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A CHEBYSHEV COLLOCATION METHOD
FOR THE ELASTODYNAMIC EQUATION
IN GENERALIZED COORDINATES

José M. CARCIONE' Jian-Ping WANG?

Abstract

We introduce in this work a new spectral collocation scheme for the elastic wave
equation transformed from Cartesian to generalized coordinates. Both the spatial
derivatives of field variables and the metrics of the transformation are calculated by
the Chebyshev pseudospectral method. The technique requires a special treatment
of the boundary conditions based on one-dimensional characteristics perpendicular
to the boundaries. An explicit Runge-Kutta time integration scheme is used for time
marching. The numerical solution of Lamb’s problem (wave propagation over the
surface of an elastic solid) requires two one-dimensional stretching transformations
for each Cartesian direction of the 2-D Chebyshev grid. The results show excel-
lent agreement between the numerical and analytical solutions, demonstrating the
effectiveness of the 2-D differential operator and boundary treatment. The second
example uses a 2-D transformation to simulate wave propagation over a smooth step
discontinuity at the surface. The snapshots yield the wave pattern expected from
such a structure.

1. INTRODUCTION

Spectral methods have been considered poorly adaptable to complex geometries. In this work,
a new Chebyshev collocation scheme is developed for the viscoelastic wave equation trans-
formed from Cartesian to generalized coordinates, allowing the treatment of arbitrary complex
geometries. Many problems need coordinate transformations so as to conform to boundaries of
a physical region, for instance, the propagation of Rayleigh waves along an irregular surface.
Moreover, accuracy is very important for large propagation distances. In this sense, spectral
differential operators are free of numerical dispersion up to the Nyquist wavenumber.

The technique was successfully applied to the compressible Navier-Stokes equations to cal-
culate the supersonic flow around a two-dimensional cylinder [1]. A similar technique based
on a coordinate transformation was introduced by Lie [2] to model waves across an interface
separating a fluid (water) from an elastic medium by using a multidomain algorithm. The
Chebyshev pseudospectral operator for computing the spatial derivatives was used by Carcione
[3] to simulate viscoelastic Rayleigh waves (unelastic Lamb’s -problem), and by Tessmer et.

Received on February 24, 1992.

t Osservatorio Geofisico Sperimentale P.O.Box 2011, Opicina, 34016 Trieste, Italy.
Also, Geophysical Institute, Hamburg University Bundesstrasse 55, 2000 Hamburg 13, Germany.
! Dept. Aeronautical Engineering, Nagoya University, Chikusa-ku, Nagoya, 464-01 Japan

269



270 José M. Carcione and Jian-Ping Wang

al. [4] to model elastic seismic waves in the presence of surface topography. In both works,
the physical grid is Cartesian and the periodic Fourier method is used to compute the spatial
derivatives in the horizontal direction. This method allows an efficient incorporation of the
free surface boundary condition. However, the periodicity of the Fourier method precludes
the implementation of general boundary conditions. This problem can be solved by using a
multicoordinate Chebyshev differential operator as proposed in this work.

The present modeling algorithm is based on the velocity-stress elastodynamic formulation
obtained from the momentum conservation equations and Hooke’s law for an isotropic medium.
A two-dimensional generalized curvilinear mapping transforms the arbitrary physical domain
into the computational domain defined by the Gauss-Lobatto collocation points. In this way
arbitrary shaped bodies and interfaces can be treated. However, when solving the problem with
an explicit time marching scheme, the conventional Chebyshev operator requires very small
time steps depending on the super fine grid near the boundaries. Then, for each coordinate, a
one-dimensional stretching function is applied which circumvents the severe stability condition.
Actually, the stretchings can be considered part of the general transformation but are treated
separately in order to explicitly take care of the minimim grid size. The algorithm uses the
Fast Fourier Transform (FFT) [5] to compute the spatial derivatives at the Gauss-Lobatto
collocation points.

