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Bottom-simulating reflectors: Seismic velocities and AVO effects

José M. Carcione∗ and Umberta Tinivella∗

ABSTRACT

We obtain the wave velocities of ice- and gas hydrate–
bearing sediments as a function of concentration and
temperature. Unlike previous theories based on simple
slowness and/or moduli averaging or two-phase models,
we use a Biot-type three-phase theory that considers the
existence of two solids (grain and ice or clathrate) and a
liquid (water), and a porous matrix containing gas and
water.

For consolidated Berea sandstone, the theory under-
estimates the value of the compressional velocity below
0◦C. Including grain-ice interactions and grain cementa-
tion yields a good fit to the experimental data. Strictly
speaking, water proportion and temperature are closely
related. Fitting the wave velocity at a given tempera-
ture allows the prediction of the velocity throughout the
range of temperatures, provided that the average pore
radius and its standard deviation are known.

The reflection coefficients are computed with a vis-
coelastic single-phase constitutive model. The analysis
is carried out for the top and bottom of a free-gas zone
beneath a gas hydrate-bearing sediment and overlying
a sediment fully saturated with water. Assuming that
the bottom-simulating reflector is caused solely by an in-
terface separating cemented gas hydrate– and free gas–
bearing sediments, we conclude that (1) for a given gas
saturation, it is difficult to evaluate the amount of gas
hydrate at low concentrations. However, low and high
concentrations of hydrate can be distinguished, since
they give positive and negative anomalies, respectively.
(2) Saturation of free gas can be determined from the
reflection amplitude, but not from the type of anomaly.
(3) The P to S reflection coefficient is a good indicator of
high amounts of free gas and gas hydrate. On the other
hand, the amplitude-variation-with-offset curves are al-
ways positive for uncemented sediments.

INTRODUCTION
Gas hydrate is a clathrate composed of water and natural gas,

mainly methane, which forms under conditions of low temper-
ature, high pressure, and proper gas concentration. Bottom-
simulating reflectors (BSRs) on seismic profiles are interpreted
to represent the seismic signature of the base of gas hydrate
formation; a free gas zone may be present just below the BSR
(e.g., Andreassen et al., 1990).

Where no direct measurements are available, detailed know-
ledge of the compressional and/or shear wave velocity distribu-
tion in marine sediments is essential for quantitative estimates
of gas hydrate and free gas in the pore space. The discrepan-
cies between the inverted velocity profile (from seismic data)
and the velocity for water-filled, normally compacted marine
sediments are interpreted as caused by the presence of gas
hydrate (where positive anomalies are present) and free gas
(where negative anomalies are present). These anomalies can
be translated in terms of concentration of clathrate and free gas
if the velocity trend versus gas hydrate and free gas content is
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known. An alternative method for estimating the amount of
hydrate and gas is to analyze the variation of the reflection
coefficient of the BSR versus offset.

The elastic properties of ice are similar to those of hydrate,
so the properties of permafrost are often compared with those
of hydrated sediments (Sloan, 1990). Timur (1968) proposed
a three-phase time-average equation based on slowness av-
eraging (Wyllie’s equation) for modeling consolidated per-
mafrost sediments. Moreover, he found that as temperature
is decreased below 0◦C, the water contained in the large pores
freezes first, and that the freezing process ends between −21◦C
and −22◦C, in accordance with the phase diagram for the
sodium chloride–water system. The problem of transition from
“suspension” to “compacted” sediment was treated with com-
bined models. For instance, averaging bulk moduli weighted
with the respective porosities [Voigt’s model (Voigt, 1928)]
gives a simple model for consolidated sediments, whereas av-
eraging the reciprocal of bulk moduli [Reuss’s model (Reuss,
1929)] accounts for unconsolidated media. Zimmerman and
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King (1986) used the two-phase theory developed by Kuster
and Toksöz (1974), assuming that unconsolidated permafrost
can be approximated by an assemblage of spherical quartz
grains embedded in a matrix composed of spherical inclusions
of water and ice. They first compute the effective elastic moduli
of the ice-water mixture, with water playing the role of inclu-
sion. This yields a homogeneous medium where the sand grains
are the inclusion.

A three-phase theory based on first principles was proposed
by Leclaire et al. (1994). The theory, hereafter called as the
LCA model, assumes that there is no direct contact between
solid grains and ice since, in principle, water tends to form a thin
film around the grains. The theory predicts three compressional
waves and two shear waves, and can be applied to unconsoli-
dated and consolidated media. Leclaire et al. (1994) also pro-
vide a thermodynamic relation between the water proportion
and temperature. On the other hand, Santos et al. (1990a, b)
presented a theory describing wave propagation in a porous
medium saturated with a mixture of two immiscible, viscous,
compressible fluids. We use this theory for calculating the wave
velocities of sediments partially saturated with gas and water.
Therefore, the BSR is modeled by a porous medium in which
there are two solid components (matrix and gas hydrates) over-
lying a gas- and water-filled porous medium having the same
solid skeleton as the upper medium.

MODEL FOR GAS HYDRATE-BEARING SEDIMENTS

The theory developed by Leclaire et al. (1994) explicitly
takes into account the presence of the three phases. Here, we
have included the contributions to the potential and kinetic
energies due to the contact between the solid grains and the
hydrates, and the stiffening of the skeleton due to grain cemen-
tation. In fact, samples of gas hydrate recovered in a well (ODP
Leg 164 Shipboard Scientific Party, 1996) and a real data study
(Ecker et al., 1996) suggest that the hydrates are distributed
through the pore space and across the grains.

