
 

 

 

 

 

 

Simulation of wave propagation in linear thermoelastic 

media 
 

 

Journal: Geophysics 

Manuscript ID GEO-2018-0448.R1 

Manuscript Type: Technical Paper 

Keywords: wave propagation, thermal conductivity, P-wave, modeling, algorithm 

Area of Expertise: Seismic Modeling and Wave Propagation 

  

 

 

GEOPHYSICS

This paper presented here as accepted for publication in Geophysics prior to copyediting and composition. 
© 2018 Society of Exploration Geophysicists.

D
ow

nl
oa

de
d 

11
/0

7/
18

 to
 2

21
.2

26
.1

35
.2

50
. R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SE
G

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 T
er

m
s 

of
 U

se
 a

t h
ttp

://
lib

ra
ry

.s
eg

.o
rg

/

http://crossmark.crossref.org/dialog/?doi=10.1190%2Fgeo2018-0448.1&domain=pdf&date_stamp=2018-10-09


Simulation of wave propagation in linear thermoelastic
media

José M. Carcione1,2 · Zhi-Wei Wang3,4 ·
Wenchang Ling2 · Ettore Salusti5 · Jing

Ba2,∗ · Li-Yun Fu6,∗

Abstract We develop a numerical algorithm for simulation of wave propagation in

linear thermoelastic media, based on a generalized Fourier law of heat transport in

analogy with Maxwell model of viscoelasticity. The wavefield is computed by using a

grid method based on the Fourier differential operator and two time-integration al-

gorithms to cross-check solutions. Since the presence of a slow quasi-static mode (the

thermal mode) makes the differential equations stiff and unstable for explicit time-

stepping methods, firstly, a second-order time-splitting algorithm solves the unstable

part analytically and a Runge-Kutta method the regular equations. Alternatively a

first-order explicit Crank-Nicolson algorithm yields more stable solutions for low values

of the thermal conductivity. These time-stepping methods are second- and first-order

accurate, respectively. The Fourier differential provides spectral accuracy in the calcu-

1Istituto Nazionale di Oceanografia e di Geofisica Sperimentale (OGS), Borgo Grotta Gigante
42c, 34010 Sgonico, Trieste, Italy. E-mail: jcarcione@inogs.it
2School of Earth Sciences and Engineering, Hohai University, Nanjing, China. E-mail:
jba@hhu.edu.cn
3Key Laboratory of Petroleum Resource Research, Institute of Geology and Geophysics, Chi-
nese Academy of Sciences, Beijing, China. E-mail: lfu@mail.iggcas.ac.cn
4Institutions of Earth Sciences, Chinese Academy of Sciences, Beijing, China.
5Department of Physics, La Sapienza University, Rome, Italy.
6China University of Petroleum (East China), School of Geosciences, Qingdao, China.
*Corresponding authors.

Page 1 of 34 GEOPHYSICS

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

This paper presented here as accepted for publication in Geophysics prior to copyediting and composition. 
© 2018 Society of Exploration Geophysicists.

D
ow

nl
oa

de
d 

11
/0

7/
18

 to
 2

21
.2

26
.1

35
.2

50
. R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SE
G

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 T
er

m
s 

of
 U

se
 a

t h
ttp

://
lib

ra
ry

.s
eg

.o
rg

/



2

lation of the spatial derivatives. The model predicts three propagation modes, namely,

a fast compressional or (elastic) P wave, a slow thermal P diffusion/wave (the T wave),

having similar characteristics to the fast and slow P waves of poroelasticity, respec-

tively, and a shear wave. The thermal mode is diffusive for low values of the thermal

conductivity and wave-like for high values of this property. Three velocities define the

wavefront of the fast P wave, i.e, the isothermal velocity in the uncoupled case, the

adiabatic velocity at low frequencies, and a higher velocity at high frequencies.

Keywords Thermoelasticity · waves · simulation · Fourier pseudospectral method

INTRODUCTION

The theory of thermoelasticity combines that of heat conduction with the theory of

elasticity, specifically, it describes the coupling between the fields of deformation and

temperature. The theory is relevant for geophysical studies such as seismic attenuation

(Zener, 1938; Treitel, 1959; Savage, 1966; Armstrong, 1984), geothermal exploration

(e.g, Jacquey et al., 2015) and earthquake seismology (Boschi, 1973). Basically, a me-

chanical source of elastic waves induces a temperature field, whose heat flow equalizes

the temperature difference with the surroundings giving rise to energy dissipation. On

the other hand, a heat source generates viscoelastic waves.

