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ABSTRACT

Cross-property relations are useful when some rock prop-
erties can be measured more easily than other properties. Re-
lations between electrical conductivity and seismic velocity,
stiffness moduli, and density can be obtained by expressing
the porosity in terms of those properties. There are many pos-
sible ways to combine the constitutive equations to obtain a
relation, each one representing a given type of rock. The rela-
tions depend on the assumptions to obtain the constitutive
equations. In the electromagnetic case, the equations involve
Archie’s law and its modifications for a conducting frame, the
Hashin-Shtrikman �HS� bounds, and the self-similar and
complex refraction-index method �CRIM� models. In the
elastic case, the stress-strain relations are mainly based on the
time-average equation, the HS bounds, and the Gassmann
equation. Also, expressions for dry rocks and for anisotropic
media, using Backus averaging, are analyzed. The relations
are applied to a shale saturated with brine �overburden� and to
a sandstone saturated with oil �reservoir�. Tests with sections
of a North Sea well log show that the best fit is given by the re-
lation between the Gassmann velocity and the CRIM, self-
similar, andArchie models for the conductivity.

INTRODUCTION

Electrical, seismic, and electromagnetic methods can be used for
oninvasive determination of subsurface physical and chemical
roperties. Seismic measurements provide wave velocities and at-
enuations, which can be translated to stiffness and quality factor,
hile electromagnetic data provide electromagnetic velocity and at-

enuation, which can be translated to dielectric constant and electri-
al conductivity. Most of the relevant properties for the oil-explora-
ion problem are represented by electrical conductivity and wave ve-
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ocity. Hence, it is important to obtain relationships between these
hysical quantities and the composition of the overburden and reser-
oir, including the saturating fluids.

The use of mixture theories is essential to obtain the conductivi-
ies and the velocities �e.g., Schön, 1996�. We first establish the dif-
erent constitutive equations. Mainly, the electromagnetic theories
nvolve Archie’s law �Archie, 1942� and its modifications for a con-
ucting frame, the Hashin-Shtrikman �HS� bounds, and the self-sim-
lar and complex refraction-index method �CRIM� models. The

ain elastic models are the time-average equation, the HS bounds,
nd the Gassmann equation �e.g., Mavko et al., 1998�. Also, expres-
ions for dry rocks are considered, and Backus averaging to model
nisotropic media is used to derive relations between tensor compo-
ents. An example of the use of Backus averaging is given by
ennedy and Herrick �2004�, who derive the porosity and saturation

xponents of Archie’s law, and obtain horizontal and vertical forma-
ion factors.

Thus, we develop new theories relating the electrical conductivity
nd the seismic velocity, i.e., knowing the conductivity, the P-wave
elocity can be obtained, and vice versa. This is important in the
ense that if one property, e.g., electrical conductivity, can be more
asily measured than seismic velocity, the latter can be obtained by
sing a cross-property relation. The importance of such relations has
een pointed out by Berryman and Milton �1988� and Gibiansky and
orquato �1995�. Relations between various effective properties
ave been investigated in several works. In the classical paper of
ristow �1960�, an explicit connection between the conductivity and

he elastic moduli of a solid with cracks is derived. Other relevant ar-
icles are Berryman and Milton �1988�, Gibiansky and Torquato
1995, 1996a, b�, and Kachanov et al. �2001�. Examples of relations
o interpret logging data are given in Brito Dos Santos et al. �1988�,
ho use a self-similar model for the conductivity and the time-aver-

ge equation for the seismic velocity, and in Hacikoylu et al. �2006�,
ho use the lower HS bound for the resistivity and Raymer’s equa-

ion for the seismic velocity. The general approach to establish vari-
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E194 Carcione et al.
us cross-property relations is outlined by Milton �1997�; see also
he recent review of Markov �1999�.