The equation of motion of the modified LCA model
(LCAM) can be written in matrix form as

R grad div u − µ curl curl u = ρ̃ü + Au̇,

where u is the displacement field,

R =



R11 R12 R13

R12 R22 R23

R13 R23 R33


 and µ =




µ11 0 µ13

0 0 0

µ13 0 µ33




are the stiffness and shear matrices,

ρ̃ =




ρ̃11 ρ̃12 ρ̃13

ρ̃12 ρ̃22 ρ̃23

ρ̃13 ρ̃23 ρ̃33




is the mass density matrix, and

A =



b11 −b11 0

−b11 b11 + b33 −b33

0 −b33 b33




is the friction matrix, where b13 have been assumed equal to
zero (this parameter describes solid-grain/hydrate friction). A

dot above a variable denotes time differentiation. All the pa-
rameters with the subindex (13) describe the interaction be-
tween the two solid components.

An effective density ρ = ρ̃ − iA/ω can be defined in the
frequency domain.

The three compressional velocities of the three-phase frozen
porous medium are given by

VPi = [Re(
√

�i )]−1, i = 1, . . . , 3, (1)

where Re takes the real part and �i are obtained from the
following characteristic equations:

�3 det(R) − �2a + �b − det(ρ) = 0,

det(R) = R11R22R33 − R2
23R11 − R2

12R33 − R2
13R22

+ 2R12R23R13,

a = a1 + a2 + a3,

a1 = ρ11 det(Riw) + ρ22 det(Rsi ) + ρ33 det(Rsw),

a2 = −2(ρ23R23R11 + ρ12R12R33 + ρ13R13R22),

a3 = 2(ρ23R13R12 + ρ13R12R23 + ρ12R23R13),

det(Rsw) = R11R22 − R2
12,

det(Riw) = R22R33 − R2
23,

det(Rsi ) = R11R33 − R2
13,

det(ρ) = ρ11ρ22ρ33 − ρ2
23ρ11 − ρ2

12ρ33 − ρ2
13ρ22

+ 2ρ12ρ23ρ13,

det(ρsw) = ρ11ρ22 − ρ2
12,

det(ρiw) = ρ22ρ33 − ρ2
23,

det(ρsi ) = ρ11ρ33 − ρ2
13,

b = b1 + b2 + b3,

b1 = R11 det(ρiw) + R22 det(ρsi ) + R33 det(ρsw),

b2 = −2(R23ρ23ρ11 + R12ρ12ρ33 + R13ρ13ρ22),

b3 = 2(R23ρ13ρ12 + R13ρ12ρ23 + R12ρ23ρ13).

The two shear velocities VSi are given by

VSi = [Re(
√

�i )]−1, i = 1, 2 (2)

where �i are the complex solutions of the equation

�2a′ − �b′ + det(ρ) = 0,

a′ = ρ22 det(µsi ),

b′ = µ11 det(ρiw) + µ33 det(ρsw)

− 2µ13ρ13ρ22 + 2µ13ρ12ρ23,

det(µsi ) = µ11µ33 − µ2
13.

Appendix A illustrates the meaning of the different param-
eters, and Appendix B the generalization of the potential and
kinetic energies. The expressions for Kmax and µmax can be
found in Zimmerman and King [1986, equations (1) and (2),
respectively], with the subscript m corresponding to ice, i cor-
responding to air, and the concentration c equal to φs . They
are the moduli of the ice matrix, with the water totally frozen
and the solid replaced by air. On the other hand, we assume
that the rigidity modulus of the solid matrix µsm is affected by
cementation of the sand grains by ice. The equation, indicated
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in Appendix A, follows the same percolation model used for
the ice matrix (Leclaire et al., 1994). The rigidity µsm0 is the
shear modulus of the rock at full water saturation. Alterna-
tively, the cementation effect can be introduced through the
coupling modulus µ̂si by means of a similar percolation model.
In this work, we assume µ̂si = 0.

The expressions for the density components, given in Ap-
pendix B, include the interaction between the grain and ice
phases, assuming that the grains flow through the ice matrix
(described by the tortuosity a13) and the ice flows through
the skeleton (described by a31). As is well known, the tortu-
osity is related to the difference between the microvelocity
and macrovelocity fields. If they are similar (i.e., for relatively
rigid materials like solids), the tortuosities equal 1 and the con-
tributions vanish. However, we assume that these terms con-
tribute to the kinetic energy when the solid and ice matrices
are unconsolidated or relatively unconsolidated, for which the
tortuosities are greater than 1. As in Biot theory, we neglect
the solid contributions related to the interaction with water.

On the other hand, depending on the frequency, a very thin
and viscous water layer may transmit shear deformations from
one matrix to the other. In this case, the coefficients µ1, µ2, and
µ13 become relaxation functions and should be replaced (in the
time domain) by the operators µ1∗, µ2∗, and µ13∗ (∗ denotes
time convolution), with µav representing a Maxwell mechani-
cal model with two springs, whose stiffnesses are µs/(1 − g1)φs
and µi/(1 − g3)φi , and a dashpot of viscosity ηw/φw . Note that
Leclaire et al. (1994) neglect the imaginary part of the Maxwell
complex modulus, and then the related attenuation effects.

