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Abstract
We develop a numerical algorithm for simulation of wave propagation in anisotropic ther-
moelastic media, established with a generalized Fourier law of heat conduction. The wave-
field is computed by using a grid method based on the Fourier differential operator and
a first-order explicit Crank-Nicolson algorithm to compute the spatial derivatives and dis-
cretize the time variable (time stepping), respectively. The model predicts four propagation
modes, namely, a fast compressional or (elastic) P wave, a slow thermal P diffusion/wave
(the T wave), having similar characteristics to the fast and slow P waves of poroelasticity,
respectively, and two shear waves, one of them coupled to the P wave and therefore affected
by the heat flow. The thermal mode is diffusive for low values of the thermal conductivity
and wave-like (it behaves as a wave) for high values of this property. As in the isotropic case,
three velocities define the wavefront of the fast P wave, i.e, the isothermal velocity in the
uncoupled case, the adiabatic velocity at low frequencies, and a higher velocity at high fre-
quencies. The heat (thermal) wave shows an anisotropic behavior if the thermal conductivity
is anisotropic, but an elastic source does not induce anisotropy in this wave if the thermal
properties are isotropic.

Keywords Thermoelasticity · Anisotropy · Thermal wave · Simulation · Fourier
pseudospectral method

Mathematics Subject Classification 86-XX

1 Introduction

The theory of thermoelasticity combines heat conduction with elasticity. Specifically, it de-
scribes the coupling between the fields of deformation and temperature. Relevant geophys-
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ical studies involve seismic attenuation (Zener [37]; Treitel [29]; Savage [23]; Armstrong
[1]; Carcione [5]; Gurevich and Carcione [15]), geothermal exploration (e.g., Jacquey et al.
[16]) and earthquake seismology (Boschi [4]). Basically, a heat source generates viscoelas-
tic waves and a mechanical source induces a temperature field, whose flow equalizes the
temperature difference with the surroundings giving rise to energy dissipation.

Biot [3], Deresiewicz [11], Savage [23] and Armstrong [1] used the Fourier law of heat
conduction, but this formulation has unphysical solutions, and a more general system of
equations has been proposed by Lord and Shulman [20] (with one relaxation time) and
Green and Lindsay [14] (with two relaxation times) to overcome this problem. An alternative
theory is presented by Sellitto et al. [24]. A plane-wave analysis for isotropic media has been
performed by Rudgers [22], based on a relaxation term in the heat equation (Vernotte [30];
Cattaneo [10]) that converts the thermal diffusion to wave-like propagation with finite speeds
at high frequencies. The theory predicts two P waves and an S wave, the latter not affected
by the thermal effects (in homogeneous media). The P waves are an elastic wave (E wave)
and a thermal wave (T wave) having similar characteristics to the fast and slow P waves
of poroelasticity, respectively (Biot [3]). Carcione and co-workers solved the equations of
isotropic thermoelasticity and thermo-poroelasticity with direct grid methods and, to our
knowledge, simulated the T wave (2nd sound) and slow Biot wave (4th sound) jointly for
the first time (Carcione et al. [6, 8, 9]; Wang et al. [35]). By grid method we mean a full-wave
simulation algorithm, where the model is discretized on a mesh to which different properties
can be assigned to the grid points.

The generalized theory of thermoelasticity developed by Lord and Shulman [20], ex-
tended to the anisotropic case, is essential when dealing with wave propagation in crystals,
fibers and composites, and in general multilayered and fractured media. Tokuoka [28] con-
sidered plane waves, while Banerjee and Pao [2] performed a detailed plane-wave analysis,
showing the four wavefronts present in thermoelastic-anisotropic media. Other authors who
tackled the problem are Dhaliwal and Sherief [12], Kolyano and Shter [19], Sharma and
Singh [26], Verma [31–33], Sharma [25] and Singh [27].