We consider the electrical conductivity/seismic velocity relations
or the overburden �shale� and the reservoir �sandstone�. Porosity is
he property that allows us to establish the relations. One may use
ifferent mixtures theories to obtain the electromagnetic and seismic
roperties, and then combine these theories in different ways. For in-
tance,Archie’s law or the CRIM model combined with the time-av-
rage equation are two possible choices. Another choice is to relate
he Gassmann equation with the different electromagnetic constitu-
ive equations. Other possibilities involve the HS bounds and the
elf-similar equation. In the case of plane-layered composites, we
onsider Backus averaging to relate the conductivity and stiffness
ensors, where the common property is the material proportion. The
ossibilities are multiple, and the subject is relatively new to draw
efinite conclusions; see, for instance, a controversial discussion by
kwuakor �2007� on this topic. It is essential to perform laboratory
xperiments to provide controlled and reliable data.

The problem of electrical conductivity is mathematically equiva-
ent to the ones of thermal conductivity, dielectric permittivity, and

agnetic permeability; therefore, the approach can be applied to the
entioned physical properties as well.

THE BASIC APPROACH

The key property to relate the electrical conductivity to the
-wave velocity �or to the stiffness� is the porosity. Assume that the
onductivity and velocity have the form

� = f���, and v = g��� , �1�

here � is the porosity. Then, the relation is given by

� = f �g−1�v�� . �2�

his simple 1D concept is quite general and can be applied to higher
patial dimensions and the case of anisotropy �e.g., Kachanov et al.,
001�.

CONSTITUTIVE EQUATIONS

We present in this section the constitutive equations relating the
hysical properties to the porosity.

lectromagnetism

verages

The simplest �nonphysical� models for the electrical conductivity
f a composite medium are the following averages:

� = �
i=1

N

pi�i, arithmetic,

� = ��
i=1

N
pi

�i
�−1

, harmonic,

� = �
i=1

N

�i
pi, geometric, �3�

here �i and pi are the conductivity and volume fraction of phase i,
espectively.
rchie’s law and its modifications

The original form ofArchie’s law �Archie, 1942� is

� = � fF
−1 = � f�

m, �4�

here � f is the conductivity of water, brine, or the fluid filling the
ores; F = �−m is the formation factor; and m is the cementation or
orm factor.

Equation 4 has been designed for clean sands. In the presence of
lay minerals, which are good conductors, the law has been modi-
ed. De Witte �1957� proposed

� = G1 + � fG2. �5�

second model �Bussian, 1983� considers explicitly the conductivi-
y of the clay particles �s:

� = �1 − �s/� f

1 − �s/�
�m

� f�
m. �6�

he model of Hermance �1979� is a particular case when m = 1 in
he previous expression between parentheses,

� = �� f − �s��m + �s = �1 − �m��s + � f�
m. �7�

f �s→0, we obtain Archie’s law. Equations 5 and 7 are identical for
1 = �s�1 − �m� and G2 = F−1.
Finally, the model of Glover et al. �2000� has the form

� = �1 − ��p�s + � f�
m, �8�

here each phase has its own connectivity and a representative ex-
onent �m and p�. Large exponents occur for low connectivity phas-
s, and small exponents occur for high connectivity phases. The
hoice

p =
log�1 − �m�
log�1 − ��

�9�

ives Hermance’s model. Glover et al. �2006� derive expressions for
ermeability as a function of electric conductivity.

S models

HS bounds for the conductivity, for a system of N components, are

�HS
− = S��min� � � � S��max� = �HS

+ , �10�

here

S�x� = ��
i=1

N
pi

�i + 2x
�−1

− 2x , �11�

here pi is the volume fraction of the phase i. The HS bounds, in the
lectromagnetic and elastic cases, are valid for isotropic media.

A two-component porous medium composed of grains, of con-
uctivity �s, and water, of conductivity � f, such that �min = �s �� f

� , has the following bounds:
max
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�HS
− = �1 − �

3�s
+

�

� f + 2�s
�−1

− 2�s,

�HS
+ = � 1 − �

�s + 2� f
+

�

3� f
�−1

− 2� f . �12�

hen the case is �min = � f ��s = �max, the bounds should be re-
ersed, i.e., the lower bound becomes the upper bound, and vice ver-
a �Berryman, 1995�.