Assuming a Gaussian porosimetric distribution, the water
proportion φw can be obtained as a function of temperature as

φw = (1 − φs)A
∫ r0/ln(T0/T )

0
exp

[−(r − rav)2/(2�r2)
]
dr,

(3)

where rav is the average pore radius, �r is the standard
deviation, and the temperature T is given in Kelvins and
T0 = 273 K (Hudson, 1992; Leclaire et al., 1994). The quantity
r0 = 0.228 nm in the ideal case, but here it is used as a parameter
in order to take into account the salinity content of the pore
water. As stated by Timur (1968), as the ice crystallizes out as
pure water, the sodium chloride concentration of the remain-
ing solution increases, thereby further lowering the freezing
point. Hence, ice may be thought of as forming on the walls of
the larger pores and growing into the pore spaces. This effect
is modeled by equation (3).

The constant A is obtained after normalization of the
Gaussian probability function from r = 0 to r = ∞. Thus, we
obtain

φw = (1 − φs)
erf(ζ ) + erf(η)

1 + erf(η)
, ζ = r0/ln(T0/T )√

2�r
− η,

η = rav√
2�r

. (4)

MODEL FOR FREE GAS-BEARING SEDIMENTS

The porous media saturated by a mixture of water and free
gas can be described by the theory developed by Santos et al.

(1990a, b). The velocity of compressional waves is

VP =
[

Re
(

1
V

)]−1

, (5)

where V is the complex velocity satisfying the eigenvalue equa-
tion

Mq = V 2(D − iL)q, (6)

with q the eigenvectors,

M =



Kc B1 B2

B1 M1 M3

B2 M3 M2


 and D =




ρ ρg Sg ρwSw

ρg Sg ḡ1 ḡ3

ρwSw ḡ3 ḡ2




the stiffness and density matrices, respectively, and

L = diag

(
0,
S2
g

ω

η̄g

κg
,
S2

w

ω

η̄w

κw

)

the friction matrix. The shear velocity is

VS =
[

Re
(

1
V

)]−1

, (7)

where

V = √
µsm0

[
ρm

− ρg Sg
(
g∗

2ρg Sg − ḡ3ρwSw

) + ρwSw

(
g∗

1ρwSw − ḡ3ρg Sg
)

g∗
1g

∗
2 − ḡ2

3

]

and

g∗
1 = ḡ1 − i

S2
g

ω

η̄g

κg
, and g∗

3 = ḡ3 − i
S2

w

ω

η̄w

κw

.

The permeabilities can be expressed as

κg = κs0krg and κw = κs0krw,

where krg and krw are the relative permeabilities.
For low frequencies (i.e., the seismic case), the compressional

and shear velocities are

VP =
√

(Kc + 4µsm0/3)/ρm, and VS =
√

µsm0/ρm

(8)
(see Appendix A for more details).

WAVE VELOCITIES OF BEREA SANDSTONE

The first example (see Figure 1) compares the compressional
velocity obtained by using the present theory with those of the
most common acoustic models for permafrost. A description of
these models can be found, for instance, in Carcione and Seriani
(1998). The data (see Table 1) correspond to Berea sandstone,
with the properties given by Timur (1968) and Winkler (1985).
The Voigt and Wood models provide upper and lower bounds
for the bulk and rigidity moduli. Roughly, the velocities of the
different models must lie between the Voigt and Wood ve-
locities (note that the bounds refer to the moduli, not to the
velocities). The time average velocity is obtained by averag-
ing the slowness of the different phases weighted by the re-
spective porosities. Minshull et al. (1994) obtain an effective
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medium 1 by time averaging the solid and ice (gas-hydrate)
phases; then, they obtain a medium 2 for the water-filled sed-
iment from Gassmann’s equation; finally, they time average
mediums 1 and 2 to obtain the velocity of the partially sat-
urated sediment. On the other hand, Zimmerman and King
(1986) use Kuster and Toksöz’s (1974) theory for obtaining the
effective moduli of the ice-water mixture (with water playing
the role of inclusion), and then use this mixture as a background
medium where the sand grains are the inclusion. This gives an
unconsolidated model for permafrost, with low velocities for
low ice concentrations.

The curves LCA, LCAM and M (Minshull et al., 1994) co-
incide and give Biot’s results at full water saturation, but they
give different values at full ice saturation. Note that the cemen-
tation effect is strong for high concentrations of ice (compare
the LCA and LCAM curves). The curve ZK (Zimmerman and
King, 1986) coincides with Wood’s model (W) at full water
saturation, since it assumes an unconsolidated matrix. All the
theories correctly predict the behavior of the fast wave velocity
in a partially frozen medium, i.e., velocity decreases for increas-
ing water saturation. Finally, the V (Voigt’s model) curve seems
to overestimate the velocity.

The next example (Figure 2) analyzes the dependence of
the compressional velocity of permafrost on temperature.
The data (see Table 1) correspond to Berea sandstone, with
the properties given by Timur (1968) and Winkler (1985).
In order to evaluate the influence of ice-grain interactions
and grain cementation, we represent the compressional and
shear velocities versus ice concentration corresponding to
four different models. As can be appreciated, cementation,
modeled by the percolation theory, is the most important

FIG. 1. Compressional wave velocity versus water proportion
predicted by the different theories. The medium is Berea sand-
stone, whose properties are given in Table 1. LCAM is the
modified theory.

Table 1. Material properties for frozen Berea sandstone.

