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Abstract
We simulate a fluid flow in inhomogeneous anisotropic porous media using
a time-fractional diffusion equation and the staggered Fourier pseudospectral
method to compute the spatial derivatives. A fractional derivative of the order
of 0 < ν < 2 replaces the first-order time derivative in the classical diffusion
equation. It implies a time-dependent permeability tensor having a power-law
time dependence, which describes memory effects and accounts for anomalous
diffusion. We provide a complete analysis of the physics based on plane waves.
The concepts of phase, group and energy velocities are analyzed to describe
the location of the diffusion front, and the attenuation and quality factors
are obtained to quantify the amplitude decay. We also obtain the frequency-
domain Green function. The time derivative is computed with the Grünwald–
Letnikov summation, which is a finite-difference generalization of the standard
finite-difference operator to derivatives of fractional order. The results match
the analytical solution obtained from the Green function. An example of the
pressure field generated by a fluid injection in a heterogeneous sandstone
illustrates the performance of the algorithm for different values of ν. The
calculation requires storing the whole pressure field in the computer memory
since anomalous diffusion ‘recalls the past’.

PACS numbers: 47.10.−g, 47.10.A−, 47.10.ab, 47.11.Bc, 47.11.Kb

1. Introduction

The basic notion of the fractional derivative is widely recognized in science in general
and, in particular, in the fields of mathematical physics, engineering and biology. Numerous
applications of mathematical memory formalisms to the description of physical phenomena
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have been published. We attempt here to recall some contributions, being sure that some work
will be unintentionally omitted. Fractional diffusion equations were first derived in the context
of a continuous time random walk model by Hilfer and Anton [37] and Compte [21], which
since then been widely studied [45]. Importantly, the fractional diffusion equation has been
generalized to include space-dependent forcing [2], reactions [27, 36], time-dependent forcing
[56], advection and dispersion [4, 54] and space- and time-dependent forcing [35].

Diffusion equations are obtained in poroelasticity and electromagnetism at low frequencies
and under certain conditions, by which the inertial terms and displacement currents,
respectively, are neglected [12]. In hydrocarbon exploration and production, diffusion
equations are mainly used to map the sub-seafloor resistivity [1] and model fluid flow in
reservoir rocks [3]. Shapiro et al [55] describe the phenomenon of microseismicity caused
by fluid injection in boreholes by using the diffusion equation obtained in the low-frequency
limit of Biot theory. Indeed, Chandler and Johnson [20] have shown the equivalence between
the quasi-static fluid flow and Biot’s diffusive wave [12]. Luzón et al [44] presented a hybrid
method to calculate the total pore pressure variations in poroelastic media around water
reservoirs, and applied it to compute these variations around the Itoiz dam (northern Spain).

The classical Darcy’s law plays an essential role in describing the flow in a porous medium
[3]. It assumes that the permeability is constant during the diffusion process. It may occur that
fluids carry solid particles which obstruct the pores or may chemically react with the solid
grains. In such cases, the permeability of the matrix changes with time. The time-dependent
permeability in the form of a relaxation function accounts for the past values of the pressure
field, involving a time convolution. If the relaxation function is expressed as a power law,
the convolution can formally be interpreted as a time-fractional derivative. At any instant the
diffusion can be affected by the history of pressure and flow [9].

Diffusion-like equations containing fractional derivatives in time and/or in space are
usually adopted to the model phenomena of anomalous transport in physics. The time-
fractional diffusion-wave equation is obtained by replacing the first-order time derivative
in the classical diffusion equation by a derivative of fractional order. The order ν of the time
derivative can be any real number between 0 and 2; ν = 1 gives the classical diffusion equation
and ν = 2 gives the wave equation. The range [0, 1] corresponds to dispersive anomalous sub-
diffusion, while the range [1, 2] corresponds to generalized wave propagation. Several physical
phenomena, besides fluid flow, can be described with the fractional diffusion equation, for
instance, turbulent plasma, diffusion of carriers in amorphous photoconductors, diffusion in a
turbulent flow, vortex dynamics, the chaotic regime of the Josephson junction, a percolation
model in porous media, fractal media, various biological phenomena and finance problems.
Fractional models are also used to examine the heat transfer in a biological tissue [39]. In
seismology, constant-Q wave propagation corresponds to time-fractional equations with ν

close to 2 [8]. Its finite-difference (FD) implementation in 2D heterogeneous media has been
performed by Carcione et al [14] and Carcione [13].

Fractional derivatives can be computed with the Grünwald–Letnikov (GL) and central-
difference approximations, which are the extensions of the standard FD approximation for
derivatives of integer order [13, 14, 29, 31]. Unlike the standard operator of differentiation, the
fractional operator increases in length as time increases, since it must keep the memory effects
introduced by the fractional derivative. Caputo and Carcione [6] used fractional derivatives of
the distributed order to model the fatigue of materials, while Caputo et al [7] applied fractional
derivatives to the propagation of waves in the biological and dissipative media.

