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ABSTRACT

We have developed a numerical algorithm for simulation of
wave propagation in linear thermoelastic media, based on a gen-
eralized Fourier law of heat transport in analogy with a Maxwell
model of viscoelasticity. The wavefield is computed by using a
grid method based on the Fourier differential operator and two
time-integration algorithms to cross-check solutions. Because
the presence of a slow quasistatic mode (the thermal mode) makes
the differential equations stiff and unstable for explicit time-step-
ping methods, first, a second-order time-splitting algorithm sol-
ves the unstable part analytically and a Runge-Kutta method
the regular equations. Alternatively, a first-order explicit Crank-

Nicolson algorithm yields more stable solutions for low values
of the thermal conductivity. These time-stepping methods are sec-
ond- and first-order accurate, respectively. The Fourier differen-
tial provides spectral accuracy in the calculation of the spatial
derivatives. The model predicts three propagation modes, namely,
a fast compressional or (elastic) P-wave, a slow thermal P diffu-
sion/wave (the T-wave), having similar characteristics to the fast
and slow P-waves of poroelasticity, respectively, and an S-wave.
The thermal mode is diffusive for low values of the thermal con-
ductivity and wave-like for high values of this property. Three
velocities define the wavefront of the fast P-wave, i.e., the iso-
thermal velocity in the uncoupled case, the adiabatic velocity at
low frequencies, and a higher velocity at high frequencies.

INTRODUCTION

The theory of thermoelasticity combines that of heat conduction
with the theory of elasticity; specifically, it describes the coupling be-
tween the fields of deformation and temperature. The theory is rel-
evant for geophysical studies such as seismic attenuation (Zener,
1938; Treitel, 1959; Savage, 1966; Armstrong, 1984), geothermal
exploration (e.g., Jacquey et al., 2015), and earthquake seismology
(Boschi, 1973). Basically, a mechanical source of elastic waves
induces a temperature field, whose heat flow equalizes the tempera-
ture difference with the surroundings giving rise to energy dissipation.
On the other hand, a heat source generates viscoelastic waves.
Biot (1956), Deresiewicz (1957), Savage (1966), and Armstrong

(1984) use the differential equations based on the Fourier law of
heat conduction, but this formulation has unphysical solutions such

as discontinuities and infinite velocities as a function of frequency
because it is based on a parabolic-type differential equation. A
more general (physical) system of equations, based on a hyperbolic
heat-transfer equation, has been analyzed in detail by Rudgers
(1990) (the lattice model), which contains a relaxation term in the
heat equation (Vernotte, 1948; Cattaneo, 1958), leading to a Max-
well-type mechanical model kernel (Maxwell, 1867; Carcione,
2014) and converting the thermal diffusion to wave-like propaga-
tion (finite speeds) at high frequencies. The theory predicts two
P-waves and an S-wave, the latter not affected by the thermal ef-
fects. The P-waves are an elastic wave (E-wave) and a thermal wave
(T-wave) having similar characteristics to the fast and slow P-waves
of poroelasticity (Biot, 1956). Rudgers (1990) studies the behavior
of these waves as a function of frequency. Banerjee and Pao
(1974) consider the anisotropic case, studying the behavior of
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the wavefronts as a function of the propagation direction. The
thermoporoelastic case has been studied by Bear et al. (1992)
and Sharma (2008).
Ignaczak and Ostoja-Starzewski (2010) study two theories of hy-

perbolic thermoelasticity, namely, the Lord-Shulman theory (with
one relaxation time) and the Green-Lindsay theory (with two relax-
ation times). The first is basically similar to the equations solved in
the present paper (which include the so-called Maxwell-Vernotte-
Cattaneo equation), and the second is a generalization by including
another (phenomenological) relaxation time in the coupling terms
of the stress-strain relations. Recently, Veres et al. (2013) solve the
thermoelasticity equations using finite differences based on stag-
gered grids, where the algorithm is applied to model the generation
of ultrasound by a laser source in isotropic and transversely iso-
tropic materials.
In this work, we solve the thermoelasticity equations by using

the Fourier method to compute the spatial derivatives and an
explicit time-integration technique (e.g., Carcione, 2014). To our
knowledge, the results presented here are new. The thermoelastic
differential equations are of the form _v ¼ Mv, where v is the field
vector and M is the propagation matrix (the dot denotes time dif-
ferentiation). In the poroelastic case (Carcione and Quiroga-
Goode, 1995), all the eigenvalues of M have a negative real part.
The presence of a quasistatic mode (the Biot slow wave) makes the
differential equations stiff (Jain, 1984). Although the eigenvalues
of the fast waves have a small real part, the eigenvalue of the
Biot wave (in the quasistatic regime) has a large real part. Here,
we have a similar situation; in addition, the presence of positive
real eigenvalues creates instability when using explicit time-
integration methods. Carcione and Quiroga-Goode (1995) and
Carcione and Seriani (2001) solve the stiff problem by using a
splitting or partition method. This method solves both problems
(stiffness and instability) by calculating the unstable part of the
equations analytically. Snapshots and time histories are obtained
by solving the equations of motion with a direct grid algorithm,
based on the Fourier pseudospectral method for computing the
spatial derivatives and the Runge-Kutta time-integration technique
to solve the regular (nonstiff) part of the differential equations.
Alternatively, a Crank-Nicolson time-stepping method is also
implemented.
As conventional sources of hydrocarbons decline, the explora-