Grain ρs = 2650 kg/m3 Ks = 38.7 GPa µs = 39.6 GPa κs0 = 1.07 10−13 m2

Ice ρi = 920 kg/m3 Ki = 8.58 GPa µi = 3.7 GPa κi0 = 5 × 10−4 m2

Water ρw = 1000 kg/m3 Kw = 2.25 GPa µw = 0 GPa η̄w = 1.798 cP∗
Ksm = 14.4 GPa µsm0 = 13.1 GPa rs = 50 µm rav = 10 µm �r = 10 µm
∗1 cP = 0.001 Pa·s.

factor. However, for low concentrations (less than 30%), all
velocities coincide in practice.

Figure 3a shows the water proportion φw as a function of tem-
perature computed from equation (4), assuming rav = 10 µm,
�r = 10 µm, and r0 = 0.04 µm. Figure 3b represents the com-
pressional wave velocity versus temperature, where the squares
correspond to the experimental data measured by Timur
(1968). The sample was subjected to an uniaxial pressure of
313 atm, and the pore fluid was under atmospheric pressure.
The sample, with a porosity of 0.2, was first cooled to −23◦C,
and then brought back to room temperature. Two curves, com-
puted at 200 kHz, are fitted to the experimental points. The
dotted curve strictly corresponds to Leclaire et al.’s (1994) the-
ory, i.e., grain-ice interactions and grain cementation with de-
creasing temperature are not taken into account, and assum-
ing rav = 10 µm, �r = 4 µm, and r0 = 0.228 nm (pure water).
As can be seen, the velocity is underestimated below 0◦C. The
continuous line, which fits the data fairly well, was obtained
from the present model.

FIG. 2. Compressional and shear velocities for an ice-bearing
sediment (Berea sandstone, see Table 1) versus ice concen-
tration, corresponding to the original theory developed by
Leclaire et al. (1994) (LCA, dotted line), to the theory includ-
ing cementation (broken line), to the theory including grain-ice
contact (light broken line), and to the LCAM model (continu-
ous line). The frequency is 25 Hz.
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REFLECTION AND TRANSMISSION COEFFICIENTS

The properties of the sediment and of its individual con-
stituents causing the BSR are given in Table 2. The com-
pressional and shear velocities at 25 Hz versus gas hydrate
and free-gas saturations are represented in Figures 4a and 4b,
respectively. At zero saturation these velocities coincide with

FIG. 3. (a) Water proportion φw as a function of temperature.
(b) Compressional wave velocity versus temperature in (con-
solidated) Berea sandstone at 200 kHz. The squares correspond
to the experimental data measured by Timur (1968), and the
dotted curve to the theory developed by Leclaire et al. (1994)
(LCA model).

Table 2. Material properties for hydrate- and free gas-bearing sediments.

Grain ρs = 2650 kg/m3 Ks = 38.7 GPa µs = 39.6 GPa κs0 = 1.07 10−13 m2

Gas hydrate ρh = 920 kg/m3 Kh = 8.27 GPa µh = 3.39 GPa κi0 = 5 × 10−4 m2

Water ρw = 1030 kg/m3 Kw = 2.39 GPa µw = 0 GPa η̄w = 1.798 cP
Gas ρg = 116 kg/m3 Kg = 0.0236 GPa µg = 0 GPa η̄g = 0.01 cP
Ksm = 1.095 GPa µsm0 = 1.19 GPa rs = 50 µm 1 − φs = 0.4 r12 = 0.5
r13 = 0.5 r23 = 0.5 r31 = 0.5 krw = 0.04 krg = 0.4

FIG. 4. Seismic compressional (a) and shear (b) velocities for
a gas hydrate–bearing sediment (see Table 2) as a function of
gas hydrate concentration, corresponding to the LCAM model
(continuous line), Domenico’s (1977) model (broken line), and
Minshull et al.’s (1994) model (dotted line).
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those of Biot’s theory. On the other hand, Figure 5 displays the
respective Poisson ratios. Also illustrated are the velocities and
Poisson’s ratios obtained with Domenico’s theory (Domenico,
1977) and Minshull et al.’s (1994) model. Actually, Minshull

FIG. 5. Seismic Poisson ratios for a gas hydrate–bearing sedi-
ment (a) and a free gas–bearing sediment (b) as a function of
the respective saturations. They are given for the LCAM model
(continuous line) and Domenico’s (1977) model (broken line).
The dotted line in (a) is the Poisson ratio assumed by Minshull
et al. (1994) in their analysis.

et al. assumed a linear decrease of the Poisson ratio from
0.41 to 0.28 with increasing hydrate concentration. The modi-
fied LCA model gives a nearly constant Poisson’s ratio for
low concentrations and a rapidly decreasing one for high
concentrations.

The BSR is assumed to be a layer partially saturated with
free gas beneath a hydrate-bearing sediment and overlying a
sediment fully saturated with water. Our objective here is study
the reflection and transmission coefficients of the top and bot-
tom of the free gas zone. These are calculated by first com-
puting the wave velocities from the three-phase theories and
then using a single phase model that includes attenuation ef-
fects (e.g., Carcione, 1997). The anelasticity is described by two
standard linear solid elements associated with dilatational and
shear deformations, where the relaxation times are expressed
as a function of the respective minimum quality factors Q1

and Q2, and the center frequency f0 of the relaxation peaks.
It is important to point out here that by using a single-phase
model for computing the reflection coefficients, we ignore the
presence of two additional compressional waves and a second
shear wave, whose velocities are represented in Figure 6 (VP2,
VP3, and VS2, respectively). Moreover, this approximation ne-
glects conversion between the different phases.