The so-called Clausius-Mossoti formula for a two-component
edium consisting of water containing spherical grains is the HS up-

er bound �e.g., Berryman, 1995�.
The inverse of the formation factor is F−1 = �/� f, such that for in-

ulating particles embedded in a conducting fluid, F−1 = 1 for the
uid and F−1 = 0 for the particles. The lower bound of F is the upper
ound of F−1. Then, using equation 10 for F−1, and because Fmax

−1 = 1,
e obtain FHS

−1 = 2�/�3 − ��, which yields the following equation:

F HS
− =

3 − �

2�
=

� f

�HS
+

. �13�

he formation factor corresponding to insulating particles embed-
ed in a conducting fluid must be greater than the HS lower bound
e.g., Berryman, 1995�.

RIM and Lichtnecker-Rother models

The CRIM for negligible permittivity can be expressed as

� = 	�
i=1

N

pi��i�1/�
�

, � = 2 �14�

Schön, 1996�. �Note that the complex permittivity is � + i�/�,
here � is the permittivity. In this case � � 0�.� If � is a free parame-

er, the equation is termed Lichtnecker-Rother formula. This model
s very simple and of easy implementation. It uses the ray approxi-

ation. �The traveltime in phase i is inversely proportional to the
lectromagnetic velocity, which in turn is inversely proportional to
he square root of the complex dielectric constant.�

elf-similar model

In the self-similar model �Sen et al., 1981; Carcione et al., 2003�,
he conductivity of the composite satisfies

0 = �
i=1

N

pi� � − �i

2� + �i
� . �15�

or two constituents �solid and fluid�, the solution is given by

� = f��,�s,� f� = � �s − �

� − �
��� f

�
�W

, �16�

s f
here W � 1/3 for spherical inclusions. In this case, we may rewrite
quation 16 as

�1 − �̂�3 = a�̂ , �17�
here

�̂ =
�

�s
, a =

�s

� f
�1 −

� f

�s
�3

�3 �18�

Carcione and Seriani, 2000�. This equation has the following solu-
ions

�̂1 = 1 − �a

3
�1/3	�2a

�
�1/3

− ��

6
�1/3
 ,

�̂2 = 1 + � a

12
�1/3	z0� a

�
�1/3

− z0
*� �

12
�1/3
 ,

�̂3 = 1 + � a

12
�1/3	z0

*� a

�
�1/3

− z0� �

12
�1/3
 , �19�

here

� = �3�27 + 4a� − 9, z0 = 1 + �− 3. �20�

he physical solution is that approaching � f in the limit �→1.
When W�1/3, we have the Hanai-Bruggeman relationship

Schön, 1996�, which describes a porous medium of arbitrary grain
hape.

For insulating particles embedded in a conducting fluid, we obtain

= � f�
1/�1−W�, F = �1/�W−1�, m = 1/�1 − W� . �21�

ussian’s equation 6 is identical to equation 16. Note that m = 3/2
or spherical particles.

ackus averaging

The electromagnetic properties of finely plane-layered media can
e obtained by using Backus averaging �e.g., Carcione, 2007�. Let us
onsider a plane-layered medium, where each layer is homoge-
eous, isotropic, and thin compared to the wavelength of the electro-
agnetic wave. If the layer interfaces are parallel to the �x,y�-plane,

he properties are independent of x and y, and may vary with z. The
quivalent medium is transversely isotropic and can be described
ith two components of the conductivity tensor:

��11

�33
−1 � = � �1 �2

�1
−1 �2

−1 ��p1

p2
� , �22�

here we have assumed that there are two thin layers of proportion
p1 and p2 and conductivity �1 and �2. The proportions can be ex-
ressed as

p1 =
�11 − �2

�1 − �2
=

�33
−1 − �2

−1

�1
−1 − �2

−1 , and p2 = 1 − p2. �23�
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lasticity

verages

As in the electromagnetic case, we can obtain the P-wave velocity
f a composite medium with the following averages:

vP = �
i=1

N

pivi, arithmetic,

vP = ��
i=1

N
pi

vi
�−1

, harmonic,

vP = �
i=1

N

vi
pi, geometric, �24�

here vi and pi are the P-wave velocity and volume fraction of phase
, respectively.

