (26) at z = 0 and z = A give two systems of
linear equations in the unknowns A,|, A2, A, As, Ap, and
A (see Appendix A). These two systems have coefficients

. (n) —
depending on the wave numbers ¢,’, n=1,2,3,
l=ir t,j=1,2s.

Set

) =A /Ay, I=r1, j=125 n=123. (@27

Using the matrix notation of Carcione (2007, Sec. 6.4)
to relate the fields at z = 0 and z = & we obtain

(A; — Bx A3)r = —i,, (28)

where r = (C\}), 'y, c,c? ¢y ¢V i, = (=1, -8,
G =208 )~ 1T and B ="T(0) + (1)
that acts as a boundary condition. The matrices of the system
Eq. (28) are given in Appendix B.

The amplitude of the reflection and transmission coeffi-
cients for the different types of waves are defined as

0]

M _ A1y
Ri"=Cy iy
qi1
(3) mq@
_ ~3) 1y v
;) =C; =, =12 (29)

il

An incident S wave has the same scattering matrix as the
P incident wave, but the array i, in Eq. (28) is replaced by

T
2
is: /3,(31),—/67—5,(31)7—#(1){%2—(ﬁ,@) }705_7)531)X:| .

IV. EXAMPLES

In this section, we test the reflection and transmission
coefficients and consider several cases of interest in reservoir
geophysics. The following cases are taken into account.

Case 1: A validation test when Q;, Q,, and Q3 are inviscid
fluids, corresponding to the limit case ¢ = 1, u =0, = 0.

Case 2: A validation test when we have a single inter-
face between two elastic isotropic solids Q; and Qj, corre-
sponding to the limit case ¢ = 0,7 = 0.

Case 3: A single porous medium saturated with three
different fluids, so that we have three different media identi-
fied with Qy, Q,, and Q3 as in Fig. 1. The objective is to take
the limit when the layer thickness / of Q, tends to zero to
recover the results obtained by Santos et al. (2004).

Case 4: A porous background with an embedded porous
layer ;. The media are only saturated with water. The
reflection and transmission coefficients are shown for three
different values of the thickness of layer /4.

A. Case 1. Pwaves in fluid media

We check the reflection and transmission coefficients
for compressional plane waves propagating within a fluid

Corredor et al.: Reflection and transmission of a single layer



TABLE I. Properties of the saturant fluids.

Property Gas Water Oil
pr (glem’) 0.1398 1.0 0.7

K (GPa) 0.05543 2.25 0.57
n (Poise) 0.00022 0.01 0.04

medium. Considering the notation in Fig. 1, we choose Q; as
water, (), as oil and Q3 as gas, all with zero viscosity and
with densities and bulk moduli given in Table I. To model
Qq, Q,, and Q3 as fluids, the shear modulus is set to zero,
while the porosity is set to one. Thus, in this case only the
boundary conditions (21) and (22) are considered. The thick-
ness of the layer Q; is #=0.1 cm, which is equal to 0.0055%
of the wavelength of the compressional wave in €.

Figure 2 shows the magnitude and phase of the reflec-
tion and transmission coefficients versus the incidence

T Plweve

J@E
10 20 30 40 50 60 70 80 90
Incidence Angle (Degrees)

Absolute Value of the Reflection/Transmission
Coefficient
o
(%))

1 1

300 T T T T T T T T

200 A O S R et i)

450k i R
: : R. P-wave

100_ srmsvada
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—100}

Phase Reflection/Transmission Coefficient
(Degrees)

-150r

—200 L L L L L L
10 20 30 40 50 60 70 80 90
Incidence Angle (Degrees)

FIG. 2. (Color online) Reflection and transmission coefficients of the com-
pressional wave as a function of the incidence angle for a thickness
h=0.1cm. The solid lines and dots correspond to Liu and Schmitt’s solu-
tion and the present solution, respectively. The incident P wave has a fre-
quency of 50 Hz, ¢ =1 and n=p=0. (a) Absolute value of the reflection
and transmission coefficients; (b) phase angle of the reflection and transmis-
sion coefficients.
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propagation angle. It can be observed a perfect agreement
with the analytical results [Eqs. (A11) and (A12)] of Liu and
Schmitt (2003).

B. Case 2. Pand S waves in solid media

We choose Q; and Q3 to be solids with K; = 37 GPa,
i, = 44GPa, and p, = 2.65g/cm?, while the layer Q, is
defined by p, = 2.55g/cm?, K; = 25GPa, and p; = 9 GPa.
The porosity is set to zero, and therefore there are no pore
fluids. The thickness of the layer is #=0.1 cm, correspond-
ing to 0.0013% of the wavelength of the compressional
wave in .

Figure 3 shows the reflection and transmission coeffi-
cients of compressional and shear waves due to the tetra-
partition of the incident P-wave at the interfaces z = 0 and

o AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
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-150f : :
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FIG. 3. (Color online) Reflection and transmission coefficients of the com-
pressional and shear waves as a function of the incidence angle for a thick-
ness h=0.1cm. The solid and dotted lines correspond to Carcione’s
solution and the present solution, respectively. The incident P wave has a
frequency of 50 Hz, and 7= ¢ =0. The absolute values are shown with
semi-log scales. (a) Absolute value of the reflection and transmission coeffi-
cients (P and S waves); (b) phase angle of the reflection and transmission
coefficients (P and S waves).
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z = h. Our results are consistent with those of [Carcione,
2007, Eq. (6.215)].