Amplitude variation with offset (AVO) variations for vari-
ous models corresponding to the top of the BSR are displayed
in Figure 7. We assume that the quality factors of the hydrate-
bearing sediments are Q1 = Q2 = 30, and those of the free gas-
bearing sediments are Q1 = Q2 = 20. The AVO anomalies can
be of type II, III, and IV according to the classification given by
Castagna and Swan (1997). We recall that for type II anomalies
the amplitude may increase or decrease with offset (there is a
change of sign in the reflection coefficient), for type III anoma-
lies the reflection coefficient is negative and its absolute value
increases with offset, and for type IV anomalies the coefficient
is negative and its absolute value decreases with offset. Here,
the anomalies are class IV for very high concentrations of gas
hydrate, and classes II and III for relatively low concentrations.
As stated by Minshull et al. (1994), for low saturations, the be-
havior is quite different in the presence and in the absence of
free gas. Increasing free gas saturation causes an increase in the
magnitude of the reflection coefficient with increasing offset.
However, for a given gas saturation, it is difficult to evaluate
the amount of gas hydrate at low saturations.

Ecker et al. (1996) show, from an AVO analysis and a rock
physics model, that gas hydrate–bearing sediments from the
Blake Outer Ridge (offshore Florida and Georgia) seem to be
uncemented. In order to evaluate the influence of this factor on
the reflection amplitudes, we represent in Figure 8 the curves
corresponding to Figure 7, but without grain cementation.
The curves are similar for low concentrations but differ for
high concentrations. In this case, the AVO anomaly is always
positive.

Figures 9 and 10 represent the reflection coefficients RPP and
RPS at 25 Hz for various saturations. In part (a) each figure, the
hydrate concentration is fixed at 10%, and in part (b) of each
figure the free gas saturation is fixed at 10%. According to Fig-
ure 9, the free gas saturation can be determined from reflection
amplitude but not from the type of anomaly. Moreover, the gas
hydrate content can be determined when the concentration is
high. On the other hand, RPS is a good indicator of high amounts
of free gas and gas hydrate.



60 Carcione and Tinivella

Figure 11 shows common-midpoint (CMP) gathers of the
vertical particle velocity corresponding to the top of the BSR
with 10% gas hydrate and 0%, 1%, and 20% free gas. The
material properties are given in Table 3, and the previous qual-
ity factors are assumed. The source is a 25-Hz Ricker wavelet
located 520 m above the BSR. As predicted by the theoret-
ical curves, small quantities of gas in the pore space cause a
dramatic change in the amplitude of the compressional wave.

Table 3. Material properties.

Medium VP (m/s) VS (m/s) ρ (kg/m3)

10% hydrate 2030 773 1998
0% free gas 1982 771 2002
1% free gas 1641 772 1998
20% free gas 1236 785 1928

FIG. 6. Velocities of the additional compressional waves (a)
and second shear wave (b).

FIG. 7. Variations of BSR PP-wave viscoelastic reflection
coefficient with angle of incidence for different free-gas
and gas-hydrate saturations (LCAM model with grain
cementation).



AVO Effects of BSRs 61

FIG. 8. Computed variations of BSR PP-wave viscoelastic
reflection coefficient with angle of incidence for different free-
gas and gas-hydrate saturations (LCA model without grain
cementation).

The propagation effects due to attenuation can be observed
in Figure 12, which shows CMP gathers of the vertical particle
velocity for a BSR with 10% gas hydrate and 1% free gas in
the lossy and lossless cases. Attenuation considerably affects
the far-offset traces.

Finally, Figure 13 represents the reflection coefficients RPP ,
phases, and interference coefficients corresponding to the bot-
tom of the free gas zone (the frequency is 25 Hz). We as-
sume that the quality factors of the free gas–bearing sediments
are Q1 = Q2 = 20, and those of the water saturated sediment
are Q1 = Q2 = 30. Small amounts of free gas can be deter-
mined from the amplitude strength, although all the saturations
present the same type of anomaly. The interference between
the incident and reflected P-waves is particularly high for all
the saturations at far offsets. This indicates that much of the
energy is lost by interference.

FIG. 9. PP-reflection coefficients versus incidence angle, cal-
culated for sediments with 10% gas hydrate concentration (a)
and 10% free-gas saturation (b).
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CONCLUSIONS

We model the wave velocities of gas hydrate– (ice-) and
free gas–bearing sediments with three-phase Biot-type theo-
ries, and obtain the reflection coefficients for the top and base
of a free gas layer, believed to be the cause of a BSR. Our
conclusions are the following:

1) Grain cementation, simulated with a percolation model,
is important for high concentrations of ice (gas hydrate).

2) Grain cementation and a porosimetric probability distri-
bution are required for modeling permafrost velocities
(in frozen Berea sandstone).

3) The model gives a nearly constant Poisson’s ratio for
low concentrations, and a rapidly decreasing one for high
concentrations.

FIG. 10. PS-reflection coefficients versus incidence angle, cal-
culated for sediments with 10% gas hydrate concentration (a)
and 10% free gas saturation (b).

4) Small quantities of gas in the pore space cause a dramatic
change in the amplitude of the compressional wave.

5) Increasing free gas saturation causes an increase in the
magnitude of the near-offset reflection coefficient. How-
ever, for a given gas saturation, it is difficult to evaluate
the amount of gas hydrate at low concentrations. For high
concentrations, the AVO anomaly is negative.

6) The AVO anomaly is always positive when the grains are
not cemented.

The curves show a strong positive anomaly for high
concentrations of gas hydrate when the grains are unce-
mented. It is not possible to evaluate the amount of free
gas, but the amount of gas hydrate can be determined
from the AVO curves.