tion is starting to be developed in unexplored or underdeveloped
areas. High-pressure–high-temperature (HPHT) reservoirs are in-
creasingly becoming the focus of petroleum exploration in the
search for additional reserves. The modeling method developed
in this work can be relevant for the exploration of HPHT deep
reservoirs and tight oil and gas resources in thermal hydrocarbon
source rocks with temperatures greater than 400°C (e.g., Fu,
2012, 2017).

EQUATIONS OF THERMOELASTICITY

Let us define by ui, i ¼ 1; 2; 3 the components of the displace-
ment field, by σij the components of the stress tensor and by T the
increment of temperature above a reference absolute temperature T0

for the state of zero stress and strain. In a linear isotropic medium,
the stress-strain relations of thermoelasticity are given by Biot
(1956, equations 2.2 and 10.1).

Strain-displacement relations

ϵ ¼ ϵxx þ ϵyy þ ϵzz;

ϵxx ¼ ∂xux; ϵyy ¼ ∂yuy; ϵzz ¼ ∂zuz;

2ϵxy ¼ ∂xuy þ ∂yux;

2ϵxz ¼ ∂xuz þ ∂zux;

2ϵyz ¼ ∂yuz þ ∂zuy; (1)

where ϵij denotes the strain components.

Stress-strain relations

σxx ¼ 2μϵxx þ λϵ − βT þ fxx;

σyy ¼ 2μϵyy þ λϵ − βT þ fyy;

σzz ¼ 2μϵzz þ λϵ − βT þ fzz;

σxy ¼ 2μϵxy þ fxy;

σxz ¼ 2μϵxz þ fxz;

σyz ¼ 2μϵyz þ fyz; (2)

where λ and μ are the Lamé constants

β ¼ ð3λþ 2μÞα; (3)

with α is the coefficient of thermal expansion and fij are the ex-
ternal stress forces.

Equations of momentum conservation

∂xσxx þ ∂yσxy þ ∂zσxz ¼ ρüx þ fx;

∂xσxy þ ∂yσyy þ ∂zσyz ¼ ρüy þ fy;

∂xσxz þ ∂yσyz þ ∂zσzz ¼ ρüz þ fz; (4)

where ρ is the mass density and fi are the components of external
body forces and a dot above a variable denotes time differentiation.

Law of heat conduction

γΔT ¼ cð _T þ τT̈Þ þ T0βð_ϵþ τϵ̈Þ þ q; (5)

where γ is the coefficient of heat conduction (or thermal conduc-
tivity), c is the specific heat of the unit volume in the absence
of deformation, τ is a relaxation time, q is a heat source, and Δ
is the Laplacian (Rudgers, 1990). Biot (1956) and Deresiewicz
(1957) do not consider the relaxation term, leading to unphysical
results.
Substituting the stress-strain relations into the equations of mo-

mentum conservation and using the strain-displacement relations,
we obtain compact equations for the displacement components
and temperature fluctuation

μuj;kk þ ðλþ μÞuk;kj − βT;j ¼ ρüj;

γT;kk ¼ cð _T þ τT̈Þ þ T0βð _uk;k þ τük;kÞ þ q; (6)
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where Einstein implicit summation is assumed. Deresiewicz (1957)
equations assume τ ¼ 0 (Fourier’s law). We use the notation of this
paper because α as given by Biot is three times that of Deresiewicz,
whereas Rudgers (1990) defines β as 3α, without the bulk modulus
λþ 2μ∕3.

PLANE-WAVE ANALYSIS

Let us assume that the displacement vector u, and T can be de-
scribed by the following plane waves:

u ¼ U exp½iωðt − s · xÞ�; T ¼ T0 exp½iωðt − s · xÞ�; (7)

where ω is the angular frequency, s is the slowness vector, x is the
position vector, and i ¼ ffiffiffiffiffiffi

−1
p

. In general s ¼ sR − iᾱ∕ω, where ᾱ
is the attenuation vector, and the plane wave is termed inhomo-
geneous because these real and imaginary vectors do not point
out in the same direction. Assuming homogeneous fields, we have
s ¼ sðl1; l2; l3Þ⊤, where s ¼ 1∕Vc ¼ sR − iᾱ∕ω, where Vc is the
complex velocity, ᾱ is the attenuation factor, and li are the directions
cosines defining the propagation direction. Here, these cosines do not
appear in the following calculations because the medium is isotropic.