ime-average equation

This equation is the harmonic average given in the previous sec-
ion. The P-wave velocity of a fully saturated porous medium is

vP = � �

v f
+

1 − �

vs
�−1

, �25�

here v f is the wave velocity of the fluid, and vs is the P-wave veloc-
ty of the grains.

aymer’s equation

This equation �Raymer et al., 1980� is used for consolidated
ands. It is given by

vP = �1 − ��2vs + �v f . �26�

S models

The HS lower bound of the bulk modulus corresponding to a two-
omponent porous medium composed of grains, of bulk and shear
oduli Ks and �s, and water, of bulk modulus Kf, is

K HS
− = � �

Kf
+

1 − �

Ks
�−1

, �27�

hich is the Reuss average �e.g., Berryman, 1995�. The upper bound
s given by

K HS
+ = � 1 − �

Ks + x
+

�

Kf + x
�−1

− x, x =
4

3
�s. �28�

he corresponding bounds for the shear modulus are

�HS
− = 0, �HS

+ = � 1 − �

�s + x
+

�

x
�−1

− x ,

x =
�s

6
�9Ks + 8�s

K + 2�
� . �29�
s s
he velocities are given by

P
− = �KHS

−

	
, and vP

+ = �1

	
�KHS

+ +
4

3
�HS

+ � . �30�

assmann velocity

The P-wave velocity of a fully saturated porous medium is

vG = �1

	
�KG +

4

3
�m� , �31�

here

KG =
Ks − Km + �Km�Ks/Kf − 1�
1 − � − Km/Ks + �Ks/Kf

�32�

e.g., Carcione, 2007� is a saturation �or undrained� bulk modulus,
here Km and �m are the bulk and shear moduli of the matrix, and Ks

nd Kf are the grain and fluid bulk moduli, respectively; the compos-
te density is given by

	 = �1 − ��	s + �	 f , �33�

here 	s and 	 f are the densities of the grain and fluid, respectively.

ackus averaging

In the case of a periodically layered medium, the equivalent medi-
m is transversely isotropic, and one of the shear waves decouples
rom the other two wave modes. Usually, this pure mode is termed
H in the exploration-geophysics literature. For two constituents,

he effective elastic constants involved in the description of this
ave are given by

�c66

c44
−1 � = � �1 �2

�1
−1 �2

−1 ��p1

p2
� , �34�

here �1 and �2 are the shear moduli of the single constituents. The
ther elastic constants, such as c11, c33, and c13 for a periodically lay-
red medium of two isotropic thin layers, are given by Postma
1955�.

The proportions can be expressed as

p1 =
c66 − �2

�1 − �2
=

c44
−1 − �2

−1

�1
−1 − �2

−1 , and p2 = 1 − p1. �35�

CROSS-PROPERTY RELATIONS

There are many possibilities to establish cross-property relations.
everal of them are presented in the following section. Each relation
ay represent a given type of rock, depending on the assumptions to

btain the involved constitutive equations. In practice, comparison
o experimental data is necessary.

ry rocks

Expressions for dry rocks are given in the following, where dry
eans � = 0 and K = 0.
f f
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Cross-property relations E197
ristow

Bristow �1960� obtained relations between the dry-rock bulk
odulus Km and dry-rock conductivity �m for randomly oriented,

enny-shaped cracks of zero conductivity embedded in an isotropic
edium:

Ks − Km

Km
=

2�1 − 
s
2�

1 − 2
s

�s − �m

�m
, �36�

here Ks and 
s are the bulk modulus and Poisson ratio, respectively,
f the solid medium. The equivalent relation for the dry-rock shear
odulus �m is

�s − �m

�m
=

4

5
�1 − 
s��5 − 
s���s − �m

�m
� , �37�

here �s is the shear modulus of the solid medium �e.g., Sevostianov
nd Kachanov, 2007�.