FIG. 11. CMP gathers of the vertical particle velocity for a BSR
with 10% gas hydrate and (a) 0%, (b) 1%, and (c) 20% free
gas. The material properties are given in Table 3.
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7) The saturation of free gas can be determined from the
reflection amplitude (RPP), but not from the type of
anomaly.

8) The amount of gas hydrate can be determined when the
concentration is high.

9) The P to S reflection coefficient is a good indicator of
high amounts of free gas and gas hydrate.

10) Reflections from the base of the free gas zone indicate
that small amounts of free gas can be determined from
the amplitude strength, although all the saturations
present the same type of anomaly. Moreover, the
interference between the incident and reflected P-waves
is particularly high for all the saturations at far offsets,
indicating that much of the energy is lost by interference.

11) Propagation effects are important, since attenuation
considerably affects the far-offsets traces.

Unlike in Biot’s two-phase theory, the secondary (slow)
waves are propagation modes in the seismic range. In partic-
ular, this occurs for high concentrations of gas hydrate. Then,
events due to these waves may be present in the seismic records.
If the free gas zone is thin compared to the dominant wave-
length, the analysis requires a more complex AVO study taking
into account the layer thickness. This is currently the subject of
research using, for instance, a full wave modeling technique.
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APPENDIX A

LIST OF SYMBOLS

Model for ice (gas hydrate)–bearing sediments

a12 tortuosity for water flowing through the solid
matrix

a13 tortuosity for solid flowing through the ice matrix
a23 tortuosity for water flowing through the ice matrix
a31 tortuosity for ice flowing through the solid matrix
b11 = ηDφ2

w/κs
b33 = ηDφ2

w/κi
c1 consolidation coefficient for the solid: Ksm/φs Ks

c3 consolidation coefficient for the ice: Kim/φi Ki

Re[F(ξ)] = 1 + (1/0.7178) exp[0.7178(ξ − 3.2)]/12, if ξ ≤ 3.2
Re[F(ξ)] = 0.5 + {2ξ + exp[−0.7178(ξ − 3.2)]}/12, if ξ > 3.2
Im[F(ξ)] = ξ/6
g1 consolidation coefficient for the solid: µsm/φsµs

g3 consolidation coefficient for the ice: µim/φiµi

h average thickness of the water layer
= rs[(1 + φw/φs)1/3 − 1]

Ks solid bulk modulus
Kw water bulk modulus
Ki ice bulk modulus
Ksm bulk modulus of the matrix formed by the solid

phase
Kmax Kuster-Toksöz’s bulk modulus for the ice matrix
Kim bulk modulus of the matrix formed by the ice

= Kmax[φi/(1 − φs)]3.8

Kav average bulk modulus: [(1 − c1)φs/Ks + φw/Kw

+ (1 − c3)φi/Ki ]−1

R11 = K1 + 4µ11/3 = [(1 − c1)φs]2Kav + Ksm + 4µ11/3
R12 = C12 = (1 − c1)φsφwKav

R13 = C13 + 2µ13/3 = (1 − c1)(1 − c3)φsφi Kav + 2µ13/3
R22 = φ2

wKav

R23 = C23 = (1 − c3)φiφwKav

R33 = K3 + 4µ33/3 = [(1 − c3)φi ]2Kav + Kim + 4µ33/3
r12 geometrical aspect of the boundary separating

solid from water

r13 geometrical aspect of the boundary separating
solid from ice

r23 geometrical aspect of the boundary separating ice
from water

r31 geometrical aspect of the boundary separating
ice from solid

rs average radius of solid grains
rav average radius of the capillary pore
Si ice concentration: φi/(φi + φw)
T water temperature in degrees Celsius
�r standard deviation of the capillary pore
η̄w viscosity of free water: 1.798 10−3

exp(−0.03753T ), −20◦C < T < 0◦C
10 log10 η̄w = 1301/[998.333 + 8.1855(T − 20)

+ 0.00585(T − 20)2] − 3.30233, 0◦C < T < 20◦C,
ηw viscosity of interstitial water: η̄w(450 + h)/h,

with h in angstroms
ηD dynamical viscosity of interstitial water: ηwF(ξ)
κs0 solid matrix permeability
κi0 ice matrix permeability
κs = κs0φ

3
w/(1 − φs)3

κi = κi0[(1 − φs)/φi ]2(φw/φs)3

µs solid shear modulus
µi ice shear modulus
µsmKT Kuster-Toksöz’s shear modulus for the solid

matrix
µsm solid matrix shear modulus:

[µsmKT − µsm0][φi/(1 − φs)]3.8 + µsm0

µmax Kuster-Toksöz’s shear modulus for the ice matrix
µim shear modulus of the matrix formed by the ice

= µmax[φi/(1 − φs)]3.8

µav average shear modulus: [(1 − g1)φs/µs

+ φw/ iωηw + (1 − g3)φi/µi ]−1

µ11 = [(1 − g1)φs]2µav + µsm

µ13 = (1 − g1)(1 − g3)φsφiµav + µ̂si

µ33 = [(1 − g3)φi ]2µav + µim
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µsi coupling shear modulus between the ice and solid
phases

ω angular frequency: 2π f
φs proportion of solid
φw proportion of water
φi proportion of ice
ρs solid density
ρw water density
ρi ice density
ρ11 = φsρsa13 + (a12 − 1)φwρw + (a31 − 1)φiρi − ib11/ω