Dispersion relation and complex velocity

If we consider S-waves, i.e., Uili ¼ 0 (the displacement vector is
perpendicular to the propagation direction), we obtain, after replacing
the plane waves into equation 6, the dispersion relation (Deresiewicz,
1957):

μk2 − ρω2 ¼ 0; (8)

where k ¼ ωs is the complex wavenumber. This gives a phase
velocity

VS ¼
ffiffiffi
μ

ρ

r
: (9)

Then, S-waves are not affected by the thermal effects, basically
because the shear stresses are independent of temperature.
When the displacement vector is pointing in the direction of the

wavenumber vector, i.e., when Uili ¼ 1, we obtain the dispersion
relation for the P-waves, whose complex velocities Vc are solutions
of

V4
c − ðV2

A þMÞV2
c þMV2

I ¼ 0; M ¼ iωa2

1þ iωτ
; (10)

where VI and VA are the isothermal and adiabatic phase velocities
(see Rudgers, 1990), given by, respectively

VI ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
λþ 2μ

ρ

s
and VA ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
V2
I þ b2

q
; (11)

where M is a complex kernel arising from a Maxwell mechanical
model of viscoelasticity (e.g., Carcione, 2014), and

a ¼
ffiffiffi
γ

c

r
; b ¼ β

ffiffiffiffiffiffi
T0

ρc

s
; (12)

where a is the thermal diffusivity.
Equation 10 has the solutions

2V2
c ¼ V2

A þM �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðV2

A þMÞ2 − 4MV2
I

q
: (13)

There are two P-wave solutions, an elastic E-wave (plus sign) and a
thermal T-wave (minus sign). At ω ¼ 0, we have two real solutions:

Vc ¼ 0 ðT-waveÞ; Vc ¼ VA ðE-waveÞ: (14)

For c → ∞, we obtain Vc ¼ VI, whereas for γ → 0, we have
Vc ¼ VA.
Rudgers (1990) takes

τ ¼ γ

cV2
I

(15)

for his lattice model (see his equations 35, 38, and 58), and we as-
sume this value here to illustrate the theory, giving a relaxation peak
at laboratory frequencies for typical rocks as we shall see below.
Then, for ω → ∞, we have M → a2∕τ ¼ V2

I and the solution is

2V2
c ¼ V2

A þ V2
I �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðV2

A þ V2
I Þ2 − 4V4

I

q
: (16)

Because of the choice 15, γ → ∞ and ω → ∞ are equivalent.
Let us denote the high-frequency limit E- and T-wave velocities,
solutions of 16, by VE∞ and VT∞, respectively. Then, VE∞ >
VA > VI > VT∞.
A range of values of τ yields a superposition of relaxation peaks

leading to a general dependence of attenuation with frequency (e.g.,
Wang and Santamarina, 2007). High and low values of τ correspond
to peak locations, fp at low and high frequencies, respectively, with

fp ≈
1

2πτ
: (17)

Phase velocity, attenuation, and quality factors

The phase velocity and attenuation factor can be obtained from
the complex velocity as

VP ¼ ½ReðV−1
c Þ�−1 and A ¼ −ω ImðV−1

c Þ; (18)

respectively (e.g., Carcione, 2014).
Deresiewicz (1957) introduces the attenuation coefficient as the

ratio of the energy dissipated per stress cycle to the total vibrational
energy. It is

L ¼ 4π ·
AVP

ω
: (19)

2D DIFFERENTIAL EQUATIONS OF MOTION

We consider the 2D case in the ðx; zÞ plane and solve the differ-
ential equations by using the first-order time-derivative approach,
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called particle velocity-stress formulation in elasticity. Here, it
should be called particle velocity-stress-temperature formulation.

Particle velocity-stress-temperature formulation

Denoting the particle-velocity components by Vi, we have from
equations 1–5

_Vx ¼ ρ−1ð∂xσxx þ ∂zσxz − fxÞ ≡ Πx;

_Vz ¼ ρ−1ð∂xσxz þ ∂zσzz − fzÞ ≡ Πz;

_σxx ¼ 2μ_ϵxx þ λ_ϵ − βψ þ _fxx;

_σzz ¼ 2μ_ϵzz þ λ_ϵ − βψ þ _fzz;

_σxz ¼ 2μ_ϵxz þ _fxz;

_T ¼ ψ ;

_ψ ¼ ðcτÞ−1½γΔT − q − T0βð_ϵþ τð∂xΠx þ ∂zΠzÞÞ� −
1

τ
ψ ;

(20)

where

_ϵ ¼ _ϵxx þ _ϵzz;

_ϵxx ¼ ∂xVx; _ϵzz ¼ ∂zVz;

