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A recent article[J. M. Carcione and G. Seriani, J. Comput. Phi/80, 676 (2001)] proposes a
modeling algorithm for wave simulation in a three-phase porous medium composed of sand grains,
ice, and water. The differential equations hold for uniform waiteg) content. Here, we obtain the
variable-porosity differential equations by using the analogy with the two-phase case and the
complementary energy theorem. The displacements of the rock and ice frames and the variation of
fluid content are the generalized coordinates, and the stress components and fluid pressure are the
generalized forces. We simulate wave propagation in a frozen porous medium with fractal variations
of porosity and, therefore, realistic freezing conditions.2@03 American Institute of Physics.
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I. INTRODUCTION by using viscoelastic memory variables, implying additional
ifferential equations.
However, the Lagrangian formulation used by Leclaire
et al’” and, consequently, the differential equations solved by
arcione and Seriaflihold for uniform porosity, since the
average displacements of the solid and fluid phases are used

ultrasonic method$? These applications require the knowl- as Lagrangian coordinates gnd the respective stress .compo-
edge of the degree of freezing of the interstitial water. FreezN€NtS are used as generalized forces. These equations are
ing has a negligible effect on density and magnetic perme@n@logous to Biot's 1956 equations describing wave propa-
ability, precluding the use of gravimetric and magneticgation in a two-phase porous medifnuhich hold for con-
techniques, but have a remarkable effect on wave velocitieg{ant porosity. The equations for variable porosity were de-
(see Timuf Carcione and Seria®i Hence, seismic and fived by Biot in 1962 where he proposed the
acoustic methods constitute the best way for quantifyinglisplacements of the matrix and the variation of fluid content
the amount of ice and water and determining the degree diS generalized coordinates. In this more general case, the
freezing. corresponding generalized forces are the total stress compo-
A Biot-type three-phase theory based on first principleshents and the fluid pressure. The equations in Ref. 10 are the
has been proposed by Leclaieal.” The theory, which as- correct ones for describing wave propagation in an inhomo-
sumes that there is no direct contact between the sand graigeneous medium, because they are consistent with Darcy’s
and ice, predicts three compressional waves and two sheiw and the boundary conditions at interfaces separating me-
waves and can be applied to unconsolidated and consolidatefi with different properties.
porous media. Carcione and Tinivéllaave generalized the In this article, we obtain the constitutive equations and
theory to include grain—ice interaction and grain cementationhe equations of momentum conservation of the frozen po-
with decreasing temperature, and show an application for thepus medium by using the analogy with the corresponding
evaluation of gaS'hydrate concentration. Carcione an%o-phase equations of motion, and the Comp|ementary en-
Serianf designed a modeling algorithm based on this newigrgy theorem under small variations of the stresses. The lat-
theory. Moreover, they have introduced realistic attenuatioRg, approach is illustrated by Santesall! for a partially
saturated porous medium and by Bfoand Carcion¥ for a
¥Electronic mail: jcarcione@ogs.trieste. it saturated porous medium.

Wave propagation in frozen porous media is a subjecfi
which has practical application in many fields, as for in-
stance, seismic prospecting in polar ardpsrmaforsy!
evaluation of gas-hydrate concentration in ocean-botto
sedimentg,and nondestructive evaluation of frozen food by
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Il. EQUATIONS OF MOTION b’s are friction coefficients. A dot above a variable denotes
time differentiation and spatial derivatives with respect to a

“wn

In order to obtain the variable-porosity equations of mo-, 4 iaplex. is indicated by the subscript
. . I .
tion, we proceed by analogy with the two-phase case and Use  The friction terms in Eq(3) have the opposite sign of

the.variation of qu_id gontent and fluid pressure as conjugat%ose given in Ref. 7, otherwise the equations are physically
variables. Let us indicate by 1, 2, ar_1d 3 the field Va”aple%nstable(wave amplitude increases with timeThe signs
related to the rock frame, water, and ice frames, respectivelyare coincide with those of Biot's differential equatidh

(the subindices 8,”* w,” and “i" refer to the sand grains, i, the jimit of full water saturation. Expressions of the physi-

water, and ice particlgs Hereafter, the subscripisandj .| quantities are given in Appendix A, and their physical
refer to the spatial variables, andindicates the constituent. meaning is explained in Carcione and Tiniv&land Car-

Consider an elementary volume of porous material, whergi;ne and Seriarfi®
Q,, are the partial volumes and is the total volume. The
amount of ice per unit volume of solid is denoted IbyThat
is, 1=0Q3/(Q,+Q3), and the water proportion isp,,
=0,/10=0,/1(Q1+Q5+Q3).