The non-periodic properties of the Chebyshev operator allows the implementation of gen-
eral boundary conditions like, for instance, free surface, non-reflecting or open boundaries,
etc. However, a direct application of the boundary conditions produces numerical instabilities,
mainly at corner points. To solve this problem, a boundary treatment based on one-dimensional
characteristics is implemented that results in a stable scheme. The method is based on the fact
that the wave equation can be decomposed into incoming and outgoing wave modes at the
boundaries [6]. The inward propagating waves depend on the solution exterior to the physi-
cal domain and therefore are computed from the appropriate boundary conditions, while the
behaviour of the outward propagating waves is determined by the solution inside the domain.
This technique has immediate application to domain decomposition [7], since the subdomains
can be joined by imposing the appropriate boundary condition on the incoming waves at the
interfaces. Since the characteristic approach is one-dimensional, the velocity-stress vector is
rotated to the local coordinate system at each interface point in order to decompose the wave-
field normal to the boundary. The instability at corner points is treated with Lie’s strategy
of considering the characteristics along the bisecting direction between the adjacent boundary
lines [2]. In addition, absorbing strips are placed along the boundaries of the mesh in order to
improve the open radiation condition. A fourth-order Runge-Kutta method is used to advance
the solution in time.

The paper is organized as follows: Section 2 introduces the wave equation expressed in
Cartesian and generalized coordinates. Section 3 describes the numerical methods, including the
Chebyshev pseudospectral operator, the boundary conditions, the stretching transformations,
and the time integration scheme. Then, Section 4 simulates Lamb’s problem and test the
algorithm by comparing numerical and analytical solutions. A second example shows wave
propagation through a smooth step discontinuity at the surface of a solid. Finally, concluding



Wave Simulation in Generalized Coordinates 271

remarks are presented in Section 5.

2. THE WAVE EQUATION

The description of wave propagation is based on the equation of momentum conservation com-
bined with the constitutive relations for infinitesimal deformations. For 2-D media the equations
of momentum conservation are [8]

vy _l (30“ 4 30”) +

a  p Oz Oy (1)
Ov, 1 0o,y 0oy,
at_p<3:1:+ ay ) T

where @ = (z, y) are the Cartesian coordinates and ¢ is the time variable, 0,,(, t), 04, (, t),
and oy, (x, t) are the stress components, v.(x, t) and v,(z, t) are the particle velocities, p
denotes the density, and f(z, t) = (f,, f,) are the body forces per unit volume.

The constitutive relations for an isotropic-elastic medium expressed in terms of the particle
velocity derivatives are
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Tz — A T )\_y
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where A(z) and p(x) are the Lame constants.

Equations (1) and (2) together with the boundary conditions completely describe the wave
motion of the solid. For a suitable implementation of the boundary conditions, the formulation
requires recasting the equation governing wave propagation as

where
v=[v; vy 0z Oy Uzy]T) s=[f. f, 00 O]T (4)
and
0 0 p' 0 0 0o 0 o0 0 pt
0 0 0 0 p! 0 0 0 o1 0
A= |X24+2u 0 0 0 0 B= |0 A 0 0 0 (5)
A0 0 0 0 0 A+2z 0 0 0
0O 4 0 0 0 g 0 0 0 0

Implementation of the boundary conditions along a given direction requires the characteristic
equation corresponding to (3) in that direction.

Equation (3) is expressed in the space of the physical coordinates (z, y). However, the com-
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putation of the spatial derivatives with pseudospectral collocation methods cannot be carried
out in that space. The physical mesh is tranformed to a square domain, or computational
domain, by using the following generalized coordinates:

=€ y), n=nls,vy) (6)
Then, the wave equation is transformed into

ov ov ov

— 177 I____
n =A 9¢ + B +s (7
where
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A=4 Oz + oy’ Oz Oy

These are the formal equations in the computational space. In practice, we compute first the
spatial derivatives with respect to the generalized coordinates £ and 1 by using the Chebyshev
pseudospectral method, and afterwards, the derivatives with respect to the physical variables
z and y by using the chain rule. For example, if u is any of the variables of vector v given in
(4), the spatial derivatives in the physical space can be calculated as

Ou _ 0§ Ou 0n Ou Ou _ 06 Ou  9n du

gz Z_s0 . 8
P2 0: 06 T a0y By oy oE | oy o (8)
The metrics and the Jacobian of the transformation are calculated from
ﬁ _ 9 Oy ﬁ _g0= Oz
Oz on’ Oy on’ (9)
on _ 9 Jy On _ 0z
oz o¢’ oy 8¢’

_ (fz0y_ 0z oy
-\ %o ono¢
The solution of (3) by the Chebyshev collocation method may be unstable due to either the sta-

bility condition of the time integration method or to the boundary conditions. These problems
are treated in the next section after the introduction of the differentiation technique.

