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Wave simulation in partially frozen porous media with fractal
freezing conditions
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A recent article@J. M. Carcione and G. Seriani, J. Comput. Phys.170, 676 ~2001!# proposes a
modeling algorithm for wave simulation in a three-phase porous medium composed of sand grains,
ice, and water. The differential equations hold for uniform water~ice! content. Here, we obtain the
variable-porosity differential equations by using the analogy with the two-phase case and the
complementary energy theorem. The displacements of the rock and ice frames and the variation of
fluid content are the generalized coordinates, and the stress components and fluid pressure are the
generalized forces. We simulate wave propagation in a frozen porous medium with fractal variations
of porosity and, therefore, realistic freezing conditions. ©2003 American Institute of Physics.
@DOI: 10.1063/1.1606861#
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I. INTRODUCTION

Wave propagation in frozen porous media is a sub
which has practical application in many fields, as for
stance, seismic prospecting in polar areas~permaforst!,1

evaluation of gas-hydrate concentration in ocean-bot
sediments,2 and nondestructive evaluation of frozen food
ultrasonic methods.3,4 These applications require the know
edge of the degree of freezing of the interstitial water. Fre
ing has a negligible effect on density and magnetic perm
ability, precluding the use of gravimetric and magne
techniques, but have a remarkable effect on wave veloc
~see Timur,5 Carcione and Seriani6!. Hence, seismic and
acoustic methods constitute the best way for quantify
the amount of ice and water and determining the degre
freezing.

A Biot-type three-phase theory based on first princip
has been proposed by Leclaireet al.7 The theory, which as-
sumes that there is no direct contact between the sand g
and ice, predicts three compressional waves and two s
waves and can be applied to unconsolidated and consolid
porous media. Carcione and Tinivella2 have generalized the
theory to include grain–ice interaction and grain cementa
with decreasing temperature, and show an application for
evaluation of gas-hydrate concentration. Carcione
Seriani8 designed a modeling algorithm based on this n
theory. Moreover, they have introduced realistic attenua

a!Electronic mail: jcarcione@ogs.trieste.it
7830021-8979/2003/94(12)/7839/9/$20.00
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by using viscoelastic memory variables, implying addition
differential equations.

However, the Lagrangian formulation used by Lecla
et al.7 and, consequently, the differential equations solved
Carcione and Seriani,8 hold for uniform porosity, since the
average displacements of the solid and fluid phases are
as Lagrangian coordinates and the respective stress co
nents are used as generalized forces. These equation
analogous to Biot’s 1956 equations describing wave pro
gation in a two-phase porous medium,9 which hold for con-
stant porosity. The equations for variable porosity were
rived by Biot in 1962,10 where he proposed th
displacements of the matrix and the variation of fluid cont
as generalized coordinates. In this more general case,
corresponding generalized forces are the total stress com
nents and the fluid pressure. The equations in Ref. 10 are
correct ones for describing wave propagation in an inhom
geneous medium, because they are consistent with Dar
law and the boundary conditions at interfaces separating
dia with different properties.

In this article, we obtain the constitutive equations a
the equations of momentum conservation of the frozen
rous medium by using the analogy with the correspond
two-phase equations of motion, and the complementary
ergy theorem under small variations of the stresses. The
ter approach is illustrated by Santoset al.11 for a partially
saturated porous medium and by Biot10 and Carcione12 for a
saturated porous medium.
9 © 2003 American Institute of Physics

P license or copyright, see http://jap.aip.org/jap/copyright.jsp
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II. EQUATIONS OF MOTION

In order to obtain the variable-porosity equations of m
tion, we proceed by analogy with the two-phase case and
the variation of fluid content and fluid pressure as conjug
variables. Let us indicate by 1, 2, and 3 the field variab
related to the rock frame, water, and ice frames, respecti
~the subindices ‘‘s, ’’ ‘‘ w, ’’ and ‘‘ i ’’ refer to the sand grains
water, and ice particles!. Hereafter, the subscriptsi and j
refer to the spatial variables, andm indicates the constituent
Consider an elementary volume of porous material, wh
Vm are the partial volumes andV is the total volume. The
amount of ice per unit volume of solid is denoted byI . That
is, I 5V3 /(V11V3), and the water proportion isfw

5V2 /V5V2 /(V11V21V3).
The following relations hold

fs1f i1fw51,

fw512fs /~12I !,

f i5I ~12fw!, ~1!

wherefs andf i are the proportions of sand grains and ic
For a givenfs , the range ofI is 0<I<12fs . Alterna-
tively, the ice content~or saturation! can be defined asI 8
5V3 /(V21V3). Then,

fw5~12I 8!~12fs!,

f i5I 8~12fs!, ~2!

with 0<I 8<1. Note that by porosity we mean the wat
proportionfw and not the porosity when the rock is com
pletely unfrozen. The latter is the actual rock porosity, giv
by f i1fw512fs .