The analysis in Appendix B shows that the relative dis-
placement of the fluid relative to the rock and ice frames
(taken as a composités

The following relations hold W= o[ uP—(1-1HuP—1u), (4)
dst it dpy=1, where theu’s denote the macroscopic displacemenis (
=), ¢, is the proportion of water, andis the ice content
dw=1—ds/(1-1), (see Appendix A Alternatively, we can define
$i=1(1=oy), (& wi=(1-HwH+1w®, (5)

where ¢ and ¢; are the proportions of sand grains and ice.where

For a giveng¢g, the range ofl is O<I<1-¢. Alterna-

tively, the ice conten{or saturation can be defined af’ Wi(1)=¢w(ui(2)_ui(1))
=03/(Q5+Q3). Then,

Pu= (121 (1= 20, are the familiar two-phase relative displaceméfits.
di=1"(1— ¢y, 2) Substituting Eq.(4) into (3) and using the expressions
given in Appendix A, we obtain for the solid phases:
with 0<I|’<1. Note that by porosity we mean the water

wi®= g, (u®—uf®) ©

proportion ¢,, and not the porosity when the rock is com- o} =[p11+(1=1)p1lo M+ (p13+1 100>

pletely unfrozen. The latter is the actual rock porosity, given .

by &+ =1 b, + (p12! bw) Wi+ (bigt 1D12) (07 —0f*)

A. Conservation of momentum —(b1o/ )W, (7)

The equations of momentum conservation for constanand
porosity can be found in Leclairet al,” Carcione and

i . . . (3) — _ (1) (3)
Tinivella,? and Carcione and Seriahin the last two articles, o1 j=[p1at (1= D paafoi™+ (past 1 p23) 0]
the interaction between sand grains and ice has been in- " (1)_ . (3)
- L . . + / Wi —[by3t+(1—1)bys] (v~ —v;
cluded and, in addition, the stiffening of the rock frame due (P2l u) Wi ~[Drgt( b2sl(v; )
to grain cementation by ice at freezing temperatures. The —(bog/ Py)W; . (8
three-dimensional equations of momentum conservation can )
be expressed as On the other hand, the second E8) can be rewritten as
1) —,. 1) 1 (2) 2 (3) (2)_ (1) . . . .
01 1= P10+ P10 pagp T — baviY i) _pf,izpwlvi(l)+pw30i(3)+mvvi+(%)Wi(l)
S
- b13(Ui(3)_ Ui(l)),
Nw) . (3)
. ) . +— W, 9
0 B=p10 P+ o0+ poao P+ byg(0(D = vV i ) ! ©
+hos(vP—0®), where ks and «; are the rock- and ice-frame permeabilities,
@) - @ @) 2 (@ and »,, is the viscosity of water. Alternatively, E¢Q) can be
Oif T P10t pasvi” 3T — bas(vi —vi) expressed as
+bl3(vi(3)_vi(l))’ 3) _pf,i:Pwlbi(l)+Pw30i(3)+ mv;
where subscripts,j=1, 2, and 3 represent the y, andz Dw

K
| — —)(vi(s)—vi(l))
Kj

spatial variables, the’s are macroscopic stress components, + Ni+ by , (10
thev’s are macroscopic particle velociti€ser unit volume

of porous materia) the p’s are density coefficients, and the whereps is the fluid pressure, satisfying
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a®@=—ps, (11) (=—divw=—{g,[uP?-(1-HuP=1u®]};, (18
puw1=pull(1—a) tax(1-1)], which, for constant porosity, becomes
=- 0,—(1—1)6,—1863]. 19
s o po, £=— 0o (1=1)01~105] (19
Substituting 6, by (1—1)6,+165—¢/ ¢, into Eq. (16)
m=py(azxt+az—1)/ ¢y, (120 vyields
and oP=[(Ker— asM(1=1) ) 61+ M(ay—(1=1)by,)
P 13 X (33— 016+ 2uad{+ padf,
e Pi=M({— @10, — azb3),
is the effective permeability. 3)_
Defining the total stress as aij = [(Kez = asMldw) O3+ M(az =l du)(216,
_ . (3) (1)
o= U|(11)+ 0'( )— buPidij (14) 016+ 2M3d| +M13d|] ) (20)
: . . where
its divergence can be obtained by using E@3, (8), (10),
and(11). It gives Ke1=KsmtaiM,
gij j= DL(1= ) pst pwdnlotH Kea=Kim+ a3M,
+|[<1—¢W>pi+pw¢w>]b§ )+ pui; (15) M=Kz/¢5=Ka,,