3. THE NUMERICAL METHOD
3.1 Chebyshev Collocation Method

The computational domain is a square region (¢, 1) € [1, —1]x[1, —1] where the grid distribution
is defined by the Chebyshev Gauss-Lobatto points. Figure 1 shows the domain corresponding
to a 15 x 25 numerical grid. Let us assume that the pair (¢, N) represents either (£, N,) or
(n, Ny), where N, and N, are the number of grid points in the z and y directions, respectively.
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Fig.1: Computational domain, where Ny = 15 and Ny = 25. The collocation points are

the Gauss-Lobatto points (¢, n) € [1,—1]x[1, —1].
A field variable u(¢) — 1 < ¢ < 1 is expanded in Chebyshev polynomials T,(¢) as [9]

N !
u6) = () wLuis),
n=0
where
T,.(¢) = cosnb;.
with
¢; = cos b, szﬂ j=0,...,N

N )
the Gauss-Lobatto collocation points. Y-’ in (10) halfs the first and last terms.
The partial derivative of order g is given by [9],

() & /@

where
Cnm10\2y — alf)) = 2nalt Y, n 21,

with

co = 2, cn=1(n>0).

(11)

(12)
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Hence, defining a, = aflo) and b, = asll), the first-order derivative is

- (i)/bnmo, (15)

n=0
where
bp_1 = bpy1 + 2nay,, n=N,---,1, byty1 =by =0. (16)

The expansion of u(¢) and its coeflicients can be written explicitly as

!

w6 = (3) awcos 2 (1)

n=0

an =% (Z) (Cj)cosWNﬂ (18)

J=0

Let us define N' = 2N, and u((;) =0 for j = N’/2 +1,...,N'—1. Then

4 N 7rnj
An = N/ (C]) N/ (19)

is a real Fourier transform which can be calculated by using the Fast Fourier Transform (FFT).
Afterwards, we get the b,’s from the a,’s by using the recursion equation (16), and again, the
calculation of (15) is carried out with a real Fourier transform. In particular, we compute the
FFT’s with the prime factor algorithm of Temperton [5] in its vectorized form.

3.2 Grid stretching

Problems like the propagation of waves over the surface of an elastic solid [10] require a rect-
angular grid, which can be obtained by two linear 1-D transformations from the computational
domain represented in Fig.1. However, the stability condition of the explicit time integra-
tion scheme described at the end of this Section depends on the minimum grid spacing at the
boundaries of the mesh (when the number of grid points is doubled, the minimum grid spacing
decreases by a factor of two). This superfine grid at the boundaries requires time steps of the
order O(N~?) making the modeling algorithm highly inefficient. This problem is solved by
stretching the grid at the boundaries in order to allow time steps of order O(N~!), which are
those required, for example, by the Fourier pseudospectral method.

Lamb’s problem [10], for instance, requires a mapping from the computational domain to the
rectangular physical domain (z,y) € [0, zmax] X [0, Ymax], with free surface boundary conditions
at y = 0, and open (non-reflecting) radiation conditions at the other boundaries. Along the y
direction, we use a non-symmetric stretching function with a denser grid at the surface in order
to sample the wavefield appropriately to model the boundary condition. At the bottom this
condition is not necessary, and a coarser grid extends as far as possible the physical domain.
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The N, sampling points are defined by

9y(1;) — g5 (1) ]
gr(=1) —gy(D)]"
where g,(7) is the grid stretching function given by
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where p = 0.5072(f72+ 1) — 1 and ¢ = 0.507%(f~2 — 1). Since
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d
dg; = (14 gn+pn*) /2, (22)

it can be seen that the amount of grid stretching at n = —11is (dg,/dn) = «, and that the
stretching at n = 11is (dg,/dn) = af. The spatial derivative in the physical domain is

Oou Oudn gy
=== D/ . 23
9y = ndy +qn+pn (23)

ymax

In the z direction the sampling points are

o= 22X 1-g(g)l, J=0--N, (24)
with
_ sin(v€)
9a(€) = — ) (25)

a symmetric stretching function satisfying g,(1) = 1 and g,(—1) = —1, and v the stretching
parameter. The spatial derivative is

du  Oudf  2sin7'(v) > Ou
% = B0 e V5 %9
The stretchings are a special case of a 2-D generalized transformation, where £ = £(z) and
n = n(y). The 2-D stretched grid for Lamb’s problem is represented in Fig.2, where the upper
boundary is the surface (the number of points is the same as in Fig.1). For problems having
more complex (curved) geometries the stretchings are treated separately in order to take care
explicitely of the minimum grid size.