erryman-Milton bounds

In this case, � f �0, but Kf = 0. Berryman and Milton �1988� de-
ived the following bounds for the electrical conductivity � and bulk
odulus K of a porous insulator saturated with a conducting fluid:

1

2

�1 − ���
��� f − ��

� 1 −
3�K

4�s�1 − � − K/Ks�
, �38�

here �s = 0.
The corresponding bound for the shear modulus is

1

2

�1 − ���
��� f − ��

�
21

5 − 21B
�1 + B −

6A��

�1 − ���s − �
� , �39�

here

A =
6�Ks + 2�s�2

�3Ks + �s�2 , B =
5�s�4Ks + 3�s�

�3Ks + �s�2 �40�

Sevostianov and Kachanov, 2007�.

ibiansky-Torquato bound

Gibiansky and Torquato �1996b� derived the following relation
or �cracked� dry rocks:

1

Km
−

1

Ks
�

3�s

2�s

1 − 
s

1 + 
s
� 1

�m
−

1

�s
� �41�

e.g., Sevostianov and Kachanov, 2007�.

et rocks

ilton bounds

Milton �1981� derived the following inequalities for the compos-
te bulk and shear moduli, K and �, respectively:

K

Ks
�

�

�s
,

�

Ks
�

3�

2�s
, �42�

here Kf /Ks �� f /�s �e.g., Sevostianov and Kachanov, 2007�. In par-
icular, for dry rocks, Kf � 0, � f � 0, and the bounds are equally
alid.
rchie/time-average

One of the simplest relations is the combination of Archie’s law 4
nd the time-average equation 25. Then, equation 2 reads

� = � f�vs/vP − 1

vs/v f − 1
�m

, �43�

here � f is the conductivity of the fluid.

rchie/Raymer

Combining Raymer’s equation 26 andArchie’s law gives

vP = 	1 − � �

� f
�1/m
2

vs + � �

� f
�1/m

v f . �44�

lover et al./time-average

The time-average equation 25 and Glover et al. �2000, equation 8�
ive

� = �1 − ��p�s + � f�
m, � =

1/vP − 1/vs

1/v f − 1/vs
. �45�

ermance/time-average

The time-average equation 25 and Hermance’s equation 7 give

� = �� f − �s��m + �s, � =
1/vP − 1/vs

1/v f − 1/vs
. �46�

elf-similar/time-average

For a conducting matrix, Brito Dos Santos et al. �1988� obtained
he following relation from the self-similar and time-average equa-
ions 16 and 25:

P = 	� 1

v f

−
1

vs

�� �s − �

�s − � f

��� f

�
�1−1/m

+
1

vs


−1

. �47�

S/Raymer

The relation used by Hacikoylu et al. �2006�, based on Raymer’s
quation 26 and the HS lower bound 13, is

P = �1 − � + �p�2vs + �� − �p�v f, � =
3�

� + 2� f
, �48�

here �p is a percolation porosity ��p = 0.4 in Hacikoylu et al.
2006��. We assume �p � 0 in our calculations.

aust

Faust’s empirical relation is

v P�km/s� = 2.2888�z�km�
�

� f
�1/6

, �49�

here z is the depth �Faust, 1953�.
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S models

We now combine the HS electromagnetic and seismic models. Let
s consider a two-phase medium composed of a solid matrix and a
uid. Equation 12 gives

� = ��s − �HS
−

�s − � f

�� � f + 2�s

�HS
− + 2�s

�
= ��s − �HS

+

�s − � f

�� 3� f

�HS
+ + 2� f

� . �50�

he cross-property relation given by the lower HS bounds combine
his equation and equation 27:

K HS
− = 	��s − �HS

−

�s − � f
�� � f + 2�s

�HS
− + 2�s

�� 1

Kf
−

1

Ks
� +

1

Ks

−1

.