2_ϵxz ¼ ∂xVz þ ∂zVx;

ΔT ¼ Txx þ Tzz: (21)

The algorithm

The 2D velocity-stress differential equations can be written in
matrix form as

_vþ s ¼ Mv; (22)

where

v ¼ ½Vx; Vz; σxx; σzz; σxz; T;ψ �⊤ (23)

is the unknown array vector

s ¼ ½fx∕ρ; fz∕ρ; ; _fxx; _fzz; _fxz; 0; q0 �⊤ (24)

is the source vector, andM is the propagation matrix containing the
spatial derivatives and material properties, where q

0 ¼ −ðcτÞ−1q.
The solution to equation 22 subject to the initial condition

vð0Þ ¼ v0 is formally given by

vðtÞ ¼ expðtMÞv0 þ
Z

t

0

expðτMÞsðt − τÞdτ; (25)

where expðtMÞ is called evolution operator.
The eigenvalues of M may have negative real parts and differ

greatly in magnitude. The presence of large eigenvalues, together
with small eigenvalues, indicates that the problem is stiff. Moreover,
the presence of real positive eigenvalues can induce instability in
the time-stepping method. To solve these problems, the differential
equations are solved with the splitting algorithm used by Carcione

and Quiroga-Goode (1995) and Carcione and Seriani (2001). The
propagation matrix can be partitioned as

M ¼ Mr þMs; (26)

where subscript r indicates the regular matrix, and subscript s denotes
the stiff matrix, involving the quantity γ and the coupling terms. The
evolution operator can be expressed as expðMr þMsÞt. It is easy to
show that the product formula

expðMdtÞ¼exp

�
1

2
Msdt

�
expðMrdtÞexp

�
1

2
Msdt

�
(27)

is second-order accurate in dt. Equation 27 allows us to solve the
unstable equations separately. From equation 20, these are

_σxx ¼ −βψ ;

_σzz ¼ −βψ ;

_ψ ¼ −
1

τ
ψ ¼ −

cV2
I

γ
ψ ; (28)

where Ms has only these elements different from zero: Ms37 ¼ −β,
Ms47 ¼ −β, and Ms77 ¼ −1∕τ.
Let us discretize the time variable as t ¼ ndt, where dt is the time

step, and denote with a superscript “�” the intermediate fields to
obtain the solution at ðnþ 1Þdt fields from fields at ndt. Equa-
tion 28 has the solution

σ�xx ¼ σnxx þ τβ½expð−dt∕τÞ − 1�ψn;

σ�zz ¼ σnzz þ τβ½expð−dt∕τÞ − 1�ψn;

ψ� ¼ expð−dt∕τÞψn: (29)

The regular operator expðMrdtÞ is approximated with a fourth-or-
der Runge-Kutta solver. The output vector is

vnþ1 ¼ v� þ dt
6
ðΔ1 þ 2Δ2 þ 2Δ3 þ Δ4Þ; (30)

where

Δ1 ¼ Mrv� þ sn;

Δ2 ¼ Mrðv� þ
dt
2
Δ1Þ þ snþ1∕2;

Δ3 ¼ Mrðv� þ
dt
2
Δ2Þ þ snþ1∕2;

Δ4 ¼ Mrðv� þ dtΔ3Þ þ snþ1; (31)

and v� is the intermediate output vector obtained after the operation
with the stiff evolution operator. Then, ψ� is input to a Runge-Kutta
fourth-order time-stepping algorithm (involving matrix Mr), and
the spatial derivatives are calculated with the Fourier method by
using the FFT (Carcione, 2014). This spatial approximation is in-
finitely accurate for band-limited periodic functions with cutoff spa-
tial wavenumbers, which are smaller than the cutoff wavenumbers
of the mesh. Due to the splitting algorithm, the modeling is second-
order accurate in the time discretization.
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We give here an alternative time-integration method based on the
Crank-Nicolson scheme (see Appendix B). Although it has a first-
order accuracy in time, it is more stable than the previous technique
for low values of γ.

PHYSICS AND SIMULATIONS

We consider the following reference properties:

density; ρ∶2650 kg∕m3

specific heat; c∶117 kg∕ðms2°KÞ
thermal conductivity; γ∶10.5 m kg∕ðs3°KÞ
coefficient of thermal expansion; α∶0.33 × 10−5°K−1

P-wave velocity; VI ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðλþ 2μÞ∕ρ

p
∶2457 m∕s

S-wave velocity; VS ¼
ffiffiffiffiffiffiffiffi
μ∕ρ

p
∶1505 m∕s

absolute temperature; T0∶300°K;

relaxation time; τ ¼ γ∕ðcV2
I Þ∶1.49 × 10−8 s; (32)

where we have expressed the quantities in the international systems
of units (SI). These values yield

a2 ¼ 0.0897 m2∕s;

b ¼ 2464 m∕s;

β ¼ 79200 kg∕ðms2°KÞ: (33)

With the choice of τ above, M → V2
I for ω → ∞ (see equation 10).