3.3 Boundary Conditions

The explicit time integration scheme described in the next Section computes the operation Mw
at every time step where M is the differential operator
3} 0

M=A—+B—. 27

Oz + Jy (27)

Each time we apply this operator the boundary conditions are implemented at the boundaries

of the mesh. However, a direct application of these conditions produces instabilities, since
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Fig.2: Physical domain obtained after application of the 1-D stretching transformations.
The mesh is 15 x 25 with a symmetric stretching in the horizontal direction and a
non-symmetric stretching in the vertical direction (with denser points at the upper
boundary).

modification of some field variables should take into account the behaviour of the other variables.

The problem is solved by decomposing the wavefield into one-way modes (or characteristics)
perpendicular to the boundaries, and modifying these modes according to the boundary condi-
tions. The method was recently applied to the wave equation by Carcione [6, 7] for horizontal
boundaries. Here, we outline the method and describe its application to curved and inclined
boundaries. The implementation of the boundary conditions along a given direction requires
the characteristic equation corresponding to (3) in that direction. Let us consider the boundary
normal to the y direction. Equation (3) can be expressed as

ov ov ov
—a—t=B8—y+3y, where s, = A—a—z+3. (28)
After diagonalization of matrix B as B = SAS™!, equation (28) can be written as
ov
E =SH+ Sy, (29)
the characteristic equation, where
ov
=AST'— 30
and A is a diagonal matrix formed with the eigenvalues of B, A\; = 1,---,5, related to the

phase velocities of the outgoing and incoming wave modes, such that H represents each de-
coupled characteristic mode in the y-direction. Equation (29) completely defines dv/ 0t at the
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boundaries in terms of the decoupled outgoing and incoming modes.

The matrix B has four non-zero eigenvalues, such that the non-zero quantities in equation
(30) are

cp (Ov, 1 day, __c¢cp (Ov, 1 day,
= \/_(ay+ZP o) T w7y

_cs f Ovg 1 doyy _cs [0y 1 0oy,
”3‘7§(ay+zs ay) M= ﬁ(ay Zs oy

where cp = /(A + 2u)/p and cs = \/u/p are the compressional and shear wave velocities, and

Zp = pcp, Zs = pcs are the corresponding impedances.

(31)

The explicit form of equation (29) is
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The vertical boundaries are treated in the same way. The horizontal characteristic modes are

_cp [ Ovu, 1 Oo,, _cp [ Oy 1 O0,,
Rl”ﬁ(az’Lz_Paz)’ Re = ﬁ(avx_z_,a 39:)’

33
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and the boundary equations in terms of the decoupled modes are
. 1 0o, ) 1 0o
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The characteristics H; (or R;) with A; > 0 ((31) and (33), respectively), represent traveling
modes in the positive direction of the coordinate axes, and vice versa for those characteristics
with A; < 0. Having this in mind, the incoming modes are those quantities which point in
towards the computational domain. These modes are computed in terms of the boundary con-
ditions and the outgoing modes from equations (32) and (34). The outgoing modes (equations
(31) or (33)) are not modified, and are replaced back into (32) or (34) to get the equations for
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boundary

solid

Fig.3: Configuration of the coordinate axes for an inclined boundary. The y/ axis, along
which the characteristic treatment is applied, is perpendicular to the boundary.

the boundaries. These equations for Lamb’s problems are calculated explicitly in Appendix A.

So far, the method applies to horizontal and vertical boundaries. Consider now that the
boundary is not perpendicular to any of the Cartesian coordinates axes, i.e., that say the y/
direction normal to the boundary makes an angle  with the y axis where the problem is solved
(see Fig.3). For convenience, these coordinate systems are denoted by S’ and S, respectively.
The boundary treatment is applied to the variables in system S’ since the method uses the
characteristics normal to the boundaries. We proceed as follows: after the calculation of the
operation v = Mv, we compute v’ by rotating the particle velocities and stresses from S to S’
by using (e.g., see Auld [11])

vl Uy [ cosf sinf
[U; } = R(6) [Uy ] where  R(6) = [_‘ =r ol (35)
and
o - cos?f  sin?f  sin26
7~ = sinf  cos’f —sin26
Opy | = Ro(0) |0y |, where R, = | ~ sin20  sin 29 (36)
U;:y Ozy 5 5 cos 20

Then, we apply the boundary treatment to vector v’ and calculate v by rotation transformations
using the properties R™'(8) = R(—6) and R;'(§) = R,(—6).