In this work, we examine the diffusion process for inhomogeneous anisotropic media. It
is a generalization of the theory and numerical method presented in Carcione and Gei [16] to
fractional orders of differentiation. With the physics of the phenomenon in mind, we obtain the
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time-fractional diffusion equation. Then, we use the approximation based on the GL derivative
and verify the accuracy of the time discretization by comparing the exact and the FD phase
velocities and attenuation factors. The model is discretized on a regular mesh, and the spatial
derivatives are calculated with the Fourier method by using the fast Fourier transform (FFT).
This approach is called ‘pseudospectral’ and it is infinitely accurate for band-limited periodic
functions with cut-off spatial wavenumbers smaller than the cut-off wavenumbers of the mesh.
On the other hand, Lin and Xu [43] solve the sub-diffusion equation with an FD scheme in
time and Legendre spectral methods in space. Since past solutions have to be stored, the use
of this highly accurate discretization makes the method efficient in terms of storage. A similar
performance is obtained by using the Fourier method, which needs at least two points per
minimum wavelength.

We test the modeling algorithms with analytical solutions for 1D and a 2D homogeneous
media and illustrate the method in inhomogeneous fractal media.

2. The fractional diffusion equation

When inertial terms are neglected in the governing equations of poroelasticity [12], the
remaining equations are diffusion-like. In fact, the quasi-static limit of Biot’s equations,
to describe the diffusion of the second (slow) compressional mode, is obtained by neglecting
the acceleration terms in the equations of momentum conservation, and considering the
constitutive equations and Darcy’s law [5].

2.1. Biot’s classical equation

Biot’s relevant stress–strain relation and Darcy’s law for inhomogeneous media are given by

p = M(ζ − αi jεi j), ζ = −∂iwi (1)

and

−∂i p = η

κ(i)
∂twi, i = 1, . . . , 3 (2)

(equations (8.399) and (8.401) in Carcione [12]), where p is the fluid pressure, ζ is the
variation of fluid content, wi are the components of the fluid displacement vector relative
to the solid, εi j are the components of the strain tensor of the skeleton (matrix), κi are the
components of the permeability tensor (in its principal system), η is the dynamic viscosity, αi j

are components of the effective-stress coefficient matrix (equation (7.139) in Carcione [12];
see below), ∂i is the spatial derivative with respect to the variable xi and ∂t is the time derivative
((x1, x2, x3) = (x, y, z) = r = rr̂). The stiffness M is

M = Ks

(1 − K/Ks) − φ(1 − Ks/Kf )
, (3)

where φ is the porosity, Ks is the bulk modulus of the solid grains, Kf is the fluid bulk modulus
and

K = 1
9 [c11 + c22 + c33 + 2(c12 + c13 + c23)] (4)

is the bulk modulus of the skeleton, with cIJ being the elastic constants of the (drained)
skeleton.

Combining equations (1) and (2) yields the diffusion equation
1

M
∂t p + αi j∂tεi j = ∂i(ai∂i p), ai = κi

η
, and i, j = 1, . . . , 3. (5)
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In the isotropic case, equation (5) becomes

1

M
∂t p + α∂tεii = ∂i (a∂i p) , a = κ/η, (6)

where α = 1 − K/Ks.

2.2. Uncoupling fluid flow and deformation

The fluid pressure is coupled with the strain of the matrix in equations (5) and (6). This makes
the problem much more difficult to solve, but there are situations where these field variables
can be uncoupled. They occur when the displacement field is irrotational or when the fluid is
very compressible [22]. We may avoid such approximation by using a less stringent one. The
total stress is

σi j = ci jklεkl − αi j p (7)

(equation (7.132) in Carcione [12]), where σi j are the components of the total stress tensor
and ci jkl are the elastic constants in the four indices notation [34]. Let us assume the case
of fluid injection in a borehole, transverse isotropy (a2 = a1), uniaxial strain conditions and
vertical deformations only. This is valid for sub-horizontal layers whose vertical dimension is
small compared to their lateral extent. In this case, the only non-zero differential strain is dε33.
Assuming no changes in the vertical stress, we obtain from (7):

dσ33 = 0 � c3333dε33 − α33dp = c33dε33 − α33dp. (8)

Using this formula, equation (5) becomes

∂t p = N�I p, (9)

where

�I = ∂1(a1∂1 p) + ∂2(a1∂2 p) + ∂3(a3∂3 p) and
1

N
= 1

M
+ α2

33

c33
(10)

and the subindex ‘I’ in the Laplacian indicates that it corresponds to inhomogeneous media,
i.e., equation (9) is required when computing diffusion fields using direct methods (FDs,
finite elements, pseudospectral methods, etc). The permeability tensor is diagonal with two
independent components κ1 and κ3, such that

ai = κi

η
, i = 1, 3, (11)

α33 = 1 − (2c13 + c33)/(3Ks), (12)

and M is given by (3), with

K = 1
9 [2c11 + c33 + 2(c12 + 2c13)]. (13)

Another similar situation, although uncommon in a borehole, is when the strain tensor is
isotropic, i.e., dε11 = dε22 = dε33 = 0. It is easy to show that if dσ33 = 0, we obtain
N = 1/[1/M + α2

33/(2c13 + c33)]. Knowledge of N in both cases is useful to quantify the
correction to be applied to the fluid-flow equation due to the deformation of the skeleton. More
general approaches involving the coupling of a fluid flow and deformation take into account
the coupled Biot’s equations [32].