Figures 1 and 2 show the phase velocities of the elastic (E) and
thermal (T) waves as a function of frequency for two values of γ. The
inflexion point in the E-wave velocity occurs at a frequency of ap-
proximately fp ¼ V2

I ∕ð2πa2Þ, at nearly 20 MHz in the first case and
50 Hz in the second case. As can be seen, the E-wave low-frequency
velocity is the adiabatic one, i.e., VA ¼ 3480 m∕s, whereas the iso-
thermal velocity (VI ¼ 2457 m∕s) is not involved in the coupled case.
The high-frequency limit velocity is VE∞ ¼ 3980 m∕s. We can see
that in both cases, the attenuation coefficient of the E-wave has a peak
with L ≈ 1. From equation 19, this corresponds to an attenuation fac-
tor A ¼ 2f∕VP, where f is the frequency. Because Q ≈ πf∕ðVPAÞ,
we obtain a peak quality factor Q ¼ π∕2, a very strong attenuation.
The location of the relaxation peak depends on the values of γ and τ.
Because here γ and τ are related by equation 15, we obtain a peak at
the ultrasonic band for values of γ typical of rocks. Increasing τ, the
peak moves to low frequencies. The time scale for heat diffusion is a
function of the length scale involved in the process of heat flow.
The behavior of the two P-waves is similar to that of the fast and

slow P-waves in poroelasticity (e.g., Carcione, 2014). As the slow
P-wave, the T-wave is diffusive at low frequencies. In Biot’s theory,
it is the fluid viscosity/permeability ratio to determine this behavior,
whereas here, it is the value of the thermal conductivity/specific heat
ratio (a2 ¼ γ∕c), mainly the value of γ (if c → 0,M → V2

I , b → ∞,
and Vc → ∞; c → ∞ yields Vc ¼ VI). Zero viscosity and infinite
thermal conductivity yield the same effect, i.e., a wave-like slow
wave, as can be seen in the following analysis.
The thermal conductivity γ ranges from 24; 000 kg∕ðs3°KÞ for

CRC aluminum to 0.023 kg∕ðs3°KÞ for air, whereas rocks filled
with fluids have a range between 1 and 12 mkg∕ðs3°KÞ. The unre-

alistic values assumed here are intended for a better illustration
of the physics. Figure 3 shows the phase velocity (Figure 3a)
and attenuation coefficient (Figure 3b) as a function of frequency
for two extremes values of γ. As can be seen, for small γ, the T-wave
is diffusive, whereas for high γ, the T-wave propagates with a veloc-
ity of approximately VT∞ ≈ 1500 m∕s, close to the S-wave velocity.
The attenuation levels are the same for both values of γ, which

E-wave

T-wave

T-wave

T-wave

E-wave

E-wave

a)

b)

c)

Figure 1. (a) Phase velocity and (b and c) attenuation coefficient as
a function of frequency for γ ¼ 10.5 m kg∕ðs3°KÞ. The attenuation
peaks at tens of MHz.
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affects the location of the E-wave relaxation peak, as well as the
attenuation (step-like) of the T-wave. At the two limits, i.e., γ ¼ 0,
we have Vc ¼ VA (E-wave) and Vc ¼ 0 (T-wave), and for γ ¼ ∞,
we get M ¼ V2

I and

2V2
c¼V2

AþV2
I �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðV2

AþV2
I Þ2−4V4

I

q
¼2V2

I þb2�b
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2þ4V2

I

q
;

(34)

i.e., two finite velocities as can be seen in Figure 3a for the high value
of γ (blue and green curves),VE∞ ¼ 3980 m∕s andVT∞¼1517m∕s,
respectively (the adiabatic E-wave velocity is VA ¼ 3480 m∕s).

We obtain the eigenvalues of the propagation matrix M in
Appendix A, where we consider the 1D acoustic case. In order
that the system of equations is stable, the eigenvalues must be located
in the negative iωc plane. For the γ values considered in Figures 1
and 2, the eigenvalue of equation A-4, η¼−16 × 106 s−1 (γ ¼
10.5 m kg∕ðs3°KÞ) and η¼−157s−1 (γ¼1.13 × 106 mkg∕ðs3°KÞ),
respectively, for a wavenumber κ¼0. When κ¼π∕dx, dx¼
0.1mm, the results are shown in Figure 4 for both cases. The real
positive eigenvalues imply instability when using explicit time-inte-
gration methods, such as the Runge-Kutta technique, but these eigen-
values are handled by the time-splitting method. To have numerical
stability, the domain of convergence of the time-stepping method
should include the real negative eigenvalues. The explicit fourth-order
Runge-Kutta method requires ηdt < 2.78. For dt ¼ 10 ns, use below
in the simulations, η < 278 × 1061∕s ¼ 278 (2π MHz).