�51�

f � f ��s, �HS
− must be replaced by �HS

+ . The wave velocity is given
y equation 30, and the density is given by equation 33:

	��� = �	 f − 	s����� + 	s. �52�

he cross-property relations corresponding to the upper HS bounds
nvolve equations 50, 28, and 29, and the wave velocity is given by
quation 30.

assmann-based relations

To use the Gassmann equation, we assume a model for the dry-
ock moduli as a function of porosity, i.e., Km��� and �m���. Then,
e replace � = ���� into the Gassmann equation. According to

quation 32, the relation between the bulk modulus and the conduc-
ivity is

K = KG =
Ks − Km��� + �Km����Ks/Kf − 1�

1 − � − Km���/Ks + �Ks/Kf
, �53�

here

� = � �

� f
�1/m

, Archie,

� = � � − �s

� f − �s
�1/m

, Hermance,

� = ��1/� − �s
1/�

� f
1/� − �s

1/��, � = 2, CRIM,

� = � � − �s

� f − �s
��� f

�
�1−1/m

, self-similar,
� = � �s − �

�s − � f
��� f + 2�s

� + 2�s
�, HS lower bound,

� = � �s − �

�s − � f
�� 3� f

� + 2� f
�, HS upper bound, �54�

orresponding to equations 4, 7, 14, 16, and 50, respectively. The HS
ounds are reversed if � f ��s.
We consider the model of Krief et al. �1990�, to obtain the dry-

ock moduli Km and �m as a function of porosity. The porosity depen-
ence of the rock frame should be consistent with the concept of crit-
cal porosity, because the moduli should be small above a certain val-
e of the porosity �usually from 0.4 to 0.6�. This dependence is deter-
ined by the empirical coefficient A �see equation 55�. The bulk and

hear moduli of the rock frame are

Km = Ks�1 − ���1−�+A�/�1−��,

�m = ��s

Ks
�Km. �55�

rief et al. �1990� set the A parameter to 3 regardless of the lithology.
lternatively, the value of A can be estimated by using data from the

tudy area. We assume A = 3 in our calculations.
An alternative method to compute the dry-rock moduli including

he effects of pore and confining pressures is the Hertz-Mindlin
odel �Mindlin, 1949; Carcione et al., 2006a, b�. On the other hand,

he pressure effects can be incorporated in the electromagnetic con-
titutive equations considering, for instance, that for sandstones it is

= ��pc − p�, where pc and p are the confining �overburden� and
ore-fluid pressures �e.g., Carcione, 2007�.

ayered media: Backus-based relations

In this case, instead of the porosity, we eliminate the material pro-
ortions p1 and p2 from equations 22 and 34 to obtain relations be-
ween the conductivity components and the elasticity components.
he relations are

�11 − �2

�1 − �2
=

c66 − �2

�1 − �2
�56�

nd

�33
−1 − �2

−1

�1
−1 − �2

−1 =
c44

−1 − �2
−1

�1
−1 − �2

−1 . �57�

ther similar relations can be obtained, in principle, between the
onductivity components and the elasticity constants c11, c33, c12, and
13. �Note that c66 = �c11 − c12�/2.� The utility of these relations is
till uncertain; although the proportions are not present in the equa-
ions, they depend on the properties of the single constituents,
hich, in practice, are not easy to measure.

RESULTS AND DISCUSSION

We consider a fully saturated shale �overburden� and a sandstone
aturated with light oil �reservoir�. The properties of the single con-
tituents are shown in Table 1. In the first case, the fluid has a higher
onductivity than the frame, while oil has a lower conductivity than
he sandstone grains. The moduli of the material composing the
rames are typical for composite clay and quartz, respectively.
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The electrical conductivity of the shale and
sandstone as a function of porosity are given in
Figures 1 and 2, respectively. The curves have op-
posite behavior. Increasing porosity �i.e., increas-
ing fluid saturation� makes the shale more con-
ductive and the sandstone more resistive. At zero
porosity, the conductivity is that of the solid mate-
rial. The geometric average, and the CRIM and
self-similar models lie within the HS bounds,
with the average almost coinciding with the lower
HS bound in the case of the sandstone. The Glov-
er and Hermance models are outside the bounds

or the exponential values of the parameters m = 2 and p = 0.15.
he value of m is a mean value commonly used forArchie’s law, and

he value of p is reported by Glover et al. �2000�.
Figures 3 and 4 show the P-wave velocity versus porosity. At zero

orosity, the velocity is that of the solid material. In this case, the ve-
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armonic average is the time-average equation.
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able 1. Material properties.
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	s
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K