Phenomena such as negative thermal expansion (NTE) is a matter of study in several
fields (e.g., photonics, electronics, medicine), where a combination of positive and negative
linear thermal expansion coefficients is a consequence of high anisotropic elasticity. Romao
et al. [21] found that thermal expansion anisotropy is correlated with elastic anisotropy:
axes with negative thermal expansion are less compliant. Karunarathne et al. [18] analyzed
a crystal, where temperature induces a negative Poisson ratio, a large linear negative thermal
expansion, but positive Grüneisen parameters. A similar problem for layered media has been
investigated by Wang et al. [36].

In this work, we solve the thermoelasticity equations for orthorhombic crystal symme-
try equations by using the Fourier method to compute the spatial derivatives and an explicit
time integration technique (e.g., Carcione [5, 9]). A plane-wave analysis, which provides the
wavefronts and dissipation factors as a function of frequency and propagation direction, ver-
ifies the results, computed as snapshots of the wavefield. The computed wavefields, which
cannot be obtained by an analytical method, (also for homogeneous media), constitute the
novelty of this research. Moreover, the algorithm, being a direct modeling technique, allows
us to handle spatially inhomogeneous media, as shown by the last example. Possible appli-
cations can be the computation of synthetic seismograms and wavefields for non-isothermal
media, where the effect of temperature is important.



Simulation of 3D Wave Propagation in Thermoelastic Anisotropic Media

2 Equations of Thermoelasticity

Let us define by (x, y, z) the position vector, t the time variable, vi , i = 1,2,3 the compo-
nents of the particle velocity field, by σij the components of the stress tensor and by T the
increment of temperature above a reference absolute temperature T0 for the state of zero
stress and strain. In orthorhombic media, the stress-strain relations of thermoelasticity are
given by (Banerjee and Pao [2]; Verma [31–33]):

2.1 Rate of Strain-Particle Velocity Relations:

ε1 = vx,x, ε2 = vy,y, ε3 = vz,z,

2εxy = vy,x + vx,y,

2εxz = vz,x + vx,z,

2εyz = vz,y + vy,z,

(1)

where εij denote the rate of strain components and the comma notation is used for spatial
derivatives.

2.2 Stress-Strain Relations:

σ̇xx = c11ε1 + c12ε2 + c13ε3 − β1Ṫ − fxx,

σ̇yy = c12ε1 + c22ε2 + c23ε3 − β2Ṫ − fyy,

σ̇zz = c13ε1 + c23ε2 + c33ε3 − β3Ṫ − fzz,

σ̇xy = 2c66εxy − fxy,

σ̇xz = 2c55εxz − fxz,

σ̇yz = 2c44εyz − fyz,

(2)

where cIJ are the elastic constants, an overdot denotes time differentiation,

β1 = c11α1 + c12α2 + c13α3,

β2 = c12α1 + c22α2 + c23α3,

β3 = c13α1 + c23α2 + c33α3,

(3)

with αi the coefficients of thermal expansion and fij are external stress forces.

2.3 Equations of Momentum Conservation:

∂xσxx + ∂yσxy + ∂zσxz = ρv̇x + fx,

∂xσxy + ∂yσyy + ∂zσyz = ρv̇y + fy,

∂xσxz + ∂yσyz + ∂zσzz = ρv̇z + fz,

(4)

where ρ is the mass density and fi are the components of external body forces.
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2.4 Law of Heat Conduction:

�γ T = C(Ṫ + τ T̈ ) + T0[β1(ε1 + τ ε̇1) + β2(ε2 + τ ε̇2) + β3(ε3 + τ ε̇3)] + q, (5)

with

�γ = (γ1T,x),x + (γ2T,y),y + (γ3T,z),z, (6)

where γi are the coefficients of heat conduction (or thermal conductivity), C is the specific
heat of the unit volume in the absence of deformation, τ is a relaxation time, and q is a heat
source. Equation (5) generalizes Eq. (2) of Verma [33] to the heterogeneous case, suitable
for direct grid modeling.