ρ12 = −(a12 − 1)φwρw + ib11/ω

ρ13 = −(a13 − 1)φsρs − (a31 − 1)φiρi
ρ22 = (a12 + a23 − 1)φwρw − i(b11 + b33)/ω
ρ23 = −(a23 − 1)φwρw + ib33/ω

ρ33 = φiρi a31 + (a23 − 1)φwρw + (a13 − 1)φsρs − ib33/ω

ξ = (h/2) (ωρw/ηw)1/2

Model for free gas–bearing sediments

B1 = Kc�[(Sg + β)γ − β]
B2 = Kc�Sw

Fs structure factor: 2.8
ḡ1 = Sgρg Fs/(φg + φw)

ḡ2 = SwρwFs/(φg + φw)
ḡ3 = 0.1

√
g1g2

Ks gas bulk modulus
Kc = Ks(Ksm + Q)(Ks + Q)
K f = α/(γ Sg/Kg + Sw/Kw)
M1 = B2r/q
M2 = −B1/(Ksmδ) − M3

M3 = −B2[1/(Ksmδ) + r/q]
pc capillary pressure: 2650.9e−3.1291(e−6.029158Sg − 1)
Q = K f (Ksm − Ks)/[(K f − Ks)(φw + φg)]
q = (φg + φw)[1/Kg + 1/(SgSw∂pc/∂Sg)]
r = (Sg + β)/Ks + χ/Ksm

Sg gas saturation: φg/(φg + φw)
Sw water saturation: φw/(φg + φw)
α = (γ − 1)(Sg + β) + 1
β = pc/(∂pc/∂Sg)
δ = 1/Ks − 1/Ksm

γ = [1 + SgSw(∂pc/∂Sg)/Kw]/[1 + SgSw(∂pc/∂Sg)/Kg]
ρg gas density
ρm mass density of the bulk material: φsρs + φgρg

+ φwρw

φg proportion of gas
� = δ+(φg+φw)(1/Ksm−1/Kc)

α[δ+(φg+φw)(1/Ksm−1/K f )]

APPENDIX B

EXTENSION OF LECLAIRE ET AL.’S THEORY

Leclaire et al. (1994) assume that there is no direct mechan-
ical contact between solid and ice. The model is generalized
here in order to include this interaction. Following Leclaire et
al.’s notation, uν , ν = 1, . . . , 3 denote the displacement vectors
of solid, water, and ice, respectively.

Potential energy density

The total potential energy of the system can be expressed as

V = µ11d
2
1 + 1

2
K1θ

2
1 + C12θ1θ2 + 1

2
K2θ

2
2 + C23θ2θ3

+ 1
2
K3θ

2
3 + µ33d

2
3 + C13θ1θ3 + µ13D, (B-1)

where θν and dν are the invariants of the strain tensor, called
deviators and dilatations, D = d(1)

i j d
(3)
i j , with d(ν)

i j the deviator
tensor, Kν and µνν′ are, respectively, the bulk and shear mod-
uli of the effective phases. Note that since D is the trace of
the scalar product between the vectors d(1) and d(3), it is an
invariant quantity.

All the parameters except C13 and µ13 are given in Leclaire
et al. (1994). However, they are not modified by solid/ice in-
teractions. In order to calculate C13, and µ13, we generalize the
elastic moduli obtained for the two-phase Biot’s theory. For a
medium with a solid porosity φs and a fluid porosity φ f , the
elastic moduli are

K1 = (1 − c1)2φ2
s Ka,

C12 = (1 − c1)φsφ f Ka,
(B-2)

K2 = φ2
f Ka,

Ka =
[

(1 − c1)
φs

Ks
+ φ f

K f

]−1

, c1 = Ksm

φs Ks
,

where Ks and K f are the solid and fluid bulk moduli, Ka is
the average bulk modulus, Ksm is the solid matrix bulk mod-
ulus, and c1 is the bulk consolidation coefficient such that
c1 = 0 for a suspension of solid grains in a fluid and c1 = 1 for
a situation where the grains form a monolithic block. Note
that equations (B-2) correspond to an effective solid porosity
φ′
s = (1−c1)φs . If we replace ice by water, the equations should

read

K1 = φ′
s

2Ka,

C13 = φ′
sφ

′
i Ka,

(B-3)
K3 = φ′

i
2Ka,

Ka =
[

φ′
s

Ks
+ φ′

i

Ki

]−1

, c3 = Kim

φi Ki
,

where c3 is the bulk consolidation coefficient of the ice matrix
with bulk modulus Kim . For the three-phase system, general-
ization of Ka to

Kav =
[

φ′
s

Ks
+ φ′

i

Ki
+ φw

Kw

]−1

gives

K1 = (1 − c1)2φ2
s Kav,

C13 = (1 − c1)φs(1 − c3)φi Kav,
(B-4)

K3 = (1 − c3)2φ2
i Kav,

Kav =
[

(1 − c1)
φs

Ks
+ (1 − c3)

φi

Ki
+ φw

Kw

]−1

.
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The shear modulus µ13, given in appendix A, has an analogous
expression to that of C13.

Kinetic energy density

The kinetic energy is a function of the local velocities u̇1, u̇2,
and u̇3, where the dot denotes time differentiaton. Generalizing
Leclaire et al.’s kinetic energy, we get

C = 1
2
ρ11u̇

2
1 + 1

2
ρ22u̇

2
2 + 1

2
ρ33u̇

2
3

+ ρ12u̇1u̇2 + ρ23u̇2u̇3 + ρ13u̇1u̇3, (B-5)

where, for simplicity, we omit the tilde above the density com-
ponents.