We consider the uncoupled case in the rest of the paper, where N, corresponding to uniaxial
strain conditions, is used as the stiffness. In this case, we do not assume any restriction about
the symmetry of the permeability tensor.
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2.3. Generalized Darcy’s law and the time-fractional equation

In order to obtain the fractional diffusion equation, we use a generalization of Darcy’s law.
The mathematical formulation is the same as that used for constant-Q wave propagation
[8, 13, 14, 48]. The related viscoelastic equations are

σ = ψ ∗ ∂tε = M0ω
−β

0 ∂
β
t ε,

ψ = M0

�(1 − β)

(
t

t0

)−β

H(t), t0 = 1/ω0,

(14)

where σ is the stress, ε is the strain, ψ is the relaxation function, M0 is a bulk modulus, ω0 is a
reference frequency, β is the order of the derivative, H is the Heaviside function, � is Euler’s
Gamma function and ‘∗’ denotes time convolution. We use the following formal mathematical
analogy:

σ → −∂i p, ε → ∂twi, M0 → 1/ai, β → ν − 1, (15)

to obtain

−∂i p = ψ ∗ ∂2
t wi = 1

ai
ω1−ν

0 ∂ν
t wi, where ψ = 1

ai�(2 − ν)

(
t

t0

)1−ν

H(t). (16)

This is a generalization of Darcy’s law to include memory effects. The fractional derivative
is remembering their past values, which implies that the permeability of the matrix changes
during the diffusion process, related to the relaxation function ψ . These changes may occur
because the fluids may carry solid particles which obstruct the pores or may chemically react
with the matrix. At any instant the diffusion can be affected by the history of pressure and
flow.

Taking the divergence of equation (16) and using the stress–strain relation −∂iwi = p/N,
we obtain the generalization of the diffusion equation (9),

∂ν
t p + s = N�I p, 0 < ν � 2, ai = κi

η
ων−1

0 , (17)

where we have introduced a source term s. These types of equations were studied by
Nigmatullin [51], Westerlund [60], Mainardi [46, 47] and recently Hanyga [33]. Another
modification was introduced by Caputo and Plastino [9] and Iaffaldano et al [38] for isotropic
media. A generalization of their equation to anisotropic media can be

∂t p + s = N[�I p + �γ ∂ν
t p], (18)

where �γ is similar to �I , but replacing ai with γi, i = 1 or 3 (see equation (9)).
If the medium is homogeneous, we can express equation (17) as

∂ν
t p + s = �H p, (19)

where

�H = b1∂
2
1 + b2∂

2
2 + b3∂

2
3 , bi = Nai = N

κi

η
ων−1

0 , i = 1, . . . , 3, (20)

where bi are the principal components of the hydraulic diffusivity tensor.

3. Plane-wave analysis

Let us assume a kernel of the form exp[i(ωt − k · x)], where ω is the angular frequency, k is
the complex wavenumber vector and x is the position vector. Assuming homogeneous fields,
we have k = k(l1, l2, l3)�, where k = Re(k) − iα, α is the attenuation factor and li are the
direction cosines defining the propagation direction.
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3.1. Dispersion relation and complex velocity

Assuming homogeneous media and substituting the kernel into equation (17), in the absence
of the source, gives the dispersion equation

(iω)ν = −(
b1l2

1 + b2l2
2 + b3l2

3

)
k2. (21)

We define the complex velocity as

vc = ω

k
= (iω)1−ν/2

√
b1l2

1 + b2l2
2 + b3l2

3 . (22)

The same kinematic concepts used in wave propagation (acoustics and electromagnetism) are
useful in this analysis [12].

3.2. Phase velocity, attenuation factor and skin depth

The phase velocity and attenuation factor can be obtained from the complex velocity as

vp = [
Re

(
v−1

c

)]−1
and α = −ω Im(v−1

c ), (23)

respectively, where Re and Im take real and imaginary parts. The skin depth is the distance
d for which exp(−αd) = 1/e, where e is Napier’s number, i.e., the effective distance of
penetration of the signal. Then, d = 1/α; d = √

2b/ω for ν = 1 and isotropic media, where
b = κN/η. Using equation (22) yields

vp = [sin(πν/4)]−1ω1−ν/2
√

b1l2
1 + b2l2

2 + b3l2
3 (24)

and

α = 1

d
=

(
ω

vp

)
cot(πν/4). (25)

3.3. Envelope and group velocities

Without loss in generality, let us consider the (x, z)-plane, where l2 = 0, l1 = sin θ , l3 = cos θ

and l2
1 + l2

3 = 1. It has been shown by Carcione [10, 12] that the location of the wave front
in anisotropic attenuating media is given by the energy velocity, since the concept of group
velocity breaks down. Carcione has also shown that the energy velocity can be approximated
quite well by the envelope velocity, which is given by (equation (1.146) in Carcione [12])

venv =
√

v2
p +

(
dvp

dθ

)2

. (26)

Using (24), we obtain

venv = vp

√
b2

1l2
1 + b2

3l2
3(

b1l2
1 + b3l2

3

)2 = ω2−ν

vp sin2(πν/4)

√
b2

1l2
1 + b2

3l2
3 . (27)

In the isotropic case, b1 = b3 and venv = vp. We show below that the envelope velocity is
exactly the energy velocity for the equations of the form (17).