Equations (1)-(6) yields the thermoelasticity equations of Carcione et al. [9] in the
isotropic case, where

c11 = c22 = c33 = λ + 2μ,

c12 = c13 = c23 = λ,

c44 = c55 = c66 = μ,

α1 = α2 = α3 = α,

β1 = β2 = β3 = β,

and

γ1 = γ2 = γ3 = γ,

where λ and μ are the Lamé constants.

3 Differential Equations of Motion and Algorithm

We consider the 3D case and solve the differential equations by using the first-order time
derivative approach, termed particle velocity-stress formulation in elasticity. Here, it is
called particle velocity-stress-temperature formulation:

v̇x = ρ−1(∂xσxx + ∂yσxy + ∂zσxz − fx) = �x,

v̇y = ρ−1(∂xσxy + ∂yσyy + ∂zσyz − fy) = �y,

v̇z = ρ−1(∂xσxz + ∂yσyz + ∂zσzz − fz) = �z,

ε1 = ∂xvx, ε2 = ∂yvy, ε3 = ∂zvz,

ε̇1 = ∂x�x, ε̇2 = ∂y�y, ε̇3 = ∂z�z,

Ṫ = ψ,

ψ̇ = (Cτ)−1
{
�γ T − T0[β1(ε1 + τ ε̇1) + β2(ε2 + τ ε̇2) + β3(ε3 + τ ε̇3)] − q − Cψ

}
, (7)

σ̇xx = c11ε1 + c12ε2 + c13ε3 − β1ψ − fxx,

σ̇yy = c12ε1 + c22ε2 + c23ε3 − β2ψ − fyy,
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σ̇zz = c13ε1 + c23ε2 + c33ε3 − β3ψ − fzz,

σ̇xy = c66(∂xvy + ∂yvx) − fxy,

σ̇xz = c55(∂xvz + ∂zvx) − fxz,

σ̇yz = c44(∂yvz + ∂zvy) − fyz,

The differential equations can be written in matrix form as

v̇ + s = M · v, (8)

where

v = [vx, vy, vz, σxx, σyy, σzz, σxy, σxz, σyz, T ,ψ]� (9)

is the unknown array vector,

s = [fx/ρ,fy/ρ,fz/ρ,fxx, fyy, fzz, fxy, fxz, fyz,0, q ′]� (10)

is the source vector, and M is the propagation matrix containing the spatial derivatives and
material properties, where q ′ = (Cτ)−1q .

The spatial derivatives are calculated with the Fourier method by using the fast Fourier
transform (FFT) (see a brief introduction in the next subsection). We present a time-
integration method based on the Crank-Nicolson scheme in Appendix A.

3.1 The Fourier Method

In particular, the Fourier pseudospectral method is the central part of the numerical algo-
rithm, since the numerical spatial dispersion must be avoided in view of the physical dis-
persion caused by the attenuation of the wavefield. This spatial approximation is infinitely
accurate for band-limited periodic functions with cutoff spatial wavenumbers which are
smaller than the cutoff wavenumbers of the mesh (Carcione [5]).

Let us consider the x coordinate. A continuous function u(x) (the wavefield) is approxi-
mated by a truncated series

uN(xj ) =
N−1∑

r=0

ũr exp(ikrxj ) =
N−1∑

r=0

ũr exp(2π irj/N), (11)

where ũr are spectral coefficients, N is the number of grid points,

xj = jdx and kr = 2πr

Ndx
, r = 0, . . . ,N − 1, (12)

are the collocation (grid) points and wavenumbers, respectively, with dx the grid spacing
and i = √−1. The spectral (expansion) coefficients are chosen such that the approximate
solution uN coincides with the solution u(x) at the collocation points. The Fourier method
is appropriate for problems with periodic boundary conditions – for example, a wave which
exits the grid on one side, and reenters it on the opposite side.