A. Conservation of momentum

The equations of momentum conservation for const
porosity can be found in Leclaireet al.,7 Carcione and
Tinivella,2 and Carcione and Seriani.8 In the last two articles,
the interaction between sand grains and ice has been
cluded and, in addition, the stiffening of the rock frame d
to grain cementation by ice at freezing temperatures.
three-dimensional equations of momentum conservation
be expressed as

s i j , j
(1) 5r11v̇ i

(1)1r12v̇ i
(2)1r13v̇ i

(3)2b12~v i
(2)2v i

(1)!

2b13~v i
(3)2v i

(1)!,

s ,i
(2)5r12v̇ i

(1)1r22v̇ i
(2)1r23v̇ i

(3)1b12~v i
(2)2v i

(1)!

1b23~v i
(2)2v i

(3)!,

s i j , j
(3) 5r13v̇ i

(1)1r23v̇ i
(2)1r33v̇ i

(3)2b23~v i
(2)2v i

(3)!

1b13~v i
(3)2v i

(1)!, ~3!

where subscriptsi , j 51, 2, and 3 represent thex, y, andz
spatial variables, thes’s are macroscopic stress componen
the v ’s are macroscopic particle velocities~per unit volume
of porous material!, the r’s are density coefficients, and th
Downloaded 14 Feb 2004 to 165.91.118.223. Redistribution subject to AI
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b’s are friction coefficients. A dot above a variable deno
time differentiation and spatial derivatives with respect to
variablexi is indicated by the subscript ‘‘i . ’’

The friction terms in Eq.~3! have the opposite sign o
those given in Ref. 7, otherwise the equations are physic
unstable~wave amplitude increases with time!. The signs
here coincide with those of Biot’s differential equations10,12

in the limit of full water saturation. Expressions of the phys
cal quantities are given in Appendix A, and their physic
meaning is explained in Carcione and Tinivella2 and Car-
cione and Seriani.6,8

The analysis in Appendix B shows that the relative d
placement of the fluid relative to the rock and ice fram
~taken as a composite! is

wi5fw@ui
(2)2~12I !ui

(1)2Iui
(3)#, ~4!

where theu’s denote the macroscopic displacementsv
5u̇), fw is the proportion of water, andI is the ice content
~see Appendix A!. Alternatively, we can define

wi5~12I !wi
(1)1Iwi

(3) , ~5!

where

wi
(1)5fw~ui

(2)2ui
(1)!

wi
(3)5fw~ui

(2)2ui
(3)! ~6!

are the familiar two-phase relative displacements.10

Substituting Eq.~4! into ~3! and using the expression
given in Appendix A, we obtain for the solid phases:

s i j , j
(1) 5@r111~12I !r12#v̇ i

(1)1~r131Ir12!v̇ i
(3)

1~r12/fw!ẅi1~b131Ib12!~v i
(1)2v i

(3)!

2~b12/fw!ẇi , ~7!

and

s i j , j
(3) 5@r131~12I !r23#v̇ i

(1)1~r331Ir23!v̇ i
(3)

1~r23/fw!ẅi2@b131~12I !b23#~v i
(1)2v i

(3)!

2~b23/fw!ẇi . ~8!

On the other hand, the second Eq.~3! can be rewritten as

2pf ,i5rw1v̇ i
(1)1rw3v̇ i

(3)1mẅi1S hw

ks
D ẇi

(1)

1S hw

k i
D ẇi

(3) , ~9!

whereks andk i are the rock- and ice-frame permeabilitie
andhw is the viscosity of water. Alternatively, Eq.~9! can be
expressed as

2pf ,i5rw1v̇ i
(1)1rw3v̇ i

(3)1mẅi

1S hw

k D F ẇi1fwS I 2
k

k i
D ~v i

(3)2v i
(1)!G , ~10!

wherepf is the fluid pressure, satisfying
P license or copyright, see http://jap.aip.org/jap/copyright.jsp
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s (2)52fwpf , ~11!

rw15rw@ I ~12a21!1a23~12I !#,

rw35rw2rw1 ,

m5rw~a211a2321!/fw , ~12!

and

k5
ksk i

ks1k i
, ~13!

is the effective permeability.
Defining the total stress as

s i j 5s i j
(1)1s i j

(3)2fwpfd i j , ~14!

its divergence can be obtained by using Eqs.~7!, ~8!, ~10!,
and ~11!. It gives

s i j , j5~12I !@~12fw!rs1rwfw#v̇ i
(1)

1I @~12fw!r i1rwfw!] v̇ i
(3)1rwẅi . ~15!