For the corner points we use an ’ad hoc’ treatment introduced by Lie [2] who defines the
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'normal to the corner point’ inwards and bisecting the angle between the adjacent boundary
lines (see Appendix A for more details).

3.4 Time integration

As stated before, equation (3) can be written in the form

%=MU+8, (37)

where M is the differential operator (27). An efficient time integration scheme is the fourth-
order Runge-Kutta method. If dt is the time step, the solution at time (n + 1)d¢, v"* s
obtained in terms of the solution at time ndt, v", as

1
’Un+1 ="+ gdt(Al + 2A2 + 2A3 + A4), (38)
where
n dt 1/2
Ay = Moy + 8" A2=M"U"+TA1 +3n+/:
dt
Ay =M (U" + 7A2> + gnt1/2 Ay = M(v"+ dtAjz) + s™t

As mentioned before, a favourable stability condition is achieved with d¢ = O(N~!). As can
be seen from the preceding equations, four operations with M are required at each time step.
Modified spatial operators are used at the boundaries depending on the boundary equations.

4. EXAMPLES

As a first application of the method, we consider the simulation of Rayleigh waves, i.e., waves
that travel over the free surface of an elastic solid. This problem is of interest in many fields,
for instance, geophysics, ultrasonic resonators and delay lines, and non-destructive testing and
electronic signal processing [12]. The first example simulates Lamb’s problem in order to check
the accuracy of the spectral scheme and the performance of the two-dimensional Chebyshev
approximation. The numerical solution is compared to the analytical solution for different
source-receiver locations. When the source is very close to the free surface, the Rayleigh wave is
most excited, representing a challenge for the boundary treatment. The last example illustrates
wave propagation in the presence of a curved surface for which the wave equation needs to be
transformed to 2-D generalized coordinates.

4.1 Lamb’s problem

We consider here the ultrasonic range but since the wave equation (3) is elastic, the results can
be scaled to any frequency range. The dimension of the model, material properties and source
location are shown in Fig.4, the medium is a Poisson solid, and- the source is a vertical impact
having a Ricker wavelet time-history with central frequency of f, = 110 KHz.

The calculations use a numerical mesh with N, = 121 and N, = 81. The dimensions of the
physical space after the stretching tranformations are zmax = 233.5mm and ymax = 146 mm,
with maximum grid sizes of d zyax = 2mm and dymax = 2mm at the center of the mesh.
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Fig.4: Dimensions, material properties and source position for Lamb’s problem. The upper
boundary is the surface.

The stretching parameters are o = 4.86 and = 2. for the vertical direction, and y = 0.999 for
the horizontal direction. The numerical grid is represented in Fig.5, with free surface boundary
conditions applied to the upper boundary and open radiation conditions to the other boundaries.
Since for non-vertical incidence the incoming waves are not completely eliminated, absorbing
strips of length 18 grid points are used at the sides and lower boundary to eliminate the residual
non-physical reflections. The vertical force is applied at grid point 24 (z = 37 mm) at a depth of
0.2 mm, which is very close to the surface, this distance being small compared to the dominant
wavelength of the signal, which for shear waves is approximately 10 mm. This fact implies that
the Rayleigh wave is very strong compared to the body waves, constituting a challenge for the
algorithm, in particular for the boundary treatment. The solution is propagated to 0.2 ms with
a time step of 0.1 us.

Figure 6 shows snapshots of the particle velocity vector at three succesive propagation
times, (a) t = 0.075ms, (b) ¢t = 0.095ms and (c) ¢t = 0.125ms. The strong event at the surface
is the Rayleigh wave, which is preceded by the compressional wave (polarized normal to the
wavefront), the shear head wave, and the shear wavefront (polarized tangent to the wavefront).
The wavefield have been scaled such that the length of the longer vector is 100 mm, but those
vectors exceeding 20 mm are clipped. Since the surface Rayleigh wave is the strongest event,
this is mostly clipped. The waves can be easily identified by their location and polarization.
The Rayleigh surface wave travels with velocity cg = 0.9194cs = 1062 m/s, which is the velocity
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Fig.5: Numerical grid of the physical domain for Lamb’s problem, and boundary conditions.
The number of grid points is Nx = 121 and Ny = 81. The stretching parameters
are o = 4.86 and § = 2. for the vertical direction, and v = 0.999 for the horizontal
direction.

of this mode in a Poisson solid [8] The shear head wave with planar wavefront connects the P
and S wavefronts, and makes an angle of sin™ cp/cs = 35° with the free surface. In particular,
the open radiation conditions and absorbing strips seem to perform very well, eliminating any
artificial reflection from the boundaries.