In the case that the two frames move in phase and their a;=1—Kg,/Ks—1,

properties are similar, we hawé® =0, and Eqs(10) and 3

(15) reduce to the equations of motion of the two-phase case 3 1= Kim /K= (1=1). (21)
(see, for instance, Bith and Egs.(7.210 and (7.211) in  The total stres§14) is then given by

Carcioné?). o =[(Kar+ azasM) b1+ (Ko + asasM) 5— M (ay

B. Stress—strain relations
, . _ . +a3)§]5ij+(2M1+M13)di(jl)+(2M3+M13)di(j3)-
The three-dimensional stress—strain relations for con-

stant porosity are given Bf (22)
(1) 3) The analogy between these equations and those correspond-
= (K161+ Caably+ Caaflg) 8+ 2uadf) + maedlff, ing to a two-phase porous medium is evident. The second

Eqg. (20) and Eq.(22) correspond to Eq4$7.32 and(7.33 of
Carcione'? the Kg,, m=1 and 3 are analogous to Gas-
U(J )= (K303+ Cpaflp+ C1301) 6 +2M3di( +M13d(l)1 smann’s qu_ulus, and them are a_nalogouszto the effective
(16)  stress coefficients predicted by Biot thedfy:
If we consider the isostrain staté,= 6,= 65, {=0 and
whereK, C, andu are moduli whose expressions are given\ye have the conditions of a “closed system.” In this case,

0'(2): C1201+ K262+ C2303,

in Appendix A: the bulk modulus is
Om=€, Kg=Kgmt Kim+ a’M, (23)
d(m)_e(m)__5 . where
a=a;t az=1-K /KK /K; . 24
M= (u(m)+u(m)) m=123, 17) 1T ag sm/ Ks= Kim /K; (24)

The modulusK; is a generalization of the Gassmatiow
are the dilatations, deviatoric components of strain and straifrequency modulus of the classical Biot theoty.

components, respectivelymplicit summation over the re- Equationg7), (8), (10), and(20) constitute the equations
peated index is assumel and §;; represents Kronecker's of motion of the three-phase porous medium valid for vari-
delta. able porosity, since they are expressed in terms of the stress

The constitutive equations corresponding to the twocomponents of the solid phases, fluid pressure, and variation
dimensional case are obtained by removing one of the diof fluid content. A justification that these are the correct gen-
mensions(say, they dimension, and replacing the coeffi- eralized coordinates, based on the complementary energy
cients K;+4u,/3 and K;—2u4/3 by K;+uq, and Ky theorem is given in Sec. lll.

—uq, respectively(which appear when the equations are
rewritten in terms of the strain componéhtsSimilarly,
Ci3t2u43/3 and C3— uq3/3 are to be replaced b€,
+ u13/2 andCq3— w13/2, respectively. The variation in strain energy for small variations of the

We introduce the variation of fluid content as the diver-stresses is obtained in Appendix &he approach is based

gence of the relative displacement vector defined in(Bg. on the complementary energy theorgith.is given by

Ill. STRAIN ENERGY
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oV=(1-I )5(7511)_ ¢wpf5ij)€i(j1)+ | 5(Ti(j3) Hi(l):Ui(jl,)j_(b13+lblz)(vi(l)_Ui(a))+(b12/d’w)wi ,
— buPi8i) €]+ 3piL, (25 M= o) +[bys (1= byl (0P =)
where 7" are the average stress components per unit vol- + (bas/ )W,

ume of solid(grains plus icg Since the properties in the

3)_ | 3 1
elementary() are constantalthough they may vary point to == pgi= (g )W+ b1 = ) (0 =0 {D)],

point in the porous mediumwe can expreson the basis of (29
Eq. (25)] the strain energy 4% and y,,, are the components of the following matrix
2V=[ai(j1)—(1— |)¢Wpf5ij]6i(jl) put(1=1p1a pistlpia pral by
+(0 D1 pupry) €D+ pic, (26) Pzt (1=D)p2s pastlpas pasldw| . (30
Pwi Pw3 m
and