On the other hand, the components of the group velocity are equal to the derivative of
the frequency ω with respect to the real wavenumber components, i.e., ∂ω/∂Re(ki). The
components are ki = kli. The group-velocity vector can be obtained from the dispersion
relation as (equation (4.39) in Carcione [12])

vg = −
[

Re

(
∂F/∂ω

∂F/∂k1

)]−1

ê1 −
[

Re

(
∂F/∂ω

∂F/∂k3

)]−1

ê3, (28)
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where, from equation (21),

F(k1, k3) = b1k2
1 + b3k2

3 + (iω)ν = 0. (29)

We obtain

vg = 2ω2−ν

ν Re(i2+νvc)
(a1l1ê1 + a3l3ê3) (30)

and

vg = 2ω2−ν

ν Re(i2+νvc)

√
b2

1l2
1 + b2

3l2
3 . (31)

In the isotropic case, we have vg = 2vp/ν. If ν = 2, we obtain the wave equation and the
medium is lossless. Note that only in the isotropic lossless case, we have vg = vp = venv. In
the anisotropic lossless case, it is vg = venv �= vp = vc. When the medium is lossy, the group
velocity differs from the envelope velocity. The group velocity obtained by Shapiro et al [55]
differs from (31) in that the factor Re(i2+νvc) has been replaced by |i2+νvc|. His approach is to
compute the components ∂ω/∂ki and then take the absolute value of the result. Both velocities
are similar if the imaginary part of vc is small compared to its real part. Since Im(vc)/Re(vc) =
cot(πν/4), this happens for ν = 2 (wave equation). For ν = 1 the relation is 1, so the two
velocities differ.

3.4. Energy velocity, wave front and quality factor

The calculation of the energy velocity requires the establishment of an energy balance equation.
Again, we use the fact that diffusion fields can be treated with the same mathematical
formulation used for the propagation of waves. The energy balance could be explicitly
developed and the energy velocity can be obtained as the energy flux divided by the total energy.
For brevity, we use an analogy between equation (5) and that describing the propagation of
seismic SH waves. The complex velocity of SH waves, given by equation (4.106) in Carcione
[12], is mathematically equivalent to equation (22), provided that we make the following
substitutions:

p66 → (iω)2−νb1, p44 → (iω)2−νb3, ρ → 1, (32)

where p66 and p44 are complex and frequency-dependent stiffnesses and ρ is the mass density.
The energy velocity is given by equation (4.115) in Carcione [12]. Then, using this equation
and the equivalence (32), we obtain

ve = ω2−ν

vp sin2(πν/4)
(b1l1ê1 + b3l3ê3), (33)

where we have used the property vp Re(i2−ν/vc) = 1. As can be seen by comparison to (27),
venv = ve. Equation (33) provides, in addition, the direction of the energy flux (ray angle),

tan ϑ = b1l1
b3l3

= κ1

κ3
tan θ. (34)

If ν = 2 (lossless case), we have that vg = ve, while in the pure diffusion case (ν = 1), it
is vg = 2ve. The group- and energy-velocity vectors have the same direction but different
magnitude. With the exception of the lossless case, for which the velocity is the same for
all the frequencies, the velocity goes from zero at ω = 0 to infinity at ω = ∞. Hence, the
definition of the wave front or diffusion front is related to a given frequency. We define the
wave front as the location of the tip of the energy velocity vector at unit propagation time.

The quality factor has two definitions in the literature, which give approximately the same
value when Q 	 1, as is the case for seismic waves. These definitions are: (i) Q1 = twice

7
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the potential energy V divided by the dissipated energy D and (ii) Q2 = the total energy
E = T + V divided by D, where T is the kinetic energy. The energies are time averaged over
a cycle. Denoting β = πν/4, we have T ∝ 1, V ∝ cos 2β, E ∝ 1 − cos 2β and D ∝ sin 2β

(see equation (22) and equations (4.112), (4.113) and (4.114) in Carcione 2007).
The first definition gives a quality factor

Q1 = 2V

D
= Re

(
v2

c

)
Im

(
v2

c

) = − cot 2β (35)

(Carcione [12], equation (4.92)), where we have used equation (22). The limit cases of the
absence of energy dissipation (the elastic energy is fully stored) and of the absence of energy
storage (the elastic energy is fully dissipated) are recovered from (35) for β = π /2 (perfectly
elastic solid, ν = 2) and β = π /4 (perfectly viscous fluid, ν = 1), respectively.

The second definition gives

Q2 = E

D
= Re2(vc)

Im
(
v2

c

) = 1

2
tan β, (36)

for which Q = 0 , 1/2 and ∞ for ν = 0, 1 and 2, respectively.
Note that (E,V, D) ∝ (0, 1, 0), (1, 0, 1) and (2, −1, 0), for ν = 0, 1 and 2, respectively.

Each definition has its own drawback. Q1 is negative for sub-diffusion (ν < 1), while Q2 does
not vanish for ν = 1.