Biot (1956), Deresiewicz (1957), Savage (1966) and Armstrong (1984) used the dif-

ferential equations based on the Fourier law of heat conduction, but this formulation

has unphysical solutions such as discontinuities and infinite velocities as a function of

frequency, since it is based on a parabolic-type differential equation. A more general

(physical) system of equations, based on a hyperbolic heat transfer equation, has been

analysed in detail by Rudgers (1990) (the lattice model), which contains a relaxation

term in the heat equation (Vernotte, 1948; Cattaneo, 1958), leading to a Maxwell-type
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mechanical model kernel (Maxwell, 1867; Carcione, 2014) and converting the thermal

diffusion to wave-like propagation (finite speeds) at high frequencies. The theory pre-

dicts two P waves and an S wave, the latter not affected by the thermal effects. The

P waves are an elastic wave (E wave) and a thermal wave (T wave) having similar

characteristics to the fast and slow P waves of poroelasticity (Biot, 1956). Rudgers

(1990) studied the behaviour of these waves as a function of frequency. Banerjee and

Pao (1974) have considered the anisotropic case, studying the behaviour of the wave-

fronts as a function of the propagation direction. The thermo-poroelastic case has been

studied by Bear et al (1992) and Sharma (2008).

Ignaczak and Ostoja-Starzewski (2010) study two theories of hyperbolic thermoelas-

ticity, namely the Lord-Shulman theory (with one relaxation time), and the Green-

Lindsay theory (with two relaxation times). The first is basically similar to the equa-

tions solved in the present paper (which include the so-called Maxwell-Vernotte-Cattaneo

equation) and the second is a generalization by including another (phenomenological)

relaxation time in the coupling terms of the stress-strain relations. Recently, Veres et

al. (2013) solve the thermoelasticity equations using finite differences based on stag-

gered grids, where the algorithm is applied to model the generation of ultrasound by

a laser source in isotropic and transversely isotropic materials.

In this work, we solve the thermoelasticity equations by using the Fourier method to

compute the spatial derivatives and an explicit time integration technique (e.g., Car-

cione, 2014). To our knowledge, the results presented here are new. The thermoelastic

differential equations are of the form v̇ = Mv, where v is the field vector and M is the

propagation matrix (the dot denotes time differentiation). In the poroelastic case (Car-

cione and Quiroga-Goode, 1995), all the eigenvalues of M have negative real part. The

presence of a quasi-static mode (the Biot slow wave) makes the differential equations
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stiff (Jain, 1984). While the eigenvalues of the fast waves have a small real part, the

eigenvalue of the Biot wave (in the quasi-static regime) has a large real part. Here, we

have a similar situation and in addition the presence of positive real eigenvalues creates

instability when using explicit time integration methods. Carcione and Quiroga-Goode

(1995) and Carcione and Seriani (2001) solved the stiff problem by using a splitting

or partition method. This method solves both problems (stiffness and instability) by

calculating the unstable part of the equations analytically. Snapshots and time his-

tories are obtained by solving the equations of motion with a direct grid algorithm

based on the Fourier pseudospectral method for computing the spatial derivatives and

the Runge-Kutta time integration technique to solve the regular (non-stiff) part of the

differential equations. Alternatively, a Crank-Nicolson time stepping method is also

implemented.

As conventional sources of hydrocarbons decline, the exploration is being started to

be developed in unexplored or underdeveloped areas High pressure-high temperature

(HPHT) reservoirs are increasingly becoming the focus of petroleum exploration in the

search for additional reserves. The modeling method developed in this work can be

relevant for the exploration of HPHT deep reservoirs and tight oil and gas resources

in thermal hydrocarbon source rocks with temperatures above 400 oC (e.g., Fu, 2012,

2017).

EQUATIONS OF THERMOELASTICITY

Let us define by ui, i = 1,2,3 the components of the displacement field, by σij the com-

ponents of the stress tensor and by T the increment of temperature above a reference

absolute temperature T0 for the state of zero stress and strain. In a linear isotropic
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medium the stress-strain relations of thermoelasticity are given by (Biot, 1956, eqs.