The equations for the stress components are obtained by dif-
o oV ferentiating Eqs(20) with respect to the time variable, and
i =om T (1=Ddupidij using the relationg™ = (v +v{7)/2, m=1 and 3.
g The velocity-stress differential equations can be written
in matrix form as

CERANITP Sl (2
aij _67_€i(j§5 DwP1 9 s =2z 7) V=Mv+s, (31)
where we have used the relatiaf” = ¢, 7™, with ¢, where
= —_— = - 1 2 1 - .
=1-1 and $3=1. The two-phase strain tlarEeﬂg(Ss)i)L is ob v=[o® o iy o), pT, (32
tained when the two solids move in pha&g% (— €;’), since
ai(jl)— wP1di; equals the total stress. is the unknown velocity-stress vector of dimension 22 in 3D

It is clear from Eq.(27) that the generalized coordinates space and dimension 13 in 2D space
regard the strain component§”, /¥, and{, and the cor- B (1) 3) @NT
responding generalized forces arf”—(1—1) ¢,,p¢; and $=10,0.0.0.0,0,0,005".s;" ] (33
3 . .
(_Ti(j )_|¢w_pf5ij » and the fluid pressure; . Use of the varia- js the source vectof3D spacg andM is the propagation
tion of fluid content instead of the fluid displacement is con-matrix containing the spatial derivatives and material prop-

sistent with Darcy’s law and the boundary conditions at in-erties. (Sources are added to the stress components and fluid
terfaces separating dissimilar medfa. pressure.

A more rigorous demonstration of the validity of the
variable-porosity formulation obtained here is given in an-
other work!* where the equations of motion are obtained by
using the virtual work principle based on small variations of V- NUMERICAL ALGORITHM
the displacements and Lagrange’s equations. A theorem on
the existence, uniqueness, and regularity of the solution 0\1;(0
the equations of motion under appropriate initial and bound-
ary conditions is also given.

The solution to Eq(31) subject to the initial condition
)=V is formally given by

v(t)=exp(tM)vy+ Jtexp(rM)s(t—r)dr, (34
0

where expiM) is called evolution operator.

As in the constant porosity caSéhe eigenvalues o

The numerical algorithm requires to recast the equatioflave negative real parts and differ greatly in magnitude due
of motion in the velocity-stress formulatiérThe velocity- 0 the viscosity terms. The presence of large eigenvalues,
stress formulation are first-order differential equatiinghe ~ together with small eigenvalues, indicates that the problem is
space and time variablesvhere the unknown variables are Stiff. The differential equations are solved with the splitting

the particle velocities and stress components. The equatio@édorithm used by Carcione and SeriériThe propagation
of momentum conservation can then be rewritten by usinghatrix can be partitioned as

IV. VELOCITY-STRESS FORMULATION

Egs.(7), (8), and(10) as M=M,+Mg, (35
0V =y IO+ y TP+ 13 where subscript indicates the regular matrix, and subscript
s the stiff matrix. We discretize the time variable &s
i)i(3)= 721Hi(1)+ 722Hi(2)+ 723Hi(3) ) =ndt, wheredt is the time step. The evolution operator can
be expressed as e+ M )t. It is easy to show that the
W= 3T+ ya l 1D + gl 1), (28)  product formula
where exp(Mdt)=exp ;M dt)exp M, dt)exp(sMdt)  (36)
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is second-order accurate uht. Equation(36) allow us to TABLE I|. Material properties for frozen Berea sandstone.
solve the stiff part separately. Using the Kronecker produche dia
“®” of two matrices, the stiff matrix in two-dimensional

Density (kg/d)  Bulk modulus(GP3  Shear modulu$GP3a

space can be expressed as Grain ps=2650 Ks=38.7 s=39.6
Ice pi=920 K;=8.58 wi=3.32
LS 0 Water pw=1000 Ky=2.25 =0
= y 3
=0 o (37
wherel, is the 2<2 identity matrix. We should solve

. Timur® and Winkler'® The dry-rock bulk and shear moduli
Wi =Sw, (38) areK¢,=14.4 GPa angksp=13.1 GPa; the rock-frame and
for each Cartesian componentwhere ice-frame permeabilities ares,=1.07x10" 13 and x;,=5
Wi=[o® 0@ w,]T (39 X10 *m? and the fluid viscosity is»n,=1.8 cP (1cP
' ' ' =0.001 Pas). We assunag;=as;=1 and no friction be-
and the components & are tween the rock and ice frameb=0).
_ Figure 1 shows the phase velocities of the five wave
Su=ayut CytlIb=(1=1d]ys, modes versus water proportion, where the compressional

Sio=—S1, waves are labeled P1, P2, and P3, and the shear waves are
labeled S1 and S2. The velocities at different freezing con-

S15=byntdy—[(b+d)/ ]y, ditions are indicated. At full water saturatiorp(=0.2, |

Sy1=ayo1+ Cyart[ID—(1—1)d]yz3, =0) three waves propagate, and the velocities are those pre-
dicted by Biot's theory.