4. Green’s function and the time-domain solution

Let us consider equation (19) and perform the following change of coordinates:

x → x′√b1, y → y′√b2, z → z′√b3 (37)

which transforms �H into a pure Laplacian differential operator. Using equation (37),
equation (19) becomes

∂ν
t p + s = �′ p, (38)

where

�′ = ∂2
1′ + ∂2

2′ + ∂2
3′ . (39)

The nD Green function is given in Hanyga [33] (equation (A3) with s = iω and A = 1),

GnD(r′) = 2π i

(
r′1−n/2

(iω)ν(n/4−1/2)

i(2π)n/2+1

)
Kn/2−1[(iω)ν/2r′], (40)

where

r′ = x′, �′ = ∂2
1′ , 1D,

r′ =
√

x′2 + z′2, �′ = ∂2
1′ + ∂2

3′ , 2D,

r′ =
√

x′2 + y′2 + z′2, �′ = ∂2
1′ + ∂2

2′ + ∂2
3′ , 3D,

(41)

and Kγ denotes the Macdonald function of order γ . Note that Hanyga [14] (equation 2.1)
solves ∂2ν

t u = A�u + s, where u is the unknown variable, A is a constant and s is the source.
Moreover, � = 1 in his equation (A2) since the initial conditions are zero.

The 1D solution is

G1D(r′) = (iω)−ν/4

√
r′

2π
K−1/2[(iω)ν/2r′]. (42)

8
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In the 2D case ((x, z)-plane)), equation (40) has the solution

G2D(r′) = 1

2π
K0[(iω)ν/2r′]. (43)

The 3D Green function is

G3D(r′) = (iω)ν/4

2π
√

2πr′ K1/2[(iω)ν/2r′]. (44)

When solving the problem with a limited-band wavelet source s(t), the frequency-domain
solution is multiplied by the Fourier transform S(ω). To ensure a real time-domain solution,
we consider an Hermitian frequency-domain solution. Finally, the time-domain solution is
obtained by an numerical inverse transform.

4.1. Closed-form solutions in the time domain for ν = 1 and ν = 2

If ν =1, we can express equation (19) as

∂tg − �′g = δ(r′)δ(t), (45)

whose solution is [19]

g = 1

(4πt)n/2
exp[−r′2/(4t)]H(t) (46)

and

r′ =
√

x2

b1
+ y2

b2
+ z2

b3
(47)

(omit the y-term if n = 2). The diffusion length vector (L1, L2, L3) is defined as r′ = √
4t. It

is obtained from

L2
1

b1
+ L2

2

b2
+ L2

3

b3
= 4t. (48)

It is a measure of how far the field has propagated at time t.
If ν = 2, we have

∂2
t g − �′g = δ(r′)δ(t). (49)

The 2D solution is

g = 1

2π

H(t − r′)√
t2 − r′2

(50)

(e.g., Carcione [12], equation (3.197)); r′ = r/c when the medium is isotropic, where c = √
b

is a velocity.
Having the Green function, one can compute the solution for a general source time history

s(t) as

p = g ∗ s. (51)

In particular, for s = H(t)δ(r) (uniform injection rate), we have for the 3D diffusion case (46)

p = 1

(4π)3/2

∫ t

0

1

τ 3/2
exp(−r′2/4τ )dτ = 1

4πr
erfc

(
r′

√
4t

)
, (52)

where ‘erfc’ is the complementary error function; erfc(q) =1−erf(q) = (2/
√

π )
∫ ∞

q exp(−p2)dp,
where ‘erf’ is the error function.
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Figure 1. Phase, energy and group velocities as a function of the propagation angle (a) and ν (b).

5. Numerical algorithm

The most widely used time approximation in fractional calculus is the backward GL derivative.
The GL fractional derivative of a function f is

hν ∂ν f (t)

∂tν
∼

J∑
j=0

(−1) j

(
ν

j

)
f (t − jh), (53)

where h is the time step and J = t/h − 1. The derivation of this expression can be found, for
instance, in Carcione et al [14]. The binomial coefficients can be defined in terms of Euler’s
Gamma function as(

ν

j

)
= �(ν + 1)

�( j + 1)�(ν − j + 1)

10
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2D

3D

(a)

(b)

Figure 2. Pressure as a function of time for ν = 1 obtained from the frequency- and-time domain
Green’s functions (solid and dotted lines, respectively). (a) 2D space; (b) 3D space.

and can be calculated by a simple recursion formula(
ν

j

)
= ν − j + 1

j

(
ν

j − 1

)
,

(
ν

0

)
= 1.

If ν is a natural number, we have the classical derivatives. In this case J = ν in equation (53).
The GL approximation is of the order of O(h). The fractional derivative of f at time t depends
on all the previous values of f . This is the memory property of the fractional derivative. In our
calculations, we consider the whole memory history since for ν < 1 it is not possible to use
the short-memory principle, i.e., fewer terms in the sum of equation (53), as can be used in the
simulation of wave propagation [14]. Waves ‘forget’ the past but diffusion fields ‘remember’
it.