(2.2) and (10.1)):

STRAIN-DISPLACEMENT RELATIONS

ε = εxx + εyy + εzz ,

εxx = ∂xux, εyy = ∂yuy, εzz = ∂zuz ,

2εxy = ∂xuy + ∂yux,

2εxz = ∂xuz + ∂zux,

2εyz = ∂yuz + ∂zuy,

(1)

where εij denote the strain components.

STRESS-STRAIN RELATIONS

σxx = 2µεxx + λε− βT + fxx,

σyy = 2µεyy + λε− βT + fyy,

σzz = 2µεzz + λε− βT + fzz ,

σxy = 2µεxy + fxy,

σxz = 2µεxz + fxz ,

σyz = 2µεyz + fyz ,

(2)

where λ and µ are the Lamé constants,

β = (3λ+ 2µ)α, (3)

with α the coefficient of thermal expansion, and fij are external stress forces.

EQUATIONS OF MOMENTUM CONSERVATION

∂xσxx + ∂yσxy + ∂zσxz = ρüx + fx,

∂xσxy + ∂yσyy + ∂zσyz = ρüy + fy,

∂xσxz + ∂yσyz + ∂zσzz = ρüz + fz ,

(4)

where ρ is the mass density, fi are the components of external body forces and a dot

above a variable denotes time differentiation.
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6

LAW OF HEAT CONDUCTION

γ∆T = c(Ṫ + τ T̈ ) + T0β(ε̇+ τ ε̈) + q, (5)

where γ is the coefficient of heat conduction (or thermal conductivity), c is the specific

heat of the unit volume in the absence of deformation, τ is a relaxation time, q is a

heat source and ∆ is the laplacian (Rudgers, 1989). Biot (1956) and Deresiewicz (1957)

do not consider the relaxation term, leading to unphysical results.

Substituting the stress-strain relations into the equations of momentum conservation

and using the strain-displacement relations, we obtain compact equations for the dis-

placement components and temperature fluctuation

µuj,kk + (λ+ µ)uk,kj − βT,j = ρüj ,

γT,kk = c(Ṫ + τ T̈ ) + T0β(u̇k,k + τ ük,k) + q,
(6)

where Einstein implicit summation is assumed. Deresiewicz (1957) equations assume τ

= 0 (Fourier’s law). We use the notation of this paper, since α as given by Biot is three

times that of Deresiewicz, while Rudgers defines β as 3α, without the bulk modulus

λ+ 2µ/3.

PLANE-WAVE ANALYSIS

Let us assume that the displacement vector, u, and T can be described by the following

plane waves

u = U exp[iω(t− s · x)], T = T0 exp[iω(t− s · x)], (7)

where ω is the angular frequency, s is the slowness vector, x is the position vector and

i =
√
−1. In general s = sR − iᾱ/ω, where ᾱ is the attenuation vector, and the plane

wave is termed inhomogeneous, since these the real and imaginary vectors do not point

out in the same direction. Assuming homogeneous fields, we have s = s(l1, l2, l3)>,
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where s = 1/vc = sR − iᾱ/ω, where vc is the complex velocity, ᾱ is the attenuation

factor and li are the directions cosines defining the propagation direction. Here, these

cosines do not appear in the following calculations, since the medium is isotropic.

DISPERSION RELATION AND COMPLEX VELOCITY

If we consider shear waves, i.e., Uili = 0 (the displacement vector is perpendicular to

the propagation direction), we obtain, after replacing the plane waves into equation 6,

the dispersion relation:

µk2 − ρω2 = 0 (8)

(Deresiewicz, 1957), where k = ωs is the complex wavenumber. This gives a phase

velocity

vS =

√
µ

ρ
. (9)

Then, shear waves are not affected by the thermal effects, basically because the shear

stresses are independent of temperature.

When the displacement vector is pointing in the direction of the wavenumber vector,

i.e., when Uili = 1, we obtain the dispersion relation for the P waves, whose complex

velocities vc are solutions of

v4c − (v2A +M)v2c +Mv2I = 0, M =
iωa2

1 + iωτ
, (10)

where vI and vA are the isothermal and adiabatic phase velocities (see Rudgers, 1990),

given by

vI =

√
λ+ 2µ

ρ
and vA =

√
v2I + b2 (11)

respectively, M is a complex kernel arising from a Maxwell mechanical model of vis-

coelasticity (e.g., Carcione, 2014), and

a =

√
γ

c
, b = β

√
T0
ρc

(12)
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(a is the thermal diffusivity).