Let us define the macroscopic velocities

ẇ1 = φw(u̇2 − u̇1) and ẇ3 = φw(u̇2 − u̇3) (B-6)

characterizing water-solid and water-ice flow, and

q̇ = φi (u̇3 − u̇1) and ṙ = φs(u̇1 − u̇3), (B-7)

the macroscopic velocity characterizing the flow of ice relative
to the solid phase and vice versa, respectively. Since the rel-
ative flow is assumed to be of laminar type, the microscopic
velocities can be expressed as

v1 = α
(1)
i j (ẇ j )1 and v3 = α

(3)
i j (ẇ j )3, (B-8)

and

s = β
(1)
i j q̇ j and t = β

(3)
i j ṙ j , (B-9)

where α
(1)
i j and α

(3)
i j are the water/solid and water/ice coeffi-

cients, and β
(1)
i j and β

(3)
i j the ice/solid and solid/ice coefficients,

respectively.
The total kinetic energy is given by the expression

C = 1
2
ρw

∫ ∫ ∫
�w

(u̇1 + v1)2 d�

+ 1
2
ρw

∫ ∫ ∫
�w

(u̇3 + v3)2 d� − 1
2
ρwφwu̇

2
2

+ 1
2
ρi

∫ ∫ ∫
�i

(u̇1 + s)2 d�

+ 1
2
ρs

∫ ∫ ∫
�s

(u̇3 + t)2 d�, (B-10)

where �w , �i , and �s are the volumes of water, ice, and solid,
respectively. The term (1/2)ρwφw u̇2

2 is subtracted since the con-
tribution of water must be considered only once in the kinetic
energy.

Following Leclaire et al. (1994), defining

(mi j )� ≡ ρw

∫ ∫ ∫
�′

∑
k

α
(�)
ki α

(�)
k j d�, � = 1, 3 (B-11)

and

(ni j )1 ≡ ρi

∫ ∫ ∫
�′

∑
k

β
(1)
ki β

(1)
k j d�,

(B-12)
(ni j )3 ≡ ρs

∫ ∫ ∫
�′

∑
k

β
(3)
ki β

(3)
k j d�,

where �′ is the volume of the flowing phases, and assuming
statistical isotropy, we obtain

C = 1
2
ρ2u̇

2
1 + ρwu̇1ẇ1 + 1

2
m1ẇ

2
1 + 1

2
ρ2u̇

2
3 + ρwu̇3ẇ3

+ 1
2
m3ẇ

2
3 − 1

2
ρwφwu̇

2
2 + 1

2
ρ3u̇

2
1 + ρi u̇1q̇ + 1

2
n1q̇

2

+ 1
2
ρ1u̇

2
3 + ρs u̇3ṙ + 1

2
n3ṙ

2, (B-13)

where

ρ1 = ρsφs, ρ2 = ρwφw, ρ3 = ρiφi .

Finally, expressing the kinetic energy as a function of u̇1, u̇2,
and u̇3, we get

C = 1
2

(
n3φ

2
s − ρ2 + m1φ

2
w − ρ3 + n1φ

2
i

)
u̇2

1

+ 1
2

(
m1φ

2
w + m3φ

2
w − ρ2

)
u̇2

2

+ 1
2

(
n1φ

2
i − ρ2 + m3φ

2
w − ρ1 + n3φ

2
s

)
u̇2

3

+ (
ρ2 − m1φ

2
w

)
u̇1u̇2 + (

ρ2 − m3φ
2
w

)
u̇2u̇3

+ (
ρ1 − n3φ

2
s + ρ3 − n1φ

2
i

)
u̇1u̇3. (B-14)

The generalized mass densities ρi j are obtained by equating the
coefficients of expression (B-14) with those of equation (B-5).
Thus

ρ11 = ρsφsa13 + (a12 − 1)ρwφw + (a31 − 1)ρiφi ,

ρ22 = (a12 + a23 − 1)ρwφw,

ρ33 = ρiφi a31 + (a23 − 1)ρwφw + (a13 − 1)ρsφs,
(B-15)

ρ12 = −(a12 − 1)ρwφw,

ρ23 = −(a23 − 1)ρwφw,

ρ13 = −(a13 − 1)ρsφs − (a31 − 1)ρiφi ,

where

a12 = m1φw

ρw

, a23 = m3φw

ρw

, (B-16)

and

a13 = n3φs

ρs
, a31 = n1φi

ρi
(B-17)

are the tortuosity parameters.
When there is no relative motion between the three phases,

the following relation holds

ρ = ρ11 + ρ22 + ρ33 + 2ρ12 + 2ρ23 + 2ρ13 = ρ1 + ρ2 + ρ3,

(B-18)

corresponding to the effective mass density.
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Following Berryman (1980) and Leclaire et al. (1994), we
express the tortuosity parameters as

a12 = φsρ

φwρw

r12 + 1, a23 = φiρ
′

φwρw

r23 + 1,

(B-19)

a13 = φiρ
′

φsρs
r13 + 1, a31 = φsρ

φiρi
r31 + 1,

where

ρ = φwρw + φiρi

φw + φi
, ρ ′ = φwρw + φsρs

φw + φs
,

and rνν′ characterize the geometrical features of the pores
(r = 1/2 for spheres). This approximation is based on the fact
that the three phases are mechanically decoupled. Observe
that, for instance, a12 → 1 for φw → 1 and that a12 → ∞ for
φw → 0, as expected (Berryman, 1980).