In the case that the two frames move in phase and t
properties are similar, we havev i

(3)5v i
(1) , and Eqs.~10! and

~15! reduce to the equations of motion of the two-phase c
~see, for instance, Biot10 and Eqs.~7.210! and ~7.211! in
Carcione12!.

B. Stress–strain relations

The three-dimensional stress–strain relations for c
stant porosity are given by2,8

s i j
(1)5~K1u11C12u21C13u3!d i j 12m1di j

(1)1m13di j
(3) ,

s (2)5C12u11K2u21C23u3 ,

s i j
(3)5~K3u31C23u21C13u1!d i j 12m3di j

(3)1m13di j
(1) ,

~16!

whereK, C, andm are moduli whose expressions are giv
in Appendix A:

um5e i i
(m) ,

di j
(m)5e i j

(m)2 1
3d i j um ,

e i j
(m)5 1

2~ui , j
(m)1uj ,i

(m)!, m51,3, ~17!

are the dilatations, deviatoric components of strain and st
components, respectively~implicit summation over the re
peated indexi is assumed!, and d i j represents Kronecker’
delta.

The constitutive equations corresponding to the tw
dimensional case are obtained by removing one of the
mensions~say, they dimension!, and replacing the coeffi
cients K114m1 /3 and K122m1 /3 by K11m1 and K1

2m1 , respectively~which appear when the equations a
rewritten in terms of the strain components8!. Similarly,
C1312m13/3 and C132m13/3 are to be replaced byC13

1m13/2 andC132m13/2, respectively.
We introduce the variation of fluid content as the dive

gence of the relative displacement vector defined in Eq.~4!:
Downloaded 14 Feb 2004 to 165.91.118.223. Redistribution subject to AI
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z52div w52$fw@ui
(2)2~12I !ui

(1)2Iui
(3)#% ,i , ~18!

which, for constant porosity, becomes

z52fw@u22~12I !u12Iu3#. ~19!

Substituting u2 by (12I )u11Iu32z/fw into Eq. ~16!
yields

s i j
(1)5@~KG12a1M ~12I !fw!u11M ~a12~12I !fw!

3~a3u32z!#d i j 12m1di j
(1)1m13di j

(3) ,

pf5M ~z2a1u12a3u3!,

s i j
(3)5@~KG32a3MIfw!u31M ~a32Ifw!~a1u1

2z!#d i j 12m3di j
(3)1m13di j

(1) , ~20!

where

KG15Ksm1a1
2M ,

KG35Kim1a3
2M ,

M5K2 /fw
2 5Kav ,

a1512Ksm/Ks2I ,

a3512Kim /Ki2~12I !. ~21!

The total stress~14! is then given by

s i j 5@~KG11a1a3M !u11~KG31a1a3M !u32M ~a1

1a3!z#d i j 1~2m11m13!di j
(1)1~2m31m13!di j

(3) .

~22!

The analogy between these equations and those corresp
ing to a two-phase porous medium is evident. The sec
Eq. ~20! and Eq.~22! correspond to Eqs.~7.32! and~7.33! of
Carcione,12 the KGm , m51 and 3 are analogous to Ga
smann’s modulus, and theam are analogous to the effectiv
stress coefficients predicted by Biot theory.10,12

If we consider the isostrain state,u15u25u3 , z50 and
we have the conditions of a ‘‘closed system.’’ In this cas
the bulk modulus is

KG5Ksm1Kim1a2M , ~23!

where

a5a11a3512Ksm/Ks2Kim /Ki . ~24!

The modulusKG is a generalization of the Gassmann~low
frequency! modulus of the classical Biot theory.13

Equations~7!, ~8!, ~10!, and~20! constitute the equation
of motion of the three-phase porous medium valid for va
able porosity, since they are expressed in terms of the st
components of the solid phases, fluid pressure, and varia
of fluid content. A justification that these are the correct ge
eralized coordinates, based on the complementary en
theorem is given in Sec. III.

III. STRAIN ENERGY

The variation in strain energy for small variations of th
stresses is obtained in Appendix B.~The approach is base
on the complementary energy theorem.! It is given by
P license or copyright, see http://jap.aip.org/jap/copyright.jsp
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dV5~12I !d~t i j
(1)2fwpfd i j !e i j

(1)1Id~t i j
(3)

2fwpfd i j !e i j
(3)1dpfz, ~25!

wheret i j
(m) are the average stress components per unit

ume of solid ~grains plus ice!. Since the properties in th
elementaryV are constant~although they may vary point to
point in the porous medium!, we can express@on the basis of
Eq. ~25!# the strain energy as12

2V5@s i j
(1)2~12I !fwpfd i j #e i j

(1)

1~s i j
(3)2Ifwpfd i j !e i j

(3)1pfz, ~26!

and

s i j
(1)5

]V

]e i j
(1) 1~12I !fwpfd i j ,

s i j
(3)5

]V

]e i j
(3) 1Ifwpfd i j , pf5

]V

]z
, ~27!

where we have used the relations i j
(m)5fmt i j

(m) , with f1

512I and f35I . The two-phase strain energy10,12 is ob-
tained when the two solids move in phase (e i j

(1)5e i j
(3)), since

s i j
(1)2fwpfd i j equals the total stress.