Equation 10 has the solutions:

2v2c = v2A +M ±
√

(v2A +M)2 − 4Mv2I . (13)

There are two P-wave solutions, an elastic E wave (plus sign) and a thermal T wave

(minus sign). At ω = 0 we have two real solutions:

vc = 0 (T wave), vc = vA (E wave). (14)

For c→∞, we obtain vc = vI , while for γ → 0, we have vc = vA.

Rudgers (1990) takes

τ =
γ

cv2I
(15)

for his lattice model [see his eqs. (34), (37) and (58)], and we assume this value here

to illustrate the theory, giving a relaxation peak at laboratory frequencies for typical

rocks as we shall see below. Then, for ω → ∞, we have M → a2/τ = v2I and the

solution is

2v2c = v2A + v2I ±
√

(v2A + v2I )2 − 4v4I . (16)

Because of the choice 15, γ → ∞ and ω → ∞ are equivalent. Let us denote the high-

frequency limit E- and T-wave velocities, solutions of 16, by vE∞ and vT∞, respectively.

Then, vE∞ > vA > vI > vT∞.

A range of values of τ yields a superposition of relaxation peaks leading to a general

dependence of attenuation with frequency (e.g., Wang and Santamarina, 2007). High

and low values of τ correspond to peak locations, fp at low and high frequencies,

respectively, with

fp ≈
1

2πτ
. (17)
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PHASE VELOCITY, ATTENUATION AND QUALITY FACTORS

The phase velocity and attenuation factor can be obtained from the complex velocity

as

vp =
[
Re
(
v−1c

)]−1
and A = −ωIm(v−1c ), (18)

respectively (e.g., Carcione, 2014).

Deresiewicz (1957) introduces the attenuation coefficient as the ratio of the energy

dissipated per stress cycle to the total vibrational energy. It is

L = 4π · Avp
ω

. (19)

2D DIFFERENTIAL EQUATIONS OF MOTION

We consider the 2D case in the (x, z) plane and solve the differential equations by using

the first-order time derivative approach, termed particle velocity-stress formulation in

elasticity. Here, it should be called particle velocity-stress-temperature formulation.

PARTICLE VELOCITY-STRESS-TEMPERATURE FORMULATION

Denoting the particle-velocity components by vi, we have from equations 1-5:

v̇x = ρ−1(∂xσxx + ∂zσxz − fx) ≡ Πx,

v̇z = ρ−1(∂xσxz + ∂zσzz − fz) ≡ Πz ,

σ̇xx = 2µε̇xx + λε̇− βψ + ḟxx,

σ̇zz = 2µε̇zz + λε̇− βψ + ḟzz ,

σ̇xz = 2µε̇xz + ḟxz ,

Ṫ = ψ,

ψ̇ = (cτ)−1[γ∆T − q − T0β(ε̇+ τ(∂xΠx + ∂zΠz))]− 1

τ
ψ,

(20)

where

ε̇ = ε̇xx + ε̇zz ,

ε̇xx = ∂xvx, ε̇zz = ∂zvz ,

2ε̇xz = ∂xvz + ∂zvx,

∆T = T,xx + T,zz .

(21)
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THE ALGORITHM

The 2D velocity-stress differential equations can be written in matrix form as

v̇ + s = Mv, (22)

where

v = [vx, vz , σxx, σzz , σxz , T, ψ]> (23)

is the unknown array vector,

s = [fx/ρ, fz/ρ, , ḟxx, ḟzz , ḟxz , 0, q
′]> (24)

is the source vector, and M is the propagation matrix containing the spatial derivatives

and material properties, where q′ = −(cτ)−1q.

The solution to equation 22 subject to the initial condition v(0) = v0 is formally given

by

v(t) = exp(tM)v0 +

∫ t

0
exp(τM)s(t− τ)dτ, (25)

where exp(tM) is called evolution operator.

The eigenvalues of M may have negative real parts and differ greatly in magnitude.