We compute snapshots of the wavefield, where we consider a
231 × 231 mesh, with square cells and a grid spacing of dx ¼ dz ¼
0.1 mm (a sample of 2.3 × 2.3 cm). The source is a vertical force
located at the center of the mesh and has the time history

a)

b)

-

-

-

-

-

-

-

-

Figure 3. (a) Phase velocity and (b) attenuation coefficient as a
function of frequency for two extremes values of γ, given in
mkg∕ðs3°KÞ.

a)

b)

c)

E-wave

E-wave

E-wave

T-wave

T-wave

T-wave

Figure 2. (a) Phase velocity and (b and c) attenuation coefficient as
a function of frequency for γ ¼ 4.5 × 106 m kg∕ðs3°KÞ. The attenu-
ation peaks at the seismic band.
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hðtÞ ¼ cos½ðt − t0Þf0� exp½−2ðt − t0Þ2f20�; (35)

where f0 ¼ 3.5 MHz is the central frequency and t0 ¼ 3∕ð2f0Þ is
a delay time. The time step of the Runge-Kutta algorithm is
dt ¼ 10 ns. Figure 5 shows the snapshot of the vertical component
of the particle velocity at 3 μs, corresponding to the uncoupled case
(α ¼ 0). The source is a vertical force fz. The P- and S-waves can
be seen, with the P wavefront traveling with the isothermal veloc-
ity VI.
Figures 6 and 7 show the vertical particle velocity (a) and temper-

ature field (b) for a heat source and γ ¼ 10.5 m kg∕ðs3°KÞ and
γ ¼ 1.13 × 106 m kg∕ðs3°KÞ, respectively. No S-wave is present as
expected. The velocity of the E-wave in Figure 6 is slightly less than
VE∞, according to Figure 1a (the source central frequency is
3.5 MHz, i.e., 6.5 in abscissa). In Figure 7, the velocities of the

Grid points

E-wave

T-wave

E-wave

a)

b)

Figure 6. Snapshots of the vertical component of the (a) particle
velocity and (b) temperature at 3 μs, corresponding to the coupled
case with γ ¼ 10.5 m kg∕ðs3°KÞ. The perturbation is a heat source
q, with a central frequency of 3.5 MHz. The E wavefront travels
with a velocity between VA and VE∞.

Real positive eigenvalues
handled by splitting

Real positive eigenvalues
handled by splitting

a)

b)

Figure 4. Eigenvalues of the propagation matrix M in the iωc plane
for κ ¼ π∕dx, with dx ¼ 0.1 mm. (a and b) correspond to the cases in
Figures 1 and 2, respectively, with μ ¼ 0. The phase velocities and real
frequencies are as follows: (a) VP ¼ �1502 m∕s and f ¼ 7.5 MHz;
VP ¼ 905 m∕s and f ¼ 4.5 MHz; (b) VP ¼ �1230 m∕s and
f ¼ 6.15 MHz; VP ¼ �1228 m∕s and f ¼ 6.14 MHz.

Grid points

G
rid

 p
oi

nt
s

E or P-wave

S-wave

Figure 5. Snapshots of the vertical component of the particle velocity
at 3 μs, corresponding to the uncoupled case. The source is a vertical
elastic force of central frequency 3.5 MHz. The P wavefront travels
with the isothermal velocity VI.
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E- and T-waves are VE∞ and VT∞, respectively. The T-wave is
diffusive in Figure 6 because it is highly attenuated, according
to the curves of Figure 1b, whereas the attenuation is negligible
in Figure 7, in agreement with the attenuation curve of Figure 2b.
Figure 8 shows the vertical particle velocity (Figure 8a)

and temperature field (Figure 8b) for a vertical force and
γ ¼ 10.5 m kg∕ðs3°KÞ, where the fields are enhanced, compared
with the previous plots, to highlight the wave modes. In this case,
the S-wave is generated but the T-wave (or diffusive mode) is not so
strong as that generated by the heat source (see Figure 6).
Next, we compute fields in the seismic band by using a Crank-Nic-

olson scheme (see Appendix B). We consider a 231 × 231 mesh,
with square cells and a grid spacing of dx ¼ dz ¼ 10 m

(2.31 × 2.31 km). The source is dilatational (fxx ¼ fzz) located at
the center of the mesh with f0 ¼ 25 Hz. The time step is dt ¼ 1 ms.