It is clear from Eq.~27! that the generalized coordinate
regard the strain componentse i j

(1) , e i j
(3) , andz, and the cor-

responding generalized forces ares i j
(1)2(12I )fwpfd i j and

s i j
(3)2Ifwpfd i j , and the fluid pressurepf . Use of the varia-

tion of fluid content instead of the fluid displacement is co
sistent with Darcy’s law and the boundary conditions at
terfaces separating dissimilar media.12

A more rigorous demonstration of the validity of th
variable-porosity formulation obtained here is given in a
other work,14 where the equations of motion are obtained
using the virtual work principle based on small variations
the displacements and Lagrange’s equations. A theorem
the existence, uniqueness, and regularity of the solution
the equations of motion under appropriate initial and bou
ary conditions is also given.

IV. VELOCITY-STRESS FORMULATION

The numerical algorithm requires to recast the equa
of motion in the velocity-stress formulation.8 The velocity-
stress formulation are first-order differential equations~in the
space and time variables!, where the unknown variables ar
the particle velocities and stress components. The equa
of momentum conservation can then be rewritten by us
Eqs.~7!, ~8!, and~10! as

v̇ i
(1)5g11P i

(1)1g12P i
(2)1g13P i

(3) ,

v̇ i
(3)5g21P i

(1)1g22P i
(2)1g23P i

(3) ,

ẅi5g31P i
(1)1g32P i

(2)1g33P i
(3) , ~28!

where
Downloaded 14 Feb 2004 to 165.91.118.223. Redistribution subject to AI
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P i
(1)5s i j , j

(1) 2~b131Ib12!~v i
(1)2v i

(3)!1~b12/fw!ẇi ,

P i
(2)5s i j , j

(3) 1@b131~12I !b23#~v i
(1)2v i

(3)!

1~b23/fw!ẇi ,

P i
(3)52pf ,i2~hw /k!@ẇi1fw~ I 2k/k i !~v i

(3)2v i
(1)!#,

~29!

andgnm are the components of the following matrix

S r111~12I !r12 r131Ir12 r12/fw

r131~12I !r23 r331Ir23 r23/fw

rw1 rw3 m
D 21

. ~30!

The equations for the stress components are obtained by
ferentiating Eqs.~20! with respect to the time variable, an
using the relationsė i j

(m)5(v i , j
(m)1v j ,i

(m))/2, m51 and 3.
The velocity-stress differential equations can be writt

in matrix form as

v̇5Mv1s, ~31!

where

v5@v i
(1) ,v i

(3) ,ẇi ,s i j
(1) ,s i j

(3) ,pf #
Á, ~32!

is the unknown velocity-stress vector of dimension 22 in
space and dimension 13 in 2D space

s5@0,0,0,0,0,0,0,0,0,si j
(1) ,si j

(3) ,s(2)#Á ~33!

is the source vector~3D space!, and M is the propagation
matrix containing the spatial derivatives and material pro
erties.~Sources are added to the stress components and
pressure.!

V. NUMERICAL ALGORITHM

The solution to Eq.~31! subject to the initial condition
v(0)5v0 is formally given by

v~ t !5exp~ tM !v01E
0

t

exp~tM !s~ t2t!dt, ~34!

where exp(tM ) is called evolution operator.
As in the constant porosity case,8 the eigenvalues ofM

have negative real parts and differ greatly in magnitude
to the viscosity terms. The presence of large eigenvalu
together with small eigenvalues, indicates that the problem
stiff. The differential equations are solved with the splittin
algorithm used by Carcione and Seriani.8 The propagation
matrix can be partitioned as

M5M r1M s , ~35!

where subscriptr indicates the regular matrix, and subscri
s the stiff matrix. We discretize the time variable ast
5ndt, wheredt is the time step. The evolution operator ca
be expressed as exp(M r1M s)t. It is easy to show that the
product formula

exp~Mdt!5exp~ 1
2M sdt!exp~M rdt!exp~ 1

2M sdt! ~36!
P license or copyright, see http://jap.aip.org/jap/copyright.jsp
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is second-order accurate indt. Equation~36! allow us to
solve the stiff part separately. Using the Kronecker prod
‘‘ ^’’ of two matrices, the stiff matrix in two-dimensiona
space can be expressed as