The presence of large eigenvalues, together with small eigenvalues, indicates that the

problem is stiff. Moreover, the presence of real positive eigenvalues can induce insta-

bility in the time stepping method. To solve these problems, the differential equations

are solved with the splitting algorithm used by Carcione and Quiroga-Goode (1995)

and Carcione and Seriani (2001). The propagation matrix can be partitioned as

M = Mr + Ms, (26)

where subscript r indicates the regular matrix, and subscript s denotes the stiff ma-

trix, involving the quantity γ and the coupling terms. The evolution operator can be
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11

expressed as exp(Mr + Ms)t. It is easy to show that the product formula

exp(Mdt) = exp

(
1

2
Msdt

)
exp(Mrdt) exp

(
1

2
Msdt

)
(27)

is second-order accurate in dt. Equation 27 allow us to solve the unstable equations

separately. From equation 20, these are

σ̇xx = −βψ,
σ̇zz = −βψ,

ψ̇ = − 1

τ
ψ = −cv

2
I

γ
ψ,

(28)

where Ms has only these elements different from zero: Ms37 = −β, Ms47 = −β and

Ms77 = −1/τ .

Let us discretize the time variable as t = ndt, where dt is the time step, and denote

with a superscript “∗” the intermediate fields to obtain the solution at (n+ 1)dt fields

from fields at ndt. Equations 28 have the solution

σ∗xx = σnxx + τβ [exp(−dt/τ)− 1]ψn,

σ∗zz = σnzz + τβ [exp(−dt/τ)− 1]ψn,

ψ∗ = exp(−dt/τ)ψn.

(29)

The regular operator exp(Mrdt) is approximated with a 4th-order Runge Kutta solver.

The output vector is

vn+1 = v∗ +
dt

6
(∆1 + 2∆2 + 2∆3 +∆4), (30)

where
∆1 = Mrv

∗ + sn,

∆2 = Mr

(
v∗ +

dt

2
∆1

)
+ sn+1/2,

∆3 = Mr

(
v∗ +

dt

2
∆2

)
+ sn+1/2,

∆4 = Mr(v∗ + dt∆3) + sn+1,

and v∗ is the intermediate output vector obtained after the operation with the stiff

evolution operator. Then, ψ∗ is input to a Runge-Kutta fourth-order time-stepping

algorithm (involving matrix Mr), and the spatial derivatives are calculated with the
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12

Fourier method by using the FFT (Carcione, 2014). This spatial approximation is

infinitely accurate for band-limited periodic functions with cutoff spatial wavenumbers

which are smaller than the cutoff wavenumbers of the mesh. Due to the splitting

algorithm, the modeling is second-order accurate in the time discretization.

We give here an alternative time-integration method based on the Crank-Nicolson

scheme (see Appendix B). Although it has a first-order accuracy in time it is more

stable than the previous technique for low values of γ.

PHYSICS AND SIMULATIONS

We consider the following reference properties

density, ρ : 2650 kg/m3

specific heat, c : 117 kg/(m s2 ◦K)

thermal conductivity, γ : 10.5 m kg/(s3 ◦K)

coefficient of thermal expansion, α : 0.33× 10−5 ◦K−1

P-wave velocity, vI =
√

(λ+ 2µ)/ρ : 2457 m/s

S-wave velocity, vS =
√
µ/ρ : 1505 m/s

absolute temperature, T0 : 300 ◦K,
relaxation time, τ = γ/(cv2I ) : 1.49× 10−8 s,

(31)

where we have expressed the quantities in the international systems of units (SI). These

values yield

a2 = 0.0897 m2/s

b = 2464 m/s

β = 79200 kg/(m s2 ◦K)

(32)

With the choice of τ above, M → v2I for ω →∞ (see equation 10).