The sequence u(xj ) is the inverse discrete Fourier transform of

ũr = 1

N

N−1∑

j=0

u(xj ) exp(−2π irj/N) r = 0, . . . ,N − 1. (13)
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Table 1 Medium properties
density, ρ 3162 m/s

C11, C12, C13 10, 2, 1.5

C22, C23, C33 9, 1, 8

C44, C55, C66 3, 2, 1

v11 = √
c11/ρ 3162 m/s

specific heat, C 117 kg/(m s2 ◦K)

thermal expansion, α1 = α2 = α3 0.33 × 10−5 ◦K−1

absolute temperature, T0 300 ◦K ,

relaxation time, τ = γ /(Cv2
11) 854,701 s

The computation of an spatial derivative of order L by the Fourier method conveniently
reduces to a set of multiplications of the different coefficients ũr , with factors (ikr)

L, since

∂L
x uN(xj ) =

N−1∑

r=0

(ikr)
Lũr exp(ikrxj ). (14)

The spectral coefficients ũr are computed by the FFT. The steps of the calculation of the
first-order fractional partial derivative are as follows:

u(xj ) → FFT → ũr −→ (ikr)
L ũr → FFT−1 → ∂L

x u(xj ). (15)

L = 1 is employed in the algorithm of Appendix A.

4 Physics and Simulations

We consider the properties listed in Table 1, where CIJ = cIJ /ρ is given in (km/s)2 (e.g.,
cIJ = 2.65CIJ in GPa). These values yield

β1 = 118,057, β2 = 104,940, β3 = 91,822 (16)

in kg/(m s2 ◦K). Moreover, let us consider anisotropy of the thermal conductivity, i.e.,

γ1 = 1015 m kg/(s3 ◦K), γ2 = γ1/2, γ3 = 2γ1/3. (17)

Initially, we consider a positive thermal expansion. A plane-wave analysis is performed
in Appendix B, where the wavefronts of the four modes are obtained in the uncoupled case,
i.e., the heat equation is not coupled to the elasticity equations (βi = 0) and the dispersion
equation for the coupled case is established. Figure 1 shows the energy velocities of the
various wave modes. We observe the anisotropic behavior of all the waves, including the
thermal one.

Next, we obtain snapshots of the wavefield, where we consider a 231 × 231 mesh and
grid spacing dx = dy = dz = 10 m. The source is located at the center of the mesh and has
the time history

h(t) = cos[2π(t − t0)f0] exp[−2(t − t0)
2f 2

0 ], (18)

where f0 is the central frequency and t0 = 3/(2f0) is a delay time.
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Fig. 1 Energy velocities of the
various wave modes in the
uncoupled case. The heat
equation is not coupled to the
elasticity equations (βi = 0)
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Fig. 2 Snapshots of the wavefield in the uncoupled case (YZ-plane). The source is fx = fy = fz = q = 1.
The heat equation is not coupled to the elasticity equations (βi = 0)

We assume f0 = 25 Hz and run the simulations with dt = 0.5 ms. Figures 2, 3 and 4 show
snapshots of the particle-velocity components in the YZ, XZ and XY symmetry planes at
250 ms in the uncoupled case. The source is composite (heat and directional elastic), i.e.,
q = 1, fx = fy = fz = 1. We can clearly see the qP and qS waves in the snapshots and the
pure SH wave as expected in the YZ-plane (vx -component), XZ-plane (vy -component) and
XY-plane (vz-component), being this wave and antiplane mode. The T wave is anisotropic,
in agreement with the curves in Fig. 1. In relative terms, if we consider the amplitudes
of the vx snapshot in the XZ-planes and T snapshot in the XY-plane to have a maximum
amplitude of 1, the relative amplitudes in absolute value, max (vx, vy, vz, T ) are: YZ-plane:
(0.5,0.9,0.8,1), XZ-plane: (1,0.5,0.7,1), XY-plane: (0.94,0.75,0.56,1). For the choice
of τ given above, the T-wave velocity is close to the P-wave velocity. As we shall see,
elastic-heat coupling reduces the T-wave velocity.
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Fig. 3 Snapshots of the wavefield in the uncoupled case (XZ-plane). The source is fx = fy = fz = q = 1.
The heat equation is not coupled to the elasticity equations (βi = 0)