Figure 9 shows snapshots of the vertical component of the particle
velocity at 0.3 s, corresponding to the uncoupled (Figure 9a) (α ¼ 0)
and coupled (Figure 9b and 9c) cases. In Figure 9a, the E wavefront
travels with the isothermal velocity VI ¼ 2457 m∕s. In Figure 9b
and 9c, the velocities are VA ¼ 3480 m∕s (adiabatic) and VE∞ ¼
3980 m∕s (high-frequency limit), corresponding to low and high
values of the thermal conductivity γ. The T-wave travels with the
velocity, VT∞ indicated in Figure 3a (green line).
Finally, we present an example of inhomogeneous model. A

plane interface separates two half spaces. The upper medium has
γ ¼ 4.5 × 107 m kg∕ðs3°KÞ and the P and S used for the previous
simulations, whereas the lower medium has γ ¼ 10.5 m kg∕ðs3°KÞ,
VP ¼ 3200 m∕s, and VS ¼ 1800 m∕s. The other properties are the
same for both half-spaces. Figure 10 shows the snapshots of the
vertical component of the particle velocity (Figure 10a) and temper-

Grid pointsa)

b)

E-wave

T-wave

T-wave

E-wave

Figure 7. Snapshots of the vertical component of the (a) particle
velocity and (b) temperature at 3 μs, corresponding to the coupled
case with γ ¼ 4.5 × 106 m kg∕ðs3°KÞ. The perturbation is a heat
source q, with a central frequency of 3.5 MHz. The E and T wave-
fronts travel with the velocities VE∞ and VT∞, respectively.

Grid points

E-wave

a)

b)

S-wave

E-wave

T-wave

Figure 8. Snapshots of the vertical component of the (a) particle
velocity and (b) temperature at 3 μs, corresponding to the coupled
case with γ ¼ 10.5 m kg∕ðs3°KÞ. The source is a vertical elastic
force of central frequency 3.5 MHz. The S-wave is uncoupled with
the temperature field.
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ature field (Figure 10b) at the 0.3 s propagation time, such that the
wave does not cross the boundary and absorbing strips are not
needed. The perturbation is a heat source, indicated by a star, with
a central frequency of 70 Hz. S-waves are decoupled and should not
be present in Figure 10b. A tentative interpretation of the different
events is as follows: RP, reflected P wave; RTP, reflected T-wave
and converted to P; TrT, transmitted T-wave; TrTP, transmitted
T-wave converted to P; TrP, transmitted P-wave; and RT, reflected
T-wave. Head (lateral) waves with a planar wavefront can also be
observed. Even if the heterogeneity is a simple plane interface, the
wavefield is complex and could be more complex in the presence
of significant S waves, generated, for instance, by a vertical elas-
tic force.

Grid points

E-wave

a)

b)

c)

Isothermal velocity

Adabiatic velocity

High-frequency velocity

E-wave

E-wave

T-wave

Figure 9. Snapshots of the vertical component of the particle veloc-
ity at 0.3 s, corresponding to the (a) uncoupled case (α ¼ 0),
(b) γ ¼ 10.5 m kg∕ðs3°KÞ, and (c) γ ¼ 1015 m kg∕ðs3°KÞ. The
source is a dilatational perturbation of central frequency 50 Hz
(seismic band).

Grid pointsa)

b)

P-wave

TrP

RTP

RP

T-wave

RT

TrT

*

RTP

TrTP

Figure 10. Inhomogeneous model. Snapshots of the vertical com-
ponent of the (a) particle velocity and (b) temperature field at
0.3 s propagation time. The horizontal interface separates the two
half spaces of dissimilar properties. The upper medium has
γ ¼ 4.5 × 107 m kg∕ðs3°KÞ (T-wave wave-like) and the P and S
used for the previous simulations, whereas the lower medium has
higher velocities and γ ¼ 10.5 m kg∕ðs3°KÞ (T-wave diffusive). The
other properties are similar. The perturbation is a heat source, in-
dicated by a star, with a central frequency of 70 Hz. Direct, reflected
(R), and transmitted (Tr) waves can be observed. The P-wave has to
be identified with the E-wave.
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CONCLUSION

We have proposed a numerical algorithm to solve the differential
equations of thermoelasticity, i.e., coupling elasticity with thermal
effects. The modeling is a direct-grid method that allows us to handle
spatially inhomogeneous media. It is based on the Fourier method to
compute the spatial derivatives and a Runge-Kutta time-stepping
technique combined with a splitting method to compute the time evo-
lution of the wavefield. The splitting or partition method solves a
numerical instability problem. Another time-stepping method, based
on a Crank-Nicolson scheme, provides an alternative solution for
verification of the numerical solution.
Three waves propagate: the E-wave (or fast P-wave), a thermal P-

wave/diffusion (T-wave), and the S-wave. The first two are coupled,
and thermal effects induce elastic dissipation of the E-wave. At low
frequencies, the T-wave is a diffusive mode. The physics of wave
propagation is analyzed in detail for several values of the properties,
and the velocities of the different wave modes are precisely deter-
mined under different conditions. The simulations show the com-
plexity of the wavefield, which can be interpreted after a detailed
study of the physics. The location of thermoelastic relaxation peak
describing the attenuation in the frequency axis depends on the dif-
fusion length of the heat flow. Future research involves the gener-
alization of the proposed modeling algorithm to the anisotropic and
poroelastic cases.
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APPENDIX A