C. Case 3. Media with the same frame and three
different fluids

Here we validate our expressions against the reflection
and transmission coefficients for a single planar interface sep-
arating two half spaces of saturated porous media. To per-
form the comparison with the results published in Santos
et al. (2004), we set h=0cm in Eq. (28) to recover Eq. (19)
of that paper, i.e., the thin layer model in Fig. 1 reduces to
the case of two Biot media in contact. The frames in the three
poroelastic media Q;, ,, and Q3 in Fig. 1 are defined
by K,, = 8.66 GPa, K; = 37GPa, 1t = 6.5GPa, ¢ =0.297,
x = 1.9D, and p, = 2.65 g/cm>. The saturant fluids are water
in Qp, gas in £, and oil in Q3, with properties given in Table 1.

2 . . .
: E — h=00 cm
: : ——h=0.4 cm
| ® Santos et al. (1992), h=0.0 cm ||

Absolute Value of the Reflection Coefficient

Y e

The incident plane wave is type-II of frequency 50 kHz.
Figure 4 shows the magnitude of the reflection coefficients
as a function of the incidence angle for the different types of
waves and three different values of the layer thickness,
h=0.1cm (2% of the wavelength of the type-I wave in the
layer), #=0.4 cm and /& = 0cm. For the type-I and II waves,
the magnitude of the reflection coefficients decreases as &
increases, while the opposite behavior is observed for shear
waves. Besides, for type-I and II waves, there is a critical
angle between 10 and 20deg; for shear waves two critical
angles exists for the case 7 = 0. The transmission coefficients
of the three types of waves behave similarly to the reflection
coefficients. The plots are not included for brevity. Note that
in Fig. 4, for the case 7 =0, we get a perfect agreement with
the results reported in Figs. 6, 7, and 8 of Santos et al.
(2004).
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FIG. 4. (Color online) Absolute value of the reflection coefficients of the type I, type II and shear waves as a function of the incidence angle corresponding to
three different layer thicknesses 4. The incident wave is a type II P-wave of frequency 50kHz. (a) Absolute value (type I wave); (b) absolute value (type II

wave); (c) absolute value (shear wave).
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D. Case 4. Three media saturated with the same fluid

The regions Q; and Q3 (the background) are described
by the properties K, =1.17GPa, K;=37GPa,
w=14GPa, ¢ =0.25, and k = 0.18 D. On the other hand,
the medium Q; is a highly permeable and compliant po-
rous layer of porosity ¢ = 0.5 with K,, = 0.58 GPa and
i =0.6GPa determined from the Krief model (Krief
et al., 1990):

Ky u

B (1 — ¢)3/(1—¢)

; (30)
Ky uy

with K = 37 GPa and u, = 44 GPa. The permeability in €,
is computed from the relation (Carcione et al., 2000):

3D

—~-h=0.01cm|

Absolute Value of the Reflection Coefficient

LD 4
A
Y PO OSSN VO UUUEN TUUUUUEEI PR T (A
10 20 30 40 50 6 70 80 90
Incidence Angle (Degrees)
1.001F ; : [~—h=100m ||
1.00081 : h=0.1cm ||
|——h=0.01cm

of the Transmission Coefficient

20 40 60 80
Incidence Angle (Degrees)

where 7, = 20 um is the average radius of the grains, giving
a value of 2.22 D. The layer thickness / varies from 0.05%
to 0.0005% of the type-I P-wave wavelength of the back-
ground. The three media are saturated with water.

Figure 5 shows the magnitude and phase of the reflec-
tion and transmission coefficients as a function of the inci-
dence angle. The incident plane wave is a type-1 P wave of
frequency 50Hz. The reflection coefficients decrease as h
tends to zero, i.e., when the three-layer system approaches a
single medium with identical properties, and tends to one as
the angle tends to 90 deg; both coefficients exhibit a critical
angle at about 26 deg, and polarity changes can be observed
in the phases. The transmission coefficient remains approxi-
mately constant, except at 90 deg, where it approaches zero.

Figure 6 shows the magnitude and phase of the reflec-
tion and transmission coefficients of the type-II P waves as a
function of the incidence angle. The magnitudes decrease as

300 : :
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—-10 *ougac !
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FIG. 5. (Color online) Reflection and transmission coefficients of type I waves as a function of the incidence angle for three different thicknesses /. The inci-
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the angle of incidence tends to zero, while the phases remain
approximately constant. Figure 7 displays the magnitude and
phase of the reflection and transmission coefficients of the
shear waves as a function of the incidence angle. The reflec-
tion and transmission coefficients have no critical angles,
and the phases remains constant except for angles near
90 deg.

V. CONCLUSIONS

We have solved the scattering problem for waves inci-
dent in a fluid-saturated porous system composed of a plane
layer embedded between two half-spaces, where the media
are described by Biot’s theory of poroelasticity. The results
are validated with known limit cases, such as zero porosity
(elastic solids) and 100% porosity (inviscid fluids), and
the case of a single interface between two poroelastic
half-spaces when the thickness of the layer tends to zero.
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The equations predict all the wave conversions, critical
angles and polarity changes, depending on the type of inci-
dent wave. Specific cases have been studied here, such as is
a highly permeable and compliant porous layer. The equa-
tions can be used to study many practical cases, as for
instance, the seismic response of fractures in sandstone ad
carbonate reservoirs and the AVO effects of a reservoir
layer as a function of the type of fluid and characteristics
of the porous skeleton, such as the porosity and the
permeability.
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APPENDIX A: LINEAR SYSTEMS

Here, we report the linear equations for the unknown
amplitude of the reflected and transmitted waves. First,
application of the boundary conditions (17)—(22) at z=10
yields the linear system
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The coefficients of the systems (A1)—(A6) and (A7)—(A12) are given by
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Now, using Egs. (3) and (5), we obtain the wave numbers ql(;’>, n=1,2,3,l=irtandj=1, 2, s:
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Here
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APPENDIX B: FINAL SYSTEM OF EQUATIONS

Each of the matrices in system (28) are defined by
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