Let us now consider the coupled case and only a heat source, i.e., q = 1. Figure 5 shows
the snapshots in all the symmetry planes, with the first, second, third and fourth rows cor-
responding to vx , vy , vz and T , respectively. The heat source induces elastic motion and
the coupling conversion from elastic motion to heat as can be seen in the T snapshots. The
presence of qS waves is due to the coupling between the qP and qS motion. The heat source
generates qP waves which in turn generate qS energy. The qS waves in this case are su-
perposed to the T wave, since the velocity of the T waves is close to the S-wave velocity
when there is elastic-heat coupling for this particular choice of τ . As can be seen, the an-
tiplane fields have zero amplitude (computer noise), because this shear mode is not coupled
to the qP mode and heat equation (see diagonal snapshots in Fig. 5). This holds in symmetry
planes and homogeneous media. The maximum T amplitude is 0.3 that of the uncoupled
case, indicating that 2/3 of the heat energy has been transformed to elastic energy.
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Fig. 4 Snapshots of the wavefield in the uncoupled case (XY-plane). The source is fx = fy = fz = q = 1.
The heat equation is not coupled to the elasticity equations (βi = 0)

Figure 6 shows snapshots in the coupled case for a source fx = fy = fz = 1, i.e., only an
elastic source. This source generates qP and qS waves, and T waves due to the elastic/heat
coupling (see lower panel). On the other hand, Fig. 7 displays snapshots of vz and T in the
YZ-plane and coupled case. The source is fxx = fyy = fzz = 1, i.e., a dilatational source.
The wavelike and diffusive cases correspond to γ1 = 1015 and γ1 = 10.5 (in m kg/(s3 ◦K)),
respectively. This source would generate P and T waves and part of qS waves due to the
qP-qS coupling caused by anisotropy. In the diffusive case, the T wave energy remains at
the source location (it disappears as a wave).

Let us now consider the wavelike case and replace τ by 9 τ . According to equation (B.8)
this choice implies a lower velocity in the uncoupled case (three times lower) and even lower
in the coupled case, so that the T and S wavefronts are separated. Taking equation (B.8) as
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Fig. 5 Snapshots of the wavefield in the coupled case. The source is q = 1, i.e., only a heat source. Since
the T and qS waves have a similar velocity, the fields are superposed (inner events). In relative terms, if we
consider the amplitude of the T snapshot in the XY-plane to have a maximum amplitude of 1, the amplitudes
in absolute, max (vx, vy, vz, T ) are: YZ-plane: (0, 0.05, 0.044, 0.55), XZ-plane: (0.13,0,0.1,0.86), XY-
plane: (0.16,0.1,0.1,1). The maximum T amplitude is 0.3 that of the uncoupled case, indicating that 2/3 of
the heat energy has been transformed to elastic energy
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Fig. 6 Snapshots of the wavefield in the coupled case. The source is fx = fy = fz = 1, i.e., only an elastic
source. Since the T and qS waves have a similar velocity, the fields are superposed (inner events). In rela-
tive terms, if we consider the amplitude of the T snapshot in the XY-plane to have a maximum amplitude
of 1, the amplitudes in absolute, max (vx, vy, vz, T ) are: YZ-plane: (0.007,0.007,0.007,0.3), XZ-plane:
(0.01,0.005,0.01,0.8), XY-plane: (0.018,0.013,0.004,1). The maximum T amplitude is 2 × 105 that of
the uncoupled case
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Fig. 7 Snapshots of vz and T in the YZ-plane and coupled case. The source is fxx = fyy = fzz = 1, i.e., a di-
latational source. The wavelike and diffusive cases correspond to γ1 = 1015 and γ1 = 10.5 (in m kg/( s3 ◦K)),
respectively