Figure 1 and 2 show the phase velocities of the elastic (E) and thermal (T) waves as

a function of frequency for two values of γ. The inflexion point in the E-wave velocity

occurs at a frequency of approximately fp = v2I/(2πa
2), at nearly 20 MHz in the first

case and 50 Hz in the second case. As can be seen, the E-wave low-frequency velocity is

the adiabatic one, i.e., vA = 3480 m/s, while the isothermal velocity (vI = 2457 m/s) is

not involved in the coupled case. The high-frequency limit velocity is vE∞ = 3980 m/s.
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13

We can see that in both cases the attenuation coefficient of the E wave has a peak with

L ≈ 1. From equation 19, this corresponds to an attenuation factor A = 2f/vp, where

f is the frequency. Since Q ≈ πf/(vpA), we obtain a peak quality factor Q = π/2,

a very strong attenuation. The location of the relaxation peak depends on the values

of γ and τ . Since here γ and τ are related by equation 15, we obtain a peak at the

ultrasonic band for values of γ typical of rocks. Increasing τ , the peak moves to low

frequencies. The time scale for heat diffusion is a function of the length scale involved

in the process of heat flow.

The behaviour of the two P waves is similar to that of the fast and slow P waves in

poroelasticity (e.g., Carcione, 2014). As the slow P wave, the T wave is diffusive at low

frequencies. In Biot’s theory, it is the fluid viscosity/permeability ratio to determine

this behaviour, while here it is the value of the thermal conductivity/specific heat ratio

(a2 = γ/c), mainly the value of γ (if c → 0, M → v2I , b → ∞ and vc → ∞; c → ∞

yields vc = vI). Zero viscosity and infinite thermal conductivity yield the same effect,

i.e., a wave-like slow wave, as can be seen in the following analysis.

The thermal conductivity, γ, ranges from 24000 kg/(s3 ◦K) for CRC aluminum to 0.023

kg/(s3 ◦K) for air, whereas rocks filled with fluids have a range between 1 and 12 m

kg/(s3 ◦K). The unrealistic values assumed here are intended for a better illustration

of the physics. Figure 3 shows the phase velocity (a) and attenuation coefficient (b)

as a function of frequency for two extremes values of γ. As can be seen, for small γ,

the T wave is diffusive, whereas for high γ the T wave propagates with a velocity of

approximately vT∞ ≈ 1500 m/s, close to the S-wave velocity. The attenuation levels

are the same for both values of γ, which affects the location of the E-wave relaxation

peak, as well as the attenuation (step-like) of the T wave. At the two limits, i.e., γ = 0,
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we have vc = vA (E wave) and vc = 0 (T wave), and for γ =∞, we get M = v2I and

2v2c = v2A + v2I ±
√

(v2A + v2I )2 − 4v4I = 2v2I + b2 ± b
√
b2 + 4v2I , (33)

i.e., two finite velocities as can be seen in Figure 3a for the high value of γ (blue and

green curves), vE∞ = 3980 m/s and vT∞ = 1517 m/s, respectively (the adiabatic

E-wave velocity is vA = 3480 m/s).

We obtain the eigenvalues of the propagation matrix M in Appendix A, where we

consider the 1D acoustic case. In order that the system of equations is stable, the

eigenvalues must be located in the negative iωc-plane. For the γ values considered in

Figure 1 and 2, the eigenvalue A.4, η = −16 × 106 s−1 (γ = 10.5 m kg/(s3 ◦K)) and

η = −157 s−1 (γ = 1.13 × 106 m kg/(s3 ◦K)), respectively, for a wavenumber κ =

0. When κ = π/dx, dx = 0.1 mm, the results are shown in Figure 4 for both cases.

The real positive eigenvalues imply instability when using explicit time integration

methods, such as the Runge-Kutta technique, but these eigenvalues are handled by the

time splitting method. In order to have numerical stability, the domain of convergence

of the time-stepping method should include the real negative eigenvalues. The explicit

fourth-order Runge-Kutta method requires ηdt < 2.78. For dt = 10 ns, use below in

the simulations, η < 278 × 106 1/s = 278 (2π MHz).

We compute snapshots of the wavefield, where we consider a 231 × 231 mesh, with

square cells and a grid spacing of dx = dz = 0.1 mm (a sample of 2.3 cm × 2.3 cm).

The source is a vertical force located at the centre of the mesh and has the time history

h(t) = cos[(t− t0)f0] exp[−2(t− t0)2f20 ], (34)

where f0 = 3.5 MHz is the central frequency and t0 = 3/(2f0) is a delay time. The

time step of the Runge-Kutta algorithm is dt = 10 ns. Figure 5 shows the snapshot of
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the vertical component of the particle velocity at 3 µs, corresponding to the uncoupled

case (α = 0). The source is a vertical force, fz . The P and S waves can be seen, with

the P wavefront traveling with the isothermal velocity vI .