= =S, We consider a 357357 mesh, with square cells and a

grid spacing of 0.84 mnithe sample has a dimension of

=Dy + dy,—[(b+
S25=Dyart dyze LB+ d)/ dul7yas, 30x 30 cm). Fractal variations of porositwater content

Szi=ayztCyzpt[lb—(1-1)d]yss, are computed as described in Appendix C. The cage

B =0.1(50% water saturatiorand A ¢=0.1 is shown in Fig.
Se2= ~ San 2. This model includes regions of full water and ice satura-
Ssz=bysitdyz—[(b+d)/ dy]yas, (40)  ton.

Let us consider an ultrasound experiment, where the

where source pulse has a dominant frequency of 500 kHz and con-
a=—(bygt1byy), b=bi/ oy, sists of bulk sources and shear forces in the rock frame and

ice matrix and a fluid-volume injection in the fluid. Snap-

C=bygt (1—1)bzs, d=bss/¢y,. (41) shots of the Wavefieldv(‘zl) component of the sand grain and

Since matrixS has two linearly dependent columns, one ofice frames, corresponding tap,=0.1 (1=0.5), (&) A¢=0
its eigenvalues is zero. The other two eigenvalues are ~ and(b) A¢=0.1, are shown in Figs.(8 and 3b), respec-

L 5 tively. The average size of the heterogeneitiesiis1 mm
N1=3H1r(S) — VA(S15— S8 Saat (Sort+ Sas— S10)°],

Ap=tr(S)—\;. (42

The solution of the vector differential Eq38), with this 5+
condition, is given in Carcione and Seridni. .

The time stepping method is a Runge—Kutta fourth- §4—
order algorithm, and the spatial derivatives are calculated = -~
with the Fourier method by using the FE¥This spatial & 3—
approximation is infinitely accurate for band-limited periodic % - P
functions with cutoff spatial wave numbers which are 2

smaller than the cutoff wave numbers of the mesh. Due to £ -
the splitting algorithm, the modeling is second-order accu- ~— - =

rate in the time discretization. The method is illustrated in . ——o

detail in Carcione and Hefte for a two-phase medium and o - IP? T ——

in Carcione and Serighfor a three-phase medium. 0.0 0.05 0.1 0.15 0.2
Water proportion

VI. EXAMPLE FIG. 1. Phase velocities of the five wave modes propagating in partially

) ) . ) . frozen Berea sandstone vs water proportion. The compressional waves are
To illustrate the use of the variable-porosity differential labeled P1, P2, and P3, and the shear waves are labeled S1 and S2. The

equations, we consider wave propagation in a frozen sangquares, circles, and triangles indicate the velocities at 15%, 50%, and 90%

; ; 0 _ water saturation, where the values of the velocities are 4713, 4122, and 3962
stone with an averag@ea) porosity of 20% when the me- % "o) “3054 2480, and 2408 mis for S1; 1637, 1142, and 808 mis for

dium is unfrozen (* ¢s=0.2). Th_e datgsee Tab_|e ) Cor- p2, 767, 380, and 39 m/s for S2 and 100; 250 and 60 mi/s for P3, respec-
respond to Berea sandstone, with the properties given byvely.
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10cm

-

‘%“r%’zs
f L*mﬁ’i '(

FIG. 2. Water-proportion fractal variations obtained from the vomnian
autocovariance function:y=0.15,a=1 mm, ¢,=0.1, andA ¢$=0.1; see
Appendix Q.

*
L=

a--

& A

o’
,o
2 d

(see Appendix © The ratio maximum amplitude im{"
(sand (a) to maximum amplitude in{* (ice) (a) is 26. The
ratio is 62 for the snapshots in F|g(b3 (Waves S2 and P3

Carcione et al.