M s5S I2^ S 0

0 0D , ~37!

whereI2 is the 232 identity matrix. We should solve

ẇi5Swi , ~38!

for each Cartesian componenti , where

wi5@v i
(1) ,v i

(3) ,wi #
Á, ~39!

and the components ofS are

S115ag111cg121@ Ib2~12I !d#g13,

S1252S11,

S135bg111dg122@~b1d!/fw#g13,

S215ag211cg221@ Ib2~12I !d#g23,

S2252S21,

S235bg211dg222@~b1d!/fw#g23,

S315ag311cg321@ Ib2~12I !d#g33,

S3252S31,

S335bg311dg322@~b1d!/fw#g33, ~40!

where

a52~b131Ib12!, b5b12/fw ,

c5b131~12I !b23, d5b23/fw . ~41!

Since matrixS has two linearly dependent columns, one
its eigenvalues is zero. The other two eigenvalues are

l15 1
2@ tr~S!2A4~S132S23!S311~S211S332S11!

2#,

l25tr~S!2l1 . ~42!

The solution of the vector differential Eq.~38!, with this
condition, is given in Carcione and Seriani.8

The time stepping method is a Runge–Kutta four
order algorithm, and the spatial derivatives are calcula
with the Fourier method by using the FFT.12 This spatial
approximation is infinitely accurate for band-limited period
functions with cutoff spatial wave numbers which a
smaller than the cutoff wave numbers of the mesh. Due
the splitting algorithm, the modeling is second-order ac
rate in the time discretization. The method is illustrated
detail in Carcione and Helle15 for a two-phase medium an
in Carcione and Seriani8 for a three-phase medium.

VI. EXAMPLE

To illustrate the use of the variable-porosity different
equations, we consider wave propagation in a frozen sa
stone with an average~real! porosity of 20% when the me
dium is unfrozen (12fs50.2). The data~see Table I! cor-
respond to Berea sandstone, with the properties given
Downloaded 14 Feb 2004 to 165.91.118.223. Redistribution subject to AI
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Timur5 and Winkler.16 The dry-rock bulk and shear modu
areKsm514.4 GPa andmsm0513.1 GPa; the rock-frame an
ice-frame permeabilities areks051.07310213 and k i055
31024 m2; and the fluid viscosity ishw51.8 cP (1 cP
50.001 Pa s). We assumea135a3151 and no friction be-
tween the rock and ice frames (b1350).

Figure 1 shows the phase velocities of the five wa
modes versus water proportion, where the compressio
waves are labeled P1, P2, and P3, and the shear wave
labeled S1 and S2. The velocities at different freezing c
ditions are indicated. At full water saturation (fw50.2, I
50) three waves propagate, and the velocities are those
dicted by Biot’s theory.

We consider a 3573357 mesh, with square cells and
grid spacing of 0.84 mm~the sample has a dimension o
30330 cm). Fractal variations of porosity~water content!
are computed as described in Appendix C. The casefw

50.1 ~50% water saturation! andDf50.1 is shown in Fig.
2. This model includes regions of full water and ice satu
tion.

Let us consider an ultrasound experiment, where
source pulse has a dominant frequency of 500 kHz and c
sists of bulk sources and shear forces in the rock frame
ice matrix and a fluid-volume injection in the fluid. Sna
shots of the wavefield (vz

(1) component of the sand grain an
ice frames!, corresponding tofw50.1 (I 50.5), ~a! Df50
and ~b! Df50.1, are shown in Figs. 3~a! and 3~b!, respec-
tively. The average size of the heterogeneities isa51 mm

FIG. 1. Phase velocities of the five wave modes propagating in parti
frozen Berea sandstone vs water proportion. The compressional wave
labeled P1, P2, and P3, and the shear waves are labeled S1 and S2
squares, circles, and triangles indicate the velocities at 15%, 50%, and
water saturation, where the values of the velocities are 4713, 4122, and
m/s for P1; 3024, 2480, and 2408 m/s for S1; 1637, 1142, and 808 m/s
P2, 767, 380, and 39 m/s for S2 and 100; 250 and 60 m/s for P3, res
tively.

TABLE I. Material properties for frozen Berea sandstone.

Media Density (kg/m3) Bulk modulus~GPa! Shear modulus~GPa!

Grain rs52650 Ks538.7 ms539.6
Ice r i5920 Ki58.58 m i53.32
Water rw51000 Kw52.25 mw50
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~see Appendix C!. The ratio maximum amplitude invz
(1)

~sand! ~a! to maximum amplitude invz
(3) ~ice! ~a! is 26. The

ratio is 62 for the snapshots in Fig. 3~b!. ~Waves S2 and P3
are aliased, since the mesh ‘‘supports’’ a minimum veloc
of 960 m/s according to the Nyquist criterion.! We have con-
sidered an ideal fluid (hw50) in order to appreciate th
scattering effects in the slow modes also. For a real fl

FIG. 2. Water-proportion fractal variations obtained from the von Ka´rmán
autocovariance function: (n50.15, a51 mm, fw50.1, andDf50.1; see
Appendix C!.