an approximation of the T-wave velocity, we obtain c = 745 m/s, which is the lower one.
According to the sampling theorem, the mesh supports frequencies up to c/(2 dx) = 37 Hz
(dx = 10 m,) to avoid spatial aliasing. Hence, we consider a central frequency f0 = 18 Hz.
Figure 8 shows the vx and T wavefields corresponding to the XZ-plane (a), compared to
those of Fig. 5 (b), where the source is of heat type only. Figure 9 presents similar results (a)
for a source fx = fy = fz = 1, compared to those of Fig. 6 (b). In both figures, the T wave
is stronger and travels with a lower velocity, as expected.

Finally, we consider an inhomogeneous case, where a flat interface perpendicular to the
XZ-plane separates an isotropic medium (upper half space) and an anisotropic medium
(lower half space). The example is the same of Fig. 5, with the isotropic medium defined
by C22 = C33 = C11, C12 = C13 = C23 = C11 − 2C44 and C55 = C66 = C44. Figure 10 shows
a snapshot of the temperature field in the XZ=plane (compare the corresponding snapshot
of the lower panel in Fig. 5). As can be observed, the field above the interface has isotropic
characteristics.
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Fig. 8 Snapshots of the wavefield in the coupled case (XZ-plane). The source is q = 1, i.e., only a heat
source. The relaxation time τ in (a) is nine times higher that of the simulation shown in (b) (see Fig. 5). In
this case, the T wave has a much lower velocity than that of the qS wave and the two wavefronts are clearly
separated

In simulations with a negative thermal expansion (not shown) the kinematics is not af-
fected. This can easily be seen in isotropic media where the adiabatic velocity of the P
wave depends on the thermal expansion coefficient to the power of two (see Carcione [5];
Eq. 7.843 and Fig. 7.30). Moreover, simulations show that the amplitudes are similar to the
case of a positive thermal expansion with the same absolute value.

5 Conclusions

We have proposed a numerical algorithm to solve the differential equations of anisotropic
thermoelasticity, i.e, coupling elasticity with thermal effects. The modeling is a direct-grid
method that allows us to handle spatially inhomogeneous media. It is based on the Fourier
method to compute the spatial derivatives and a Crank-Nicolson scheme for the time step-
ping.

A heat source induces elastic motion. The presence of shear waves is due to the coupling
between the P and S motion in anisotropic media. In symmetry planes and homogeneous
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Fig. 9 Snapshots of the wavefield in the coupled case (XZ-plane). The source is fx = fy = fz = 1, i.e., only
an elastic source. The relaxation time τ in (a) is nine times higher that of the simulation shown in (b) (see
Fig. 6). In this case, the T wave has a much lower velocity than that of the qS wave and the two wavefronts
are clearly separated

Fig. 10 Snapshots of the
temperature wavefield in the
coupled case (XZ-plane), where
the upper half space is isotropic
(refer to Fig. 5, where the whole
medium is anisotropic)

media, antiplane fields have zero amplitude, because this shear mode is not coupled to the
P mode and heat equation. An elastic source generates P and S waves, and T (thermal)
waves due to the elastic/heat coupling. In the diffusive case, the T wave energy remains at
the source location (disappears as a wave). Increasing the relaxation time implies a lower
T-wave velocity in the uncoupled case (three times lower) and even lower in the coupled
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case. In simulations with a negative thermal expansion the kinematics is not affected and the
amplitude is hardly affected, at least for the specific example considered here.

Appendix A: Crank-Nicolson Explicit Scheme

The explicit Crank-Nicolson explicit scheme has been introduced by Carcione and