The numerical and analytical solutions of Lamb’s problem are shown in Fig.7, which are
undistinguishable, where the coordinates of the receivers relative to the source are (a) (22,0) mm,
(b) (72,0) mm, and (c) (72,29) mm. In (a) the P wave interferes with the Rayleigh wave, and
in (b) they are completely separated. The strength of the Rayleigh wave in (c) has decreased
considerably, and the wavefield is mainly a superposition of shear, compressional and head
waves.

4.1 Rayleigh Waves on Curved Surfaces

We consider the same physical properties, source type and number of grid points of the previous
example. The model is a step discontinuity at the surface whose physical mesh is represented
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Fig.6: Snapshots of the particle velocity vector for Lamb’s problem
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Fig.7: The numerical and analytical solutions for Lamb’s problem
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Fig.8: Numerical mesh of the physical domain for the step problem. The upper boundary
is the surface and the other boundaries satisfy open radiation conditions.

in Fig.8. The 2-D transformation is

with

Yo [2(€)] = Ymax =

2(§) = B [1- g.(C)],
5 — 5,(1) (39)
— h, 0<2< 3Emax — d
0, %zmax +d <z < Tmax,
. -g {sin [% (m(E) - %mmaxﬂ - 1} , elsewhere,

the function defining the surface, where ymax = 233.5mm, max = 146 mm, h = 20 mm is the
height of the step, and d = 10 mm is half the extension of the step in the horizontal direction.

The angle 6 used to rotate the field variables in equations (35) and (36) is given by

- d yo
9 = =222 =
tan (dz)

tan~! { ﬁ cos

1

T — ~Tmax
2

T

<
2d <4

(40)

(=

)

4d
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and zero elsewhere. Here, the derivative dy,/dz is computed numerically by the Chebyshev
differential operator. Since dz/8n = 0, equations (9) simplify to

_ag_(m)‘l % _

oz \ o€ oy

dn By [oyor\T on _ [oy\™

oz 36(3173«5) ’ 3y”(3n) ’
Equations (39) do not represent the optimum mapping since for steeper structures than the
step of Fig.8, the aspect ratio of the grid cells at the surface tends to zero, and the Jacobian
of the transformation tends to infinity. This problem requires the implementation of suit-
able algorithms for grid generartion. In particular, orthogonal transformations [13] based on
quasi-conformal mappings offer significant advantages such the simplicity of the transformed

equations and a more accurate treatment of the boundary conditions. The implementation of
orthogonal grids will be investigated in a future work.

(41)

Figure 9 shows a set of snaphots of the particle velocity vector, where (a) ¢ = 0.075ms, (b)
t = 0.095ms and (c) ¢ = 0.125ms. The round corners of the step act as diffractors of energy.
The wavefield have been scaled such that the length of the longer vector is 15 mm, with no
clipping applied. In a) the Rayleigh wave is at the onset of the step, and its typical retrograde
elliptical particle motion can be seen. It is clear in b) and c) that part of the Rayleigh wave
energy is reflected back, and that the corners of the step act as wave diffractors, constituting
secondary sources in virtue of Huyghens’s principle.

5. CONCLUSIONS

We developed in this work a 2-D spectral collocation method to solve the equations of dynamic
elasticity in arbitrary shaped inhomogeneous media. The physical domain is transformed to
a convenient computational domain discretized at the Gauss-Lobatto collocation points of the
Chebyshev differential operator. First, Lamb’s problem test the effectivness of the 2-D Cheby-
shev grid, and boundary treatment by comparing numerical and analytical solutions. This type
of grid allows the modeling of arbitrary material geometries, and the implementation of arbi-
trary boundary conditions. The technique has immediate applications in domain decomposition
since the subdomains can be joined by imposing the appropriate boundary conditions on the
incoming waves at the interfaces. However, the 2-D Chebyshev grid presented in this work is
far from optimal since very steep structures produce cells with very small aspect ratio, making
the modeling technique impractical. This problem requires the generation of orthogonal grids,
a subject that will be investigated in a future paper. Future developments include also the
incorporation of more realistic rheologies [14], and the extension to three dimensional space.
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Fig.9: Snapshots of the particle velocity vector for the step model
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APPENDIX A. BOUNDARY EQUATIONS FOR LAMB’S PROBLEM