EIGENVALUES OF THE PROPAGATION MATRIX

To study the eigenvalues of M (equation 22), we set μ ¼ 0 be-
cause the S-wave is not affected by the thermal effects, and we con-
sider the 1D case. Let V and σ denote the particle velocity and
stress, respectively. From equation 20, we obtain

_V ¼ ρ−1∂xσ;

_σ ¼ λ∂xV − βψ ;

_T ¼ ψ ;

_ψ ¼ ðcτÞ−1½γ∂xxT − T0βð∂xV þ τρ−1∂xxσÞ� −
1

τ
ψ ;

¼ V2
I ∂xxT −

V2
I

γ
ðβT0∂xV þ cψÞ − βT0

ρcV2
I

∂xxσ; (A-1)

using equation 15, where VI ¼
ffiffiffiffiffiffiffiffi
λ∕ρ

p
and β ¼ 3λα. The field vector

becomes v ¼ ½V; σ; T;ψ �⊤, and let us consider a plane wave

v ¼ v0 exp½iðωct − κxÞ�; (A-2)

where ωc is the complex frequency and κ is the real wavenumber.
Equation 22 gives an eigenvalue equation for the eigenvalue
η ¼ iωc, to solve for the determinant of the matrix

M − ηI4 ¼

0
BBB@

−η −iρ−1κ 0 0

−iλκ −η 0 −β
0 0 −η 1

iV2
I
βT0

γ κ βT0

ρcV2
I

κ2 −V2
I κ

2 − cV2
I

γ − η

1
CCCA;

(A-3)

where I4 is the 4 × 4 identity matrix. The numerical discretization
uses wavenumbers from 0 to π∕dx (the Nyquist wavenumber),
where dx is the grid spacing. For κ ¼ 0, there are three eigenvalues
equal to zero and

η ¼ −
cV2

I

γ
¼ −

1

τ
: (A-4)

The complex velocity is

Vc ¼
ωc

κ
: (A-5)

According to Carcione (2014), the phase velocity is

VP ¼ ReðVcÞ (A-6)

and ω ¼ ReðωcÞ.

APPENDIX B

CRANK-NICOLSON EXPLICIT SCHEME

The Crank-Nicolson explicit scheme has been used by Carcione
and Quiroga-Goode (1995) to solve the equations of poroelasticity.
The scheme, adapted to the thermoelasticity equations, is

D1∕2Vx ¼ ρ−1ð∂xσnxx þ ∂zσnxz − fnxÞ ¼ Πn
x;

D1∕2Vz ¼ ρ−1ð∂xσnxz þ ∂zσnzz − fnz Þ ¼ Πn
z ;

_ϵ ¼ ∂xA1∕2Vx þ ∂zA1∕2Vz;

ϵ̈ ¼ ∂xΠn
x þ ∂zΠn

z ;

γΔTn ¼ cðA1∕2ψ þ τD1∕2ψÞ þ T0βð_ϵþ τϵ̈Þ þ qn;

Tnþ1 ¼ Tn þ dtψnþ1∕2;

D1σxx ¼ 2μ∂xA1∕2Vx þ λ_ϵ − βA1∕2ψ ;

D1σzz ¼ 2μ∂zA1∕2Vz þ λ_ϵ − βA1∕2ψ ;

D1σxz ¼ 2μð∂zA1∕2Vx þ ∂xA1∕2VzÞ; (B-1)

where

Djϕ ¼ ϕnþj − ϕn−j

2jdt
and Ajϕ ¼ ϕnþj þ ϕn−j

2
; (B-2)

are the central differences and mean value operators, based on a
Crank-Nicolson (staggered) implicit scheme (Jain, 1984, p. 269) for

T10 Carcione et al.



the particle velocities. In this three-level scheme, ðVx; Vz;ψÞ at time
ðnþ 1∕2Þdt and stresses and temperature at time ðnþ 1Þdt are com-
puted explicitly from ðVx; Vz;ψÞ at time ðn − 1∕2Þdt and stresses
and temperature at time ðn − 1Þdt and ndt, respectively.

The fifth equation of equation B-1 yields

ðdtþ 2τÞψnþ1∕2 ¼ 2dt
c

½γΔTn − T0βð_ϵþ τϵ̈Þ þ qn�
− ðdt − 2τÞψn−1∕2: (B-3)

The stability analysis has been performed in Carcione and
Quiroga-Goode (1995), i.e., a Von Neumann stability analysis based
on the eigenvalues of the amplification matrix (Jain, 1984, p. 418).
The algorithm has first-order accuracy, but it possesses the stability
properties of implicit algorithms, and the solution can be obtained
explicitly.
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