Figures 6 and 7 show the vertical particle velocity (a) and temperature field (b) for a

heat source and γ = 10.5 m kg/(s3 ◦K) and γ = 1.13 × 106 m kg/(s3 ◦K), respectively.

No shear wave is present as expected. The velocity of the E wave in Figure 6 is slightly

less than vE∞, according to Figure 1a (the source central frequency is 3.5 MHz, i.e.,

6.5 in abscissa). In Figure 7, the velocities of the E and T waves are vE∞ and vT∞,

respectively. The T wave is diffusive in Figure 6, since it is highly attenuated, according

to the curves of Figure 1b, while the attenuation is negligible in Figure 7, in agreement

with the attenuation curve of Figure 2b.

Figure 8 shows the vertical particle velocity (a) and temperature field (b) for a vertical

force and γ = 10.5 m kg/(s3 ◦K), where the field are enhanced, compared to the

previous plots, to highlight the wave modes. In this case the S wave is generated but

the T wave (or diffusive mode) is not so strong as that generated by the heat source

(see Figure 6).

Next, we compute fields in the seismic band by using a Crank-Nicolson scheme (see

Appendix B). We consider a 231 × 231 mesh, with square cells and a grid spacing of

dx = dz = 10 m (2.31 km × 2.31 km). The source is dilatational (fxx = fzz) located

at the centre of the mesh with f0 = 25 Hz. The time step is dt = 1 ms. Figure 9 shows

snapshots of the vertical component of the particle velocity at 0.3 s, corresponding to

the uncoupled (a) (α = 0) and coupled (b and c) cases. In (a) the E wavefront travels

with the isothermal velocity vI = 2457 m/s. In (b) and (c) the velocities are vA = 3480

m/s (adiabatic) and vE∞ = 3980 m/s (high-frequency limit), corresponding to low and
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high values of the thermal conductivity γ. The T wave travels with the velocity, vT∞

indicated in Figure 3a (green line).

Finally, we present an example of inhomogeneous model. A plane interface separates

two half spaces. The upper medium has γ = 4.5 × 107 m kg/(s3 ◦K) and the P and

S used for the previous simulations, whereas the lower medium has γ = 10.5 m kg/(s3

◦K), vP = 3200 m/s and vS = 1800 m/s. The other properties are the same for both

half spaces. Figure 10 shows the snapshots of the vertical component of the particle

velocity (a) and temperature field (b) at 0.3 s propagation time, such that the wave

does not cross the boundary and absorbing strips are not needed. The perturbation

is a heat source, indicated by a star, with a central frequency of 70 Hz. S waves

are decoupled and should not be present in panel (b). A tentative interpretation of

the different events is as follows: RP: reflected P wave; RTP: reflected T wave and

converted to P; TrT: transmitted T wave; TrTP: transmitted T wave converted to P;

TrP: transmitted P wave; RT: reflected T wave. Head (lateral) waves with a planar

wavefront can also be observed. Even if the heterogeneity is a simple plane interface,

the wavefield is complex and could be more complex in the presence of significant S

waves, generated, for instance, by a vertical elastic force.

CONCLUSIONS

We have proposed a numerical algorithm to solve the differential equations of ther-

moelasticity, i.e, coupling elasticity with thermal effects. The modeling is a direct-grid

method that allows us to handle spatially inhomogeneous media. It is based on the

Fourier method to compute the spatial derivatives and a Runge-Kutta time-stepping

technique combined with a splitting method to compute the time evolution of the wave-

field. The splitting or partition method solves a numerical instability problem. Another
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time stepping method, bases on a Crank-Nicolson scheme, provides an alternative so-

lution for verification of the numerical solution.