�GP

verburden �shale-brine� 0.13 0.44 20 15 2.5 2.2

eservoir �sandstone-oil� 10−35 10−5 39 40 2.65 0.5

3wet clay;
40.01 ppt of NaCl;
5wet quartz.
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ocity is decreasing for increasing porosity, since the fluids �brine
nd oil� have a smaller bulk modulus than that of the grains. All of
he curves lie within the HS bounds, unless the time-average equa-
ion in a wide range of porosities of the sandstone.

We display in Figure 5 the cross-property relations for dry rocks.
n this case, we assume a sandstone with Ks = 39 GPa and a grain
onductivity of �s = 0.1 S/m. Note that when the bulk modulus is
9 GPa, the conductivity is that of the grain. The Milton and Gibian-
ky-Torquato curves are an upper bound for the dry-rock modulus.
ll of the other models lie above these bounds.
Figures 6 and 7 represent the relations for wet rocks, overburden,

nd reservoir, respectively. Faust’s curve for z = 2 km is shown in
he case of the sandstone. The Archie models assume �s = 0, while
he other curves tend to the grain conductivity at the highest velocity,
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igure 5. Cross-property relations for dry rocks. The Krief model
see equation 55� is combined with the Hermance model �equation
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een assumed. The expressions of the porosity for these models are
= �1 − �/�s�1/m and � = 2��s − ��/�� + 2�s�, respectively.
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igure 6. Cross-property relations for different models of the over-
urden �shale saturated with brine�.
here � = 0. The curve corresponding to the Glover model exceeds
he brine conductivity �0.4 S/m� for a narrow range of velocities.
his is an artifact of this model. The models with nonzero grain con-
uctivity give a similar behavior for the shale, but the self-similar/
ime-average curve is different from those based on the Glover and
ermance models, which are flat in a wide range of velocities. The

elf-similar/time-average curve should be more reliable because the
elf-similar curve lies within the HS bounds, as can be observed in
igure 2.
Combinations of the different electromagnetic constitutive equa-

ions with the Gassmann equation are shown in Figures 8 and 9, for
he shale and the sandstone, respectively. At the low-velocity limit,
he curves approach the conductivity of the fluid, which is much
maller than the grain conductivity of the sandstone. At the high-ve-
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ocity limit, the conductivity is that of the grains �zero for Archie’s
odel�. It can be shown that the curves of Figure 8, corresponding to

he bulk modulus, are within the Milton bound 42. The CRIM and
elf-similar curves lie within the HS bounds in both cases. These
ounds are very tight for the shale. The trend in Figures 6–9 is that as
he velocity of the shale increases, the conductivity decreases. The
pposite behavior is verified for the sandstone.

Cross-property relations based only on HS bounds are shown in
igure 10. The curves based on the lower bound correspond to a sus-
ension of grains in the fluid because the shear moduli are zero for all
orosities. Then, the higher velocity limit is that of a suspension.

Finally, Figure 11 shows the relations between conductivity and
elocity for an anisotropic medium, where v44 and v66 are the veloci-
ies of an SH wave propagating along the axis of symmetry and lay-
ring plane of an equivalent transversely isotropic medium, repre-
enting a periodic plane-layered system composed of two isotropic
hin layers. In case �b�, the conductivities of the single layers have
een reversed with respect to case �a�.As can be seen, the conductiv-
ty along the layering direction is always greater than along the di-
ection of the symmetry axis.