The time discretization of equation (17) for ν close to 1 using the GL derivative is

Dν pn−1 + sn−1 = N�I pn−1, (54)
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1D
(a)

(b)

(c)

Figure 3. Normalized pressure as a function of time for various values of ν. (a) 1D space; (b) 2D
space; (c) 3D space. In the 1D case, the pressure is divided by ν4 to enhance the field with lower ν.
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Figure 4. Time step as a function of ν.

where

hνDν pn−1 = pn +
J∑

j=1

(−1) j

(
ν

j

)
(pn− j − p0). (55)

Combining equations (54) and (55), pn can be computed from its past values pn− j as

pn = hν (N�I pn−1 − sn−1) −
J∑

j=1

(−1) j

(
ν

j

)
(pn− j − p0). (56)

The accuracy and stability of this algorithm are analyzed in appendix A. It is important to
note that equations (14), (16) and (17) correspond to a time-fractional differential equation
in the Caputo sense and the GL derivative corresponds to a time-fractional derivative in
the Riemann–Liouville (RL) sense, see for example [30], equation (5.2). Here, we consider
the causal events p(t) = 0 for t < 0. If p(t = 0+) = 0, the RL and Caputo derivatives are the
same. If p(t = 0+) is a constant p0, then the Caputo derivative is equal to the RL derivative
of [p(t) − p0]. In equations (55) and (56), the subtraction of p0 reflects the subtraction of
p(t = 0+) to obtain the Caputo fractional derivative. However, our diffusion equation is such
that we initiate the perturbation with a source (a fluid injection in practice) and therefore the
initial condition p(0+) = 0 and the two derivatives coincide. In the case of non-zero initial
conditions, the numerical implementation of the Caputo fractional derivative can be found in
Diethelm et al [23] and Diethelm [24].

The spatial derivatives are calculated with the Fourier method by using the FFT [12, 40].
The Fourier pseudospectral method has spectral accuracy for band-limited signals. Then, the
results are not affected by spatial numerical dispersion. In the case of inhomogeneous media,
the algorithm employs the staggered Fourier method. Staggered operators evaluate derivatives
between grid points. For instance, if �x is the grid (cell) size and k1 is the wavenumber
component, a phase shift exp(±ik1�x/2) is applied when computing the x-derivative. Then,
∂1a1∂1 is calculated as D−

1 a1D+
1 , where D±

1 is the discrete operator and ± refers to the sign of
the phase shift. The spatial differentiation requires the interpolation of the material properties
at half grid points.

13
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(a)

(b)

Figure 5. FD phase velocity (a) and attenuation factor (b) (symbols) as a function of frequency
compared to the exact values (solid line) for different memory lengths, J, ν = 0.5 and h = 0.2 s.
The arrow indicates the peak source frequency used in the simulations.

6. Results

In order to illustrate the physics, we use the following material properties: c11 = 35 GPa,
c12 = 3 GPa, c13 = 5 GPa, c33 = 25 GPa, Ks = 40 GPa, Kf = 2.25 GPa, φ = 0.25,
κ1 = 0.2 D, κ3 = 0.05 D, η = 1 cP and ω0 = π × 0.001 Hz. Figures 1(a) and (b) show
the velocities as a function of the propagation angle and ν, respectively, for ω = ω0. In
figures 1(a), it is ν = 1 and in (b) it is ϑ = π/4, which gives θ = 14o (see equation (34)). As
can be seen, the group velocity is quite different from the energy velocity. An evaluation of
the correct velocity is made qualitatively when computing the transient response as a function
of ν (see figure 3 below).
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(a)

(b)

Figure 6. Comparison between the 1D analytical and numerical solutions (solid line and dots) for
ν = 0.5 (a) and ν = 1.5 (b). A memory length J = 50 000 time steps has been used in (a). The
dashed line corresponds to J = 5000.

To compute the transient responses, we use a Ricker wavelet of the form

w(t) =
(

a − 1

2

)
exp(−a), a =

[
π(t − ts)

tp

]2

, (57)

where tp is the period of the wave (the distance between the side peaks is
√

6tp/π ) and we
take ts = 1.4tp. Its frequency spectrum is

W (ω) =
(

tp√
π

)
ā exp(−ā − iωts), ā =

(
ω

ωp

)2

, ωp = 2π

tp
. (58)

The peak frequency is fp = 1/tp.
We test the analytical solutions (40) with equation (46) for ν = 1. The 2D and 3D

Green functions are multiplied by the Ricker wavelet (58) and then transformed to the time
domain using a discrete Fourier transform. We use the previous material properties. The Green
functions are computed using a time step of 100 s at x = z = 100 m and a source peak frequency

15
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(a)

(b)

Figure 7. Comparison between the 2D analytical and numerical solutions (solid line and dots) for
ν = 0.9 (a) and ν = 1.5 (b). A memory length J = 10 000 time steps has been used in (a).

fp = 0.0005 Hz = f0. Figure 2 shows the comparison, ensuring that the frequency-domain
approach to compute the Green function is correct and that we can use it to test the numerical
modeling code for ν �= 1.

The pressure field for various values of ν is shown in figure 3, where we have considered
the nD Green functions, the previous properties and parameters, fp = f0 and ω0 = 2π f0,
which corresponds to the reference frequency used in figure 1. We consider x, y and z such that
the source–receiver radial distance is r = 100 m. In the 3D case, it is κ2 = κ1. The behavior
of the pulse tends to be wave-like when ν → 1.5. If we assume that the location of the pulse
is approximately given by the onset, we obtain ‘traveltimes’ of 0.3 h and 0.65 h for ν =
0.5 and 1.5, respectively. This gives velocities of 330 m h−1 and 154 m h−1, respectively,
which are in qualitative agreement with the values of the energy velocities shown in
figure 1(b), indicating that the energy velocity rather than the group velocity describes the
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Figure 8. Fractal image of the porosity corresponding to a typical sandstone.

onset of the perturbation. Note that from equations (23) and (27), the energy velocity is
proportional to ω1−ν/2, i.e, ve ∝ ω3/4 for ν = 0.5 and ve ∝ ω1/4 for ν = 1.5. Hence, the
velocity decreases with decreasing frequency. In the diffusion process, the pulse dominant
frequency decreases, implying a slower propagation. This explains the differences observed
between our calculations and the values given in figure 1(b).