0 P1 S1
0.6
0.2-] A\ - alia
N A Ak )‘I\‘ :’\ P Y
> v Y Y ! ]
62 15 20 © W 30 35 40
s k. Time (s}
06 -y
-1.0-

FIG. 4. Time histories corresponding th,=0.1, A¢=0 (solid line), A ¢
=0.05 (dashed ling and A¢=0.1 (dotted ling. The source-receiver dis-
tance is 6 cm. The source-receiver line makes an angle of 30° with the
vertical direction.

(n#0), the slow modes are weaker but are still propagating
modes, as can be deduced from the phase velocities shown in
Fig. 1. The energy of the slow waves P2, S2, and P3 propa-
gate mainly in the ice frame. Besides scattering, mode con-
version occurs at heterogeneities.

The nature of the different wave modes is the following:
(i) P1 and S1 are the usual waves which we observe in
acoustics of material media. They correspond to all the
phases moving in phase, and propagate irrespective of the
value of the viscosity and permeabilitigs; P2 is the Biot
wave. It is a propagation mode for full water saturation and
b.,=0 (the case in Fig. 3, i.e., zero viscosity or infinite rock-

are aliased, since the mesh “supports” a minimum velocityframe permeability and a quasistatic mode for full water

of 960 m/s according to the Nyquist criteripiVe have con-
sidered an ideal fluid #,,=0) in order to appreciate the

saturation andb;,# 0 (assuming realistic values of viscosity
and permeability; (iii) P2 and S2 are propagation modes in

scattering effects in the slow modes also. For a real fluidhe presence of icéexcluding ¢,,=0, as previously men-

(a) Vz (sand)

(b)

Vz (sand)

Vz (ice} Vz (ice)

FIG. 3. Snapshots of the rock-frame particle-velocity compomerdt 37
us, corresponding tep,,=0.1, (@) A¢p=0 (homogeneous mediunand (b)
A$=0.1. The mesh has 357357 grid points and the source is applied at

tioned. These modes become waves with increasing freezing
and are strong in the ice frame, as predicted by the images in
Fig. 3.(iv) P3 is quasistatic at zero and full water saturations,
even in the absence of friction between the phases. This
wave could probably be observed in synthetic partially fro-
zen materials and under very particular conditions, e.g., a
fluid of negligible viscosity (obviously not water and a
highly permeable porous mediurtz) The condition of no
slow-wave motion in the solid/solid cagthe case of a to-
tally frozen medium §,,=0) (see Fig. 1] is found for very

low water saturatiorithe velocities of P3 and S2 vanish at
dw=0).

Figure 4 shows time histories of the particle-velocity
componentvgl) (sand-grain framefor ¢,=0.1 (1=0.5),
A¢p=0 (solid ling), A¢$=0.05 (dashed ling andA¢$=0.1
(dotted ling. In this case the viscosity i%,=1.8 cP. The
amplitude of the P1 wavgpulse at 15us) is not affected, but
that of the S1 wavépulse at 23us) increases with increasing
degree of heterogeneityncreasingA ¢).

Time histories ofv{") (sand-grain framefor different
freezing conditions are shown in Fig. 5. They correspond to
$»,=0.1 (1=0.5) (solid line), ¢,=0.03 (1=0.9) (dashed
line), and ¢,=0.18 (| =0.15) (dotted ling, with A¢=0.02
in all the cases. The pulses are the P1 and S1 waves, whose
velocities are given in Fig. 1. The time histories indicate that,

grid point (178, 178. The compressional waves are labeled P1, P2, and P32S €xpected, the waves are slower for increasing water con-

and the shear waves are labeled S1 and S2.

tent.
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107 C1=Ksm/ psKs,
0.6~ A “ C3=Kim/ ¢iKi,
AR E A i where ¢, ¢; and K, K; are the proportions and bulk

0.2 1yoa A ,'u N\ FEPUN moduli of the sand grains and ice, respectivédy,, is the
. o NEIAAL LI LN
5 U.:: s :,\il.,.TY g B g bulk modulus of the rock frame, and

0o y:ld2e P I

o2 ¥ \J' Y \] Kim=Kmal ¢i /(1= ¢9)1%®

2.6 ¢ u is the bulk modulus of the ice frame, whefg,,, is Kuster—

) Toksa’s bulk modulus of the ice matrix.
10 The off-diagonal coupling moduli are

Cio=(1-c Kap »