More realistic relations can be obtained by using more complex
heories. In particular, in the case of a reservoir rock, represented by

porous medium, the conductivity in the geoelectric frequency
ange can be obtained by using Pride’s model �Pride, 1994; Carcione
t al., 2003�. �This model considers salinity and permeability.�. On
he other hand, the White et al. mesoscopic model can be used to cal-
ulate the seismic properties of a heterogeneous porous medium
White et al., 1975� �see also Carcione et al., 2003�. Extension to the
nisotropic case involves the Brown-Korringa relations, which are a
eneralization of the Gassmann equations �e.g., Carcione, 2007�,
nd the work of Kachanov et al. �2001�.

omparison to real data

The data correspond to a well log at the Gullfaks field in the North
ea. The well is vertical and consists of sand and shale filled with
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rine. Figure 12 shows the velocity as a function of porosity, where
wo main well-distinguished sets of data points can be appreciated,
epresenting a sandstone �high velocities� and a shale �low veloci-
ies�. Using the physical properties given in Table 2, different veloci-
y/porosity relations are represented in Figures 13 and 14, corre-
ponding to shale and sandstone, respectively. The plots show that
he data follow Gassmann’s velocity. On the other hand, Figures 15
nd 16 show the conductivity as a function of porosity for the shale
nd the sandstone, respectively, where we assume W � 1/2, i.e., m �
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Using the Gassmann model for the velocity and different models
or the conductivity, we represent the relation between these quanti-
ies in Figures 17 and 18, for the shale and the sandstone, respective-
y. The shale data are within the HS bounds, and the Gassmann ve-
ocity model combined with the CRIM or with the self-similar elec-
rical models gives the best fit to the data. The Faust model is also
epresented in Figure 17, but does not match the data and is outside
he HS bounds. The sandstone data follow the HS bounds and, also in
his case, the best fit is given by the combination Gassmann �veloci-
y�/CRIM or self-similar orArchie �conductivity�.

Hacikoylu et al. �2006� suggest a modified version of the Faust
quation. However, there are several physical models that provide a
easonable fit of the data. Hence, we believe that there is no reason to
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igure 11. Cross-property relations corresponding to Backus aver-
ging, where v44 = �c44/	 and v66 = �c66/	, and 	 = p1	1 + p2	2.
ase �a� corresponds to �1 = 0.1 S/m, �2 = 0.5 S/m, �1 = 5 GPa
nd �2 = 10 GPa. In case �b�, the conductivity components are �1

0.5 S/m and �2 = 0.1 S/m. The densities are 	1 = 2 g/cm3 and

2 = 2.5 g/cm . t
se a purely empirical equation such as Faust’s equation. Ikwua-
or�2007� suggests the use of a time-average �harmonic� equation
or the transit time combined with Archie’s equation for the conduc-
ivity. Regarding our data, the time-average equation for the velocity
oes not constitute a good model to fit the data.

able 2. Material properties at a North Sea well.
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CONCLUSIONS

Cross-property relations are obtained between the electrical con-
uctivity and seismic velocity using different combinations of the
lectromagnetic and elastic models. If the HS bounds represent real-
stic bounds, then, the CRIM and self-similar electrical models are
he best choice to obtain reliable cross-property relations. The elastic

odels are within the bounds generally. The dry-rock modulus
ased on the Krief model is shown to be within the bounds of well-
stablished theories, such as the Gibiansky-Torquato theory. The
rief model is used to obtain Gassmann �wet-rock� modulus and cal-

ulate the seismic velocity. Gassmann-based relations give tight
urves for the overburden, while the curves are more dissimilar for
he reservoir. The trend is that as the velocity in the overburden
shale saturated with high-conductivity brine� increases, the con-
uctivity decreases. The opposite behavior is obtained for the sand-
tone �saturated with high-resistivity oil�.

The relations have been tested with well-log data of the North Sea.
everal of them, in particular the Gassmann/CRIM and Gassmann/
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elf-similar relations, provide a reasonable fit to the data, indicating
hat it is possible to predict an electrical property from an elastic
roperty, and vice versa. However, there is a need to identify each re-
ation with a specific type of sediment or rock. In this sense, the dif-
erent relations must be tested with controlled real data, such as labo-
atory experiments on synthetic and real rocks. To our knowledge,
here seems to be a complete lack of these types of data for rocks. The
ext stage of the research is to perform such tests and determine the
ore reliable cross-property relations.
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