The numerical simulations follow. In all the cases, the pressure field is normalized. We
first consider the 1D case and 165 grid points, with �x = 10 m. The time step given by
equation (A.6), according to the stability condition, is shown in figure 4 as a function of ν,
where h < 0.3 s for ν = 0.5 and h < 50 s for ν = 1.5. The GL derivative is obtained by
considering the whole past history of the field. Then, the algorithm can be expensive for low
values of ν. To test the accuracy of the time discretization, figure 5 compares the FD phase
velocity and attenuation factor as a function of frequency to the exact values for two different
memory lengths J, ν = 0.5 and h = 0.2 s. The arrow indicates the peak source frequency used
in the simulations. As can be seen, the approximation requires the whole history. Figure 6
compares the numerical and analytical solutions for ν = 0.5 (a) and ν = 1.5 (b), where fp =
f0. The maximum time is 2.7 h with h = 0.2 s (50 000 steps) in (a), and h = 5 s (2000 steps)
in (b). The dashed line corresponds to J = 5000, showing that the whole memory length has
to be used. Next, we perform 2D simulations in the same medium, using a 165 × 165 mesh,
with �x = �z = 10 m for ν = 0.9 and 1.5. In the first case, h = 1 s and we compute 10 000
steps. Figure 7 compares the analytical and numerical solutions. Again, the agreement is
excellent.

Finally, we compute a fluid-flow simulation in fractal media. We model fractal variations
by using a von Kármán autocovariance probability function as described in appendix B. We
consider a low-frequency source with a peak frequency fp = f0. The medium is described by
φ0 = 0.25, �φm = 0.05, l = 20 m, ε = 0.18 and n = 2. Figure 8 shows a map of the porosity.
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Figure 9. Pressure field in a fractal medium for ν = 0.9 (solid line with symbols). For comparison
the case with ν = 1 is shown (solid line).

We assume R = 10 μm, κ1 = 4κ3, η = 1 cP, Ks = 40 GPa, μs = 3 Ks/5 (Poisson solid), A =
2, B = 3 and Kf = 2.25 GPa. We consider ν = 0.9 over the whole space and we use the same
mesh of the previous simulation. The time step is h = 1 s and we compute 10 000 steps. The
pressure at x = z = 100 m from the source location is shown in figure 9 (symbols), normalized
with respect to the maximum value of the field for ν = 1, displayed as a solid line.

As stated above, we consider the whole memory history. To solve this problem, which
requires substantial memory storage, further research is necessary to verify if the fractional
derivative can be computed with a suitable approximation [50, 57]. However, as shown in
figure 5, the calculation requires all the past history and a local approximation of the time
derivative would be inaccurate. The problem seems to be the correct approximation of the
low-frequency components or later times of the signal (see figures 5(b) and 6(a), respectively)
and this requires us to consider the whole past history of the field in the calculation of the GL
summation. A solution could be to increase the time step with increasing time. The slowing
down of the diffusion rate with time suggests that it is possible to increase the time step as
time increases [25, 52], a method that has been re-discovered by Ford and Simpson [28] as the
‘Nested meshed scheme’.

7. Conclusions

We have formulated a theory for anomalous fluid-pressure diffusion in inhomogeneous
anisotropic media, based on a time-fractional diffusion equation. The flow is described by
a time-dependent permeability of the form t1−ν , where t is the time and ν is the order of the
fractional derivative. The coupling between the pressure and deformation of the frame is taken
into account for the case of uniaxial strain conditions, through a modification of the stiffness.
The physical quantities have been obtained by using a plane-wave kernel and concepts from
wave propagation in anelastic media. In particular, we show that the envelope velocity (a
kinematical quantity) is equal to the energy velocity (a dynamical quantity). This is not the
case for waves. The group velocity is greater than the energy velocity, which represents the
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location of the diffusion front. The relation between the energy angle and the phase angle
depends on the ratio between the horizontal and vertical permeabilities, and therefore strong
differences are expected between the flux and wavevector directions, compared to the seismic
(propagation) case. We have also provided two definitions of a quality factor. These new
implications are useful for tracking the diffusion front in reservoir rocks, where the signal
travels at the energy velocity, as shown by the time response. Moreover, we have obtained the
time-domain Green function in homogeneous 1D, 2D and 3D media.

The simulation of pressure diffusion in inhomogeneous media has been achieved by
using the Grünwald–Letnikov derivative, storing the whole field to obtain accurate results.
The algorithm has been tested with the 1D and 2D Green functions and applied to pressure
diffusion in fractal porosity media, simulating realistic reservoir conditions.