FIG. 5. Time histories corresponding i%,=0.1 (solid ling), ¢,=0.03 12= l) PsPuKay

(dashed ling and ¢,,=0.18 (dotted ling, with A¢$=0.02 in all the cases. Ciz=(1—cy)(1—C3) pshiK
The source-receiver distance is 6 cm. The source-receiver line makes an sTiTavs
angle of 30° with the vertical direction. The pulses correspond tothe Pland ¢, .=(1—¢ b K

S1 wavegsee velocities in Fig.)1 23 ( 3) i b av:

where
Kap=[(1=C1) ps/Ks+ by [Kyy+(1—C3) b /K17 H,

is the average bulk modulus aikg, is the bulk modulus of
water.
The ice content can be expressed as

VII. CONCLUSIONS

We have developed a numerical algorithm for wave
simulation in a frozen porous medium with nonuniform wa-
ter content. The differential equations are based on a three- |= ¢, /(p+ ¢)).
phase Biot-type theory. The algorithm, which is second-order _ ) _
accurate in time and has spectral accuracy in the space vafi'® diagonal coupling moduli are
able, allows general material variability and provides snap-  K,;=[(1-¢;)¢s]*Ka, +Ksm,
shots and time histories of the rock frame, ice matrix, and
water particle velocities and corresponding stress compo-  Kz=#5Ka,
nents. _ 2

In the process of freezing two major events are the for- Ks=[(1~Ca)$il Ka, *+ Kim.-
mation of ice crystalgnucleation and the subsequent in- The permeabilities of the rock and ice frames are
crease in size of these crystals. In rocks, this process occurs ko= kg3 (1— be)®
first in the larger poregdue to surface-tension effegts s Ts0%w s
Hence, the degree of freezing is not spatially uniform. The  x;= ko[ (1— bs)/ 112 ! bs)°,
example shows how to model realistic freezing conditions
with a fractal distribution of the wate(or ice) content. The Where ks and ;o are referen_cg yalues. .
modeling algorithm can be used to predict ultrasonic veloci- The components of the rigidity matrix are

ties and attenuation for frozen porous mediattenuation w1=[(1=91) ds)*tap + sm,
can easily be incorporated by using a viscoelastic stress—
strain relation. #13=(1=091)(1—03) PsPittay »
p3=[(1-03) i1’ kayt Mim>
where

APPENDIX A: EXPRESSIONS OF THE THEORY

. . /Lsm:[ﬂsrrKT_/LsrrO][Q{’i/(l_¢s)]3'8+ﬂsnﬂy
The following expressions correspond to the theory of. the sh qul fth Kf is the Kust
wave propagation in three-phase porous méfigdwhere 1, 'S € Shear moaulus ot the rock Iramesmcr 1S the “uster—

2, and 3 denote quantities related to the sand grains, WateTPkScz shear modulus of the rock framgsp |s_the shear
and ice, respectively. modulus of the rock frame at full water saturation,

The friction coefficients are Mim= Mmad @i 1 (1— ¢s) 138
b 2 is the shear modulus of the ice framg,,.x IS Kuster—
127 Tl ks Toks@'s shear modulus of the ice frame, and

bys= 77w¢5v/’<i , Mav=[(1=01) s/ st Py liwny+(1—-03) ¢ /Mi]_lv
is the average shear modulus, withbeing the angular fre-
where »,, and ¢,, are the viscosity and proportion of water, quency, andugs and x; being the shear moduli of the sand
andkg andk; are the rock- and ice-frame permeabilitisee  grains and ice, respectively.
below). The consolidation coefficients of the rock and ice The consolidation coefficients of the rock and ice frames
frames are are
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01= Ham/ Pofte, f=ofPni=(1=1)7Pn;,
93= Mim/ Pirti - f&=— pupr8in;,
The components of the density matrix are
P Y f&=on=175n;, (B1)
P11= dspsizt (A~ 1) dypwt (Az1— 1) dip;, ,
wheren; are the components of the outward unit vector per-
p12=~ (821~ 1) pupw, pendicular toS. Assume that the system is perturbed by

1 2 3 1 2 3
prs= — (A1) bope—(az—1) dip; St .>, 5@, and&f_i( ), and letv(s5fM, 52 5t() be the
strain-energy density, and
p22= (21t A3~ 1) Pypw,