FIG. 3. Snapshots of the rock-frame particle-velocity componentvz at 37
ms, corresponding tofw50.1, ~a! Df50 ~homogeneous medium! and ~b!
Df50.1. The mesh has 3573357 grid points and the source is applied
grid point ~178, 178!. The compressional waves are labeled P1, P2, and
and the shear waves are labeled S1 and S2.
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(hÞ0), the slow modes are weaker but are still propagat
modes, as can be deduced from the phase velocities show
Fig. 1. The energy of the slow waves P2, S2, and P3 pro
gate mainly in the ice frame. Besides scattering, mode c
version occurs at heterogeneities.

The nature of the different wave modes is the followin
~i! P1 and S1 are the usual waves which we observe
acoustics of material media. They correspond to all
phases moving in phase, and propagate irrespective of
value of the viscosity and permeabilities;~ii ! P2 is the Biot
wave. It is a propagation mode for full water saturation a
b1250 ~the case in Fig. 3, i.e., zero viscosity or infinite roc
frame permeability! and a quasistatic mode for full wate
saturation andb12Þ0 ~assuming realistic values of viscosit
and permeability!; ~iii ! P2 and S2 are propagation modes
the presence of ice~excluding fw50, as previously men-
tioned!. These modes become waves with increasing freez
and are strong in the ice frame, as predicted by the image
Fig. 3.~iv! P3 is quasistatic at zero and full water saturatio
even in the absence of friction between the phases. T
wave could probably be observed in synthetic partially f
zen materials and under very particular conditions, e.g
fluid of negligible viscosity~obviously not water! and a
highly permeable porous medium.~v! The condition of no
slow-wave motion in the solid/solid case@the case of a to-
tally frozen medium (fw50) ~see Fig. 1!# is found for very
low water saturation~the velocities of P3 and S2 vanish
fw50).

Figure 4 shows time histories of the particle-veloc
componentvz

(1) ~sand-grain frame! for fw50.1 (I 50.5),
Df50 ~solid line!, Df50.05 ~dashed line!, and Df50.1
~dotted line!. In this case the viscosity ishw51.8 cP. The
amplitude of the P1 wave~pulse at 15ms! is not affected, but
that of the S1 wave~pulse at 23ms! increases with increasing
degree of heterogeneity~increasingDf!.

Time histories ofvz
(1) ~sand-grain frame! for different

freezing conditions are shown in Fig. 5. They correspond
fw50.1 (I 50.5) ~solid line!, fw50.03 (I 50.9) ~dashed
line!, andfw50.18 (I 50.15) ~dotted line!, with Df50.02
in all the cases. The pulses are the P1 and S1 waves, w
velocities are given in Fig. 1. The time histories indicate th
as expected, the waves are slower for increasing water
tent.

3,

FIG. 4. Time histories corresponding tofw50.1, Df50 ~solid line!, Df
50.05 ~dashed line!, and Df50.1 ~dotted line!. The source-receiver dis
tance is 6 cm. The source-receiver line makes an angle of 30° with
vertical direction.
P license or copyright, see http://jap.aip.org/jap/copyright.jsp



ve
a-
re
de
va
ap
n
p

o
-
cu

h
n

c

ss

o

at

r,

ce

k

d

es

s
an

7845J. Appl. Phys., Vol. 94, No. 12, 15 December 2003 Carcione et al.
VII. CONCLUSIONS

We have developed a numerical algorithm for wa
simulation in a frozen porous medium with nonuniform w
ter content. The differential equations are based on a th
phase Biot-type theory. The algorithm, which is second-or
accurate in time and has spectral accuracy in the space
able, allows general material variability and provides sn
shots and time histories of the rock frame, ice matrix, a
water particle velocities and corresponding stress com
nents.

In the process of freezing two major events are the f
mation of ice crystals~nucleation! and the subsequent in
crease in size of these crystals. In rocks, this process oc
first in the larger pores~due to surface-tension effects!.
Hence, the degree of freezing is not spatially uniform. T
example shows how to model realistic freezing conditio
with a fractal distribution of the water~or ice! content. The
modeling algorithm can be used to predict ultrasonic velo
ties and attenuation for frozen porous media.~Attenuation
can easily be incorporated by using a viscoelastic stre
strain relation.!

APPENDIX A: EXPRESSIONS OF THE THEORY

The following expressions correspond to the theory
wave propagation in three-phase porous media,2,6,7,8where 1,
2, and 3 denote quantities related to the sand grains, w
and ice, respectively.

The friction coefficients are

b125hwfw
2 /ks ,

b235hwfw
2 /k i ,

wherehw andfw are the viscosity and proportion of wate
andks andk i are the rock- and ice-frame permeabilities~see
below!. The consolidation coefficients of the rock and i
frames are

FIG. 5. Time histories corresponding tofw50.1 ~solid line!, fw50.03
~dashed line!, andfw50.18 ~dotted line!, with Df50.02 in all the cases.
The source-receiver distance is 6 cm. The source-receiver line make
angle of 30° with the vertical direction. The pulses correspond to the P1
S1 waves~see velocities in Fig. 1!.
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c15Ksm/fsKs ,

c35Kim /f iKi ,

where fs , f i and Ks , Ki are the proportions and bul
moduli of the sand grains and ice, respectively,Ksm is the
bulk modulus of the rock frame, and

Kim5Kmax@f i /~12fs!#
3.8

is the bulk modulus of the ice frame, whereKmax is Kuster–
Toksöz’s bulk modulus of the ice matrix.

The off-diagonal coupling moduli are

C125~12c1!fsfwKav ,

C135~12c1!~12c3!fsf iKav ,

C235~12c3!f ifwKav ,

where

Kav5@~12c1!fs /Ks1fw /Kw1~12c3!f i /Ki #
21,

is the average bulk modulus andKw is the bulk modulus of
water.

The ice content can be expressed as

I 5f i /~fs1f i !.

The diagonal coupling moduli are

K15@~12c1!fs#
2Kav1Ksm,

K25fw
2 Kav ,

K35@~12c3!f i #
2Kav1Kim .

The permeabilities of the rock and ice frames are

ks5ks0fw
3 /~12fs!

3,

k i5k i0@~12fs!/f i #
2~fw /fs!

3,

whereks0 andk i0 are reference values.
The components of the rigidity matrix are

m15@~12g1!fs#
2mav1msm,

m135~12g1!~12g3!fsf imav ,

m35@~12g3!f i #
2mav1m im ,

where

msm5@msmKT2msm0#@f i /~12fs!#
3.81msm0 ,

is the shear modulus of the rock frame,msmKT is the Kuster–
Toksöz shear modulus of the rock frame,msm0 is the shear
modulus of the rock frame at full water saturation,

m im5mmax@f i /~12fs!#
3.8

is the shear modulus of the ice frame,mmax is Kuster–
Toksöz’s shear modulus of the ice frame, and

mav5@~12g1!fs /ms1fw / ivhw1~12g3!f i /m i #
21,

is the average shear modulus, withv being the angular fre-
quency, andms and m i being the shear moduli of the san
grains and ice, respectively.

The consolidation coefficients of the rock and ice fram
are

an
d
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g15msm/fsms ,

g35m im /f im i .

The components of the density matrix are

r115fsrsa131~a2121!fwrw1~a3121!f ir i ,

r1252~a2121!fwrw ,

r1352~a1321!fsrs2~a3121!f ir i ,

r225~a211a2321!fwrw ,

r2352~a2321!fwrw ,

r335f ir ia311~a2321!fwrw1~a1321!fsrs ,

wherers , r i , andrw are the density of the sand grains, ic
and water, respectively.

We express the tortuosities as:7

a215S fsr

fwrw
D r 2111, a235S f ir8

fwrw
D r 2311, ~A1!

where

r5
fwrw1f ir i

fw1f i
, r85

fwrw1fsrs

fw1fs
,

and r 21 and r 23 characterize the geometrical features of t
pores~1/2 for spheres!. By analogy, we consider that

a135S f ir9

fsrs
D r 1311, a315S fsr9

f ir i
D r 3111, ~A2!

where

r95
f ir i1fsrs

f i1fs
.

Equation~A2! should be used with caution, and it is conv
nient in most of the cases to usea13 anda31 as free param-
eters, as well as the friction coefficientb13 between the sand
grains and the ice.

APPENDIX B: STRAIN ENERGY

First, let us clarify the meaning of the different averag
stress tensor components. Assume thatm51 and 3 refers to
the solid components~sand grains and ice, respectively!, and
define si j

(m) as the average values of the stress tensor o
Vm . Then, the contributions of the solid phases to the to
stress tensor ares i j

(1)5fssi j
(1)5(12I )(12fw)si j

(1) ands i j
(3)

5f isi j
(3)5I (12fw)si j

(3) , according to Eqs.~1! and~14!. We
introduce the averaged components per unit volume of s
~grains plus ice!, t i j

(1) , through the relationss i j
(1)5(1

2I )t i j
(1) ands i j

(3)5I t i j
(3) .