The analysis of the physics and the simulation also applies to anomalous electromagnetic
diffusion in view of the mathematical analogy between a fluid flow in porous media and
electromagnetic low-frequency fields. Both phenomena are described by the time-fractional
diffusion equation.
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Appendix A. FD stability and accuracy

Here, we analyze the numerical stability and accuracy of the numerical discretization.

A.1. Stability

The kernel exp(ikx) replaced in equation (56) gives

pn = −hνb1k2 pn−1 −
J∑

j=1

(−1) j

(
ν

j

)
pn− j. (A.1)

Let us assume the relation

pj = gpj−1, (A.2)

where g is the amplification factor. Then

g = −hνb1k2 −
J∑

j=1

(−1) j

(
ν

j

)
g1− j. (A.3)

The von Neumann condition for stability implies

max|g| � 1. (A.4)

In particular, setting g = −1 and k = π/�x, the Nyquist wavenumber, we obtain the following
stability condition:

h �

⎧⎨⎩ �x2

π2b1

⎡⎣1 +
J∑

j=1

(
ν

j

)⎤⎦⎫⎬⎭
1/ν

. (A.5)

It can be shown that the 3D condition is

h �

⎧⎨⎩ 1

π2

(
b1

�x2
+ b2

�y2
+ b3

�z2

)−1
⎡⎣1 +

J∑
j=1

(
ν

j

)⎤⎦⎫⎬⎭
1/ν

. (A.6)
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A.2. FD phase velocity and attenuation factor

Let us assume constant material properties, propagation along the x-direction and a field kernel
exp(i(ωnh − kx), with t = nh and k being the complex horizontal wavenumber component.
The complex velocity is given by

v̄c = ω

k
. (A.7)

Substituting this kernel into equation (56) gives

v̄c = iξ

√
hν−2b1

1 + �
exp(−iξ/2) = iξ

√
ξν

0 Nκ1

ηh(1 + �)
exp(−iξ/2), (A.8)

where ξ = ωh, ξ0 = ω0h and

� =
J∑

j=1

(−1) j

(
ν

j

)
exp(−i jξ ). (A.9)

Note that ξ and ξ0 are dimensionless, N(Pa), κ1(m2), η(Pa . s) and h(s).
The FD phase velocity is given by

v̄p =
[

Re

(
1

v̄c

)]−1

, (A.10)

while the attenuation factor is

ᾱ = −ω Im

(
1

v̄c

)
(A.11)

to be compared with equations (23) to evaluate the accuracy of the time discretizations.

Appendix B. Modeling of fractal media

We vary the porosity fractally and compute the permeability components and elastic moduli
from deterministic relations between these quantities and the porosity (see below).

Let �φm be the maximum deviation of the porosity from the background value φ0. The
porosity at (x, y, z) is first subjected to the variations (�φ)r, such that

− �φm � (�φ)r � �φm, (B.1)

where (�φ)r is obtained from a random number generator and the superindex ‘r’ denotes
randomness. (Random numbers between 0 and 1 are generated and then scaled to the interval
[−1, 1]�φm.)

Small-scale porosity variations in the reservoir can be described by the von Kármán
autocovariance function [15, 59]. The corresponding wavenumber-domain power spectrum is

P(k1, k2, k3) = K(1 + k2a2)−(ε+n/2), (B.2)

where k =
√

k2
1 + k2

2 + k2
3 is the wavenumber, a is the correlation length, ε (0 < ε < 1) is a

self-similarity coefficient, K is a normalization constant and n is the Euclidean dimension. The
von Kármán correlation function describes self-affine, fractal processes of fractal dimension
n + 1 − ε at scale smaller than a.

The porosity is then calculated as

φ(x, y, z) = φ0 ± �φ(x, y, z), (B.3)

where

�̃φ(k1, k2, k3) = ˜(�φ)
r
(k1, k2, k3)P(k1, k2, k3), (B.4)
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with ˜(�φ)
r
(k1, k2, k3) being the Fourier transform of (�φ)r(x, y, z). (The tilde denotes the

space Fourier transform.)
Porosity and vertical permeability are related by an equation derived by Carcione

et al [14]

κ3 = r2
gφ

3

45(1 − φ)2
, (B.5)

where rg denotes the average radius of the grains.
We use the Krief model, generalized to the anisotropic case [18], to obtain the dry-rock

moduli,

c11 = (Ks + 4μs/3)(1 − φ)A/(1−φ),

c12 = (Ks − 2μs/3)(1 − φ)A/(1−φ),

c13 = (Ks − 2μs/3)(1 − φ)B/(1−φ),

c33 = (Ks + 4μs/3)(1 − φ)B/(1−φ), (B.6)

where A and B are constants. The use of two constants is somehow equivalent to vary the
Krief exponent as a function of the propagation (phase) angle, since c11 and c12 describe
the velocities along the stratification, and c13 and c33 along the perpendicular direction. It is
A < B, indicating that the critical porosity value is larger for the elastic constants describing
the properties along the layering, i.e., the skeleton is mainly defined by these constants at high
porosity. Substituting equation (B.6) into equation (13) yields

K = 1
3 Ks[(1 − φ)A/(1−φ) + (1 − φ)B/(1−φ)], (B.7)

while equation (12) gives

α = 1 − (1 − φ)B/(1−φ). (B.8)
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