P~ (@as~ D bupu ve= [ vao- [ (P (00 (9u)ds
p33= Pipidzrt (82z— 1) dupwt(a13— 1) dhsps, (B2)
whereps, p;, andp,, are the density of the sand grains, ice, be the complementary energy. Strictly, should be the
and water, respectively. complementary strain-energy density; however, for linear
We express the tortuosities as: stress—strain relationsy is equal to the strain-energy
, density!’ The complementary energy theorem states that of
A= _Psp o+ 1, aps= ip Mgt 1, (A1)  all sets of forces that satisfy the equations of equilibrium and
PwPw PwPw boundary conditions, the actual one that is consistent with
where the prescribed displacements is obtained by minimizing the
complementary enerdy.Then, V* =0, and
_ dwpwt Pipi = dwpwt Psps
but i but s f 5Vd9:f (fOuM 4 5tDu@+ 5t Bu)ds,
andr,; andr,5; characterize the geometrical features of the o s (B3)
pores(1/2 for spheres By analogy, we consider that
" " We have from Eq(B1
a=¢i—p)r +1 a=¢s—pr+1 (A2) ey
13 ¢sps 13 d 31 ¢ipi 31 ) 5fi(1):(1_ |)5Ti(jl)nj ,
where
8t =— ¢, 0ps8n;,
,_ Dipit dsps 3 3
:W- S )=I57'i(]- )nj. (B4)

Equation(A2) should be used with caution, and it is conve- Substituting these expressions irf&8) yields
nient in most of the cases to uag; andas; as free param-
eters, as well as the friction coefficieb; between the sand f sVdQ = f [(1=1)(87() = pudpr i uP+ (578
grains and the ice. Q S

_¢w5pf5ij)ui(3)_5pf5ijWi]njd5, (B5)
APPENDIX B: STRAIN ENERGY

, i i , wherew; is given in Eq.(4). Applying Green’s theorem to
First, let us clarify the meaning of the different averagedie gyrface integral, we obtain

stress tensor components. Assume thatl and 3 refers to

the solid component&and grains and ice, respectivelsnd 1 1

defines(™ as the average values of the stress tensor over L)&Vdﬂz fﬂ[(l_l)(&i(i = duopi sy

Q.,. Then, the contributions of the solid phases to the total

stress tensor are= ¢s{V=(1-1)(1- ¢,)s” and o) +1(375) = ¢y, 0p; 8 )u — 8ps 5w ] ;A

= ¢isPV=1(1- py,)s’, according to Egs(1) and(14). We (B6)

introduce the averaged components per unit volume of solid

(grains plus icg 7V, through the relationSg'i(jl)z(l Because the system is in equilibrium before and after the

_I)Ti(jl) and Ui(j3):|7-i(j5)_ perturbation, and the fluid pressure is constantQinthe
The approach to evaluate the variation of strain energystress increments must satisfy

and, therefore, the generalized coordinates and correspond- 1 3 .

ing conjugate variables, follows the development given by (87), =0, (o77), 1=0, (8psy), | =0, B7)

Biot*® and Carcion® for a two-phase porous medium. Let gnd we can write

us consider a volume€ of porous material bounded by the

surfaceS. Assume thatQ) is initially in static equilibrium

under the action of the surface forces—per unit volume of

bulk material acting on the three phases. These forces can be @) @
written as +1(o7]’— ops&jj) €+ {ops]dQ.  (BB)

f(SVdQ:f [(1—-1)(87()— ¢, Op;8ij) e
Q Q
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The symmetry of the stress tensor has been used to obtain the The porosity is then calculated as

relation U™ s7{™) ;=€ s7™ . We finally deduce from

(B8) that
NV=(1-1) (= pupi5) el

PuP10)) €l + OpL.

+18(73)— (B9)

APPENDIX C: FRACTAL POROSITY

dutAdy(X,Y,2),
where
A Pu(ky Ky k) = (AP (Ky Ky k) P(Ky Ky k;), (C4)

with (A@)"(ky .k, .k,) being the Fourier transform of
(A y)' (X,y,2). (The tilde denotes the space Fourier trans-

(C3

We model fractal variations of porosity by using the von form.)

Karman autocovariance function. Les,, be the average po-
rosity (water proportionhand letA¢ be the maximum devia-
tion of the porosity field from the background valig . The
porosity field at k,y,z) is first subjected to the variations
(A¢,)", such that

—A¢p=<(Agy)'<A¢, (CD

where A ¢,,)" is obtained from a random generatftie su-
perscript ‘r” denotes random Random numbers between 0
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