The approach to evaluate the variation of strain ene
and, therefore, the generalized coordinates and corresp
ing conjugate variables, follows the development given
Biot10 and Carcione12 for a two-phase porous medium. Le
us consider a volumeV of porous material bounded by th
surfaceS. Assume thatV is initially in static equilibrium
under the action of the surface forces—per unit volume
bulk material acting on the three phases. These forces ca
written as
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f i
(1)5s i j

(1)nj5~12I !t i j
(1)nj ,

f i
(2)52fwpfd i j nj ,

f i
(3)5s i j

(3)nj5I t i j
(3)nj , ~B1!

wherenj are the components of the outward unit vector p
pendicular toS. Assume that the system is perturbed
d f i

(1) , d f i
(2) , andd f i

(3) , and letV(d f i
(1) ,d f i

(2) ,d f i
(3)) be the

strain-energy density, and

V* 5E
V

VdV2E
S
~ f i

(1)ui
(1)1 f i

(2)ui
(2)1 f i

(3)ui
(3)!dS,

~B2!

be the complementary energy. Strictly,V should be the
complementary strain-energy density; however, for line
stress–strain relations,V is equal to the strain-energ
density.17 The complementary energy theorem states tha
all sets of forces that satisfy the equations of equilibrium a
boundary conditions, the actual one that is consistent w
the prescribed displacements is obtained by minimizing
complementary energy.17 Then,dV* 50, and

E
V

dVdV5E
S
~d f i

(1)ui
(1)1d f i

(2)ui
(2)1d f i

(3)ui
(3)!dS.

~B3!

We have from Eq.~B1!

d f i
(1)5~12I !dt i j

(1)nj ,

d f i
(2)52fwdpfd i j nj ,

d f i
(3)5Idt i j

(3)nj . ~B4!

Substituting these expressions into~B3! yields

E
V

dVdV5E
S
@~12I !~dt i j

(1)2fwdpfd i j !ui
(1)1I ~dt i j

(3)

2fwdpfd i j !ui
(3)2dpfd i j wi #njdS, ~B5!

wherewi is given in Eq.~4!. Applying Green’s theorem to
the surface integral, we obtain

E
V

dVdV5E
V

@~12I !~dt i j
(1)2fwdpfd i j !ui

(1)

1I ~dt i j
(3)2fwdpfd i j !ui

(3)2dpfd i j wi # , jdV.

~B6!

Because the system is in equilibrium before and after
perturbation, and the fluid pressure is constant inV, the
stress increments must satisfy

~dt i j
(1)! , j50, ~dt i j

(3)! , j50, ~dpfd i j !, j 50, ~B7!

and we can write

E
V

dVdV5E
V

@~12I !~dt i j
(1)2fwdpfd i j !e i j

(1)

1I ~dt i j
(3)2dpfd i j !e i j

(3)1zdpf #dV. ~B8!
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The symmetry of the stress tensor has been used to obtai
relation (ui

(m)dt i j
(m)) , j5e i j

(m)dt i j
(m) . We finally deduce from

~B8! that

dV5~12I !d~t i j
(1)2fwpfd i j !e i j

(1)

1Id~t i j
(3)2fwpfd i j !e i j

(3)1dpfz. ~B9!

APPENDIX C: FRACTAL POROSITY

We model fractal variations of porosity by using the v
Kármán autocovariance function. Letfw be the average po
rosity ~water proportion! and letDf be the maximum devia
tion of the porosity field from the background valuefw . The
porosity field at (x,y,z) is first subjected to the variation
(Dfw) r , such that

2Df<~Dfw!r<Df, ~C1!

where (Dfw) r is obtained from a random generator~the su-
perscript ‘‘r ’’ denotes random!. Random numbers between
and 1 are generated and then scaled to the inte
@21,1#Df.

Fractal variations of a given property are well describ
by the von Kármán autocovariance function.18 The corre-
sponding wave number–domain power spectrum is

P~kx ,ky ,kz!5~11k2a2!2(n1N/2), ~C2!

wherek5Akx
21ky

21kz
2 is the wave number,a is the corre-

lation length,n (0,n,1) is a self-similarity coefficient, and
N is the Euclidean dimension. The von Ka´rmán correlation
function describes self-affine, fractal processes of fractal
mensionN112n at a scale smaller thana.
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The porosity is then calculated as

fw6Dfw~x,y,z!, ~C3!

where

Df w̃~kx ,ky ,kz!5~Df w̃!r~kx ,ky ,kz!P~kx ,ky ,kz!, ~C4!

with (Df̃) r(kx ,ky ,kz) being the Fourier transform o
(Dfw) r(x,y,z). ~The tilde denotes the space Fourier tran
form.!
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