The one-way modes or characteristics for a 2-D rectangular Chebyshev grid are schematically
represented in Fig.A.1. In particular, for Lamb’s problem the upper boundary satisfies free
surface boundary conditions, and the other boundaries satisfy open radiation conditions. Those
quantities in parenthesis are the incoming modes and have to be computed from the boundary
conditions. For instance, at the free surface the force-free boundary conditions imply that the
normal stresses are zero at all times. Thus, the initial conditions at the surface should include
Oyy = 04y = 0. Since H, and H, must be computed from the boundary conditions, equations
(32d) and (32e) imply that oy, and o,, will remain zero at the surface if

A Ouy

Hy=Hy +V2——=,
2 1 \/—Zp oz (A.l)

U 0v
= 2——=.
H, H3+\/_ZS Pz
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Substitution of H; and H; from equations (31a) and (31c) into (A.la) and (A.1b), and the
results into equations (32a-e), yields the boundary equations for the free surface:

1
bgnew) - i)S:Old) + ng:zld),

S
i)z(lnew) - iJgOId) + %&ggld)’
olnew) _ s(0ld) _ A (old) (4.2)
zz Tz (A + 2/1) Yy
g <o
g(rew) = 0

where the superscript (old) indicates the variables given by equation (3), and the superscript
(new) refers to the variables of the left hand side of the modified equations (32a-e). Equations
(A.2a-e) are the boundary equations to be solved at the free surface. In practice, we do not solve
these equations separately from the equations within the computational domain, but for every
operation with H we modify the field variables at the boundaries according to the boundary
equations (A2.a-e).

Let us consider now the lower boundary. Equation (29) can be written in terms of the
characteristic vector

w=S"1v (A.3)

as

9
S =M+57s, (A.4)

The first and third components of (A.4) give the following characteristics equations for w; =

(vy + 040/ 2p)/ V2 and ws = (v + 044/ Z5)/V/2:

Ow, 1 |1 00, A Ov,
—=H1+——[— : ——+fy},
ot 2 0 0
V2 |p 0Oz pcp 0T (A.5)
Owg 1 (1090, w Ovy
ot _H3+\/2_ [p 0z pcs Oz +fx}'

These equations contain the time derivatives of the amplitudes of the incoming characteristic
waves w; and ws. Imposing constant amplitudes in time on these modes is equivalent to
suppressing them. This condition defines the values of the incoming waves H; and Hs, while H,
and H,4 are computed from (31b) and (31d), respectively. Then, substituting H into equations
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Fig.A.1: Direction of the characteristics variables at the boundaries and corners of the physi-
cal numerical mesh. Those quantities in parenthesis (incoming modes) are calculated
from the boundary conditions.

(32a-¢) gives

- (new) _ _1_ (old) _ (old
T ( )
,(‘}gnew) =3 ( (old) _ (old))
A.6)
(new) glold) _ A (old) (old) (
TP (539 + 207),
new) _ 1 o (o
Jz(/y ) — 5 ( (old) _ ZPUS ld)) ,

(new) 2 ( (old) _ ZST')EOld)).

Tay

The vertical boundaries of the numerical mesh involve equations (33) and (34). The boundary
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equations are

s (new) _ 1 - (old) L - (old)

R

- (new L /. I

=1 (495 228).

dgl;ew) — % (dgc;ld) F Zpi)gdd)) , (A7)
- (new - (o A - (o - (o

Ugy )= ngld) - m (ngld) + ZPU& ld)) )

zy

(new) =% (dgzld) - Zsi)gold))’

where the upper and lower signs correspond to the left and right side, respectively.

At the four corners we impose open radiation conditions. For instance, for C; we rotate the
field variables an angle § = 77 /4 such that the y/ axis points inwards, and use the boundary
equations (A.6a-e) (in equivalent form for the primed system). Then, we rotate the field
variables back to the original coordinate system.