Three waves propagate: the E wave (or fast P wave), a thermal P wave/diffusion (T

wave) and the S wave. The first two are coupled and thermal effects induce elastic

dissipation of the E wave. At low frequencies, the T wave is a diffusive mode. The

physics of wave propagation is analyzed in detail for several values of the properties

and the velocities of the different wave modes are precisely determined under different

conditions. The simulations show the complexity of the wavefield, which can be inter-

preted after a detailed study of the physics. The location of thermoelastic relaxation

peak describing the attenuation in the frequency axis, depend on the diffusion length

of the heat flow. Future research involves the generalization of the proposed modeling

algorithm to the anisotropic and poroelastic cases.
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Appendix A EIGENVALUES OF THE PROPAGATION MATRIX

In order to study the eigenvalues of M (equation 22), we set µ = 0, since the S wave is

not affected by the thermal effects, and consider the 1D case. Let v and σ denote the

particle velocity and stress, respectively. From equation 20, we obtain

v̇ = ρ−1∂xσ,
σ̇ = λ∂xv − βψ,
Ṫ = ψ,

ψ̇ = (cτ)−1[γ∂xxT − T0β(∂xv + τρ−1∂xxσ)]− 1

τ
ψ

= v2I∂xxT −
v2I
γ

(βT0∂xv + cψ)− βT0
ρcv2I

∂xxσ,

(A.1)

using equation 15, where vI =
√
λ/ρ and β = 3λα. The field vector becomes v =

[v, σ, T, ψ]>, and let us consider a plane wave

v = v0 exp[i(ωct− κx)], (A.2)

where ωc is the complex frequency and κ is the real wavenumber. Equation 22 gives

an eigenvalue equation for the eigenvalue η = iωc, to solve for the determinant of the

matrix

M− ηI4 =


−η −iρ−1κ 0 0

−iλκ −η 0 −β
0 0 −η 1

iv2IβT0
γ

κ
βT0
ρcv2I

κ2 −v2Iκ
2 −cv

2
I

γ
− η

 , (A.3)

where I4 is the 4 × 4 identity matrix. The numerical discretization uses wavenumbers

from 0 to π/dx (the Nyquist wavenumber), where dx is the grid spacing. For κ = 0

there are three eigenvalues equal to zero and

η = −cv
2
I

γ
= − 1

τ
. (A.4)

The complex velocity is

vc =
ωc
κ
. (A.5)
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According to Carcione (2014), the phase velocity is

vp = Re(vc) (A.6)

and ω = Re(ωc).
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Appendix B CRANK-NICOLSON EXPLICIT SCHEME

The Crank-Nicolson explicit scheme has been used by Carcione and Quiroga-Goode

(1995) to solve the equations of poroelasticity. The scheme, adapted to the thermoe-

lasticity equations, is

D1/2vx = ρ−1(∂xσ
n
xx + ∂zσ

n
xz − fnx ) = Πn

x ,

D1/2vz = ρ−1(∂xσ
n
xz + ∂zσ

n
zz − fnz ) = Πn

z ,

ε̇ = ∂xA
1/2vx + ∂zA

1/2vz ,

ε̈ = ∂xΠ
n
x + ∂zΠ

n
z ,

γ∆Tn = c(A1/2ψ + τD1/2ψ) + T0β(ε̇+ τ ε̈) + qn,

Tn+1 = Tn + dt ψn+1/2,

D1σxx = 2µ∂xA
1/2vx + λε̇− βA1/2ψ,

D1σzz = 2µ∂zA
1/2vz + λε̇− βA1/2ψ,

D1σxz = 2µ(∂zA
1/2vx + ∂xA

1/2vz),

(B.1)

where

Djφ =
φn+j − φn−j

2jdt
, and Ajφ =

φn+j + φn−j

2
, (B.2)

are the central differences and mean value operators, based on a Crank-Nicolson (stag-

gered) implicit scheme (Jain, 1984, p. 269) for the particle velocities. In this three-level

scheme, (vx, vz , ψ) at time (n+1/2)dt and stresses and temperature at time (n+1)dt are

computed explicitly from (vx, vz , ψ) at time (n− 1/2)dt and stresses and temperature

at time (n− 1)dt and ndt, respectively.

The fifth equation yields

(dt+ 2τ)ψn+1/2 =
2dt

c
[γ∆Tn − T0β(ε̇+ τ ε̈) + qn]− (dt− 2τ)ψn−1/2. (B.3)

The stability analysis has been performed in Carcione and Quiroga-Goode (1995), i.e.,

a Von Neumann stability analysis based on the eigenvalues of the amplification matrix
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(Jain, 1984, p. 418). The algorithm has first-order accuracy but possesses the stability

properties of implicit algorithms and the solution can be obtained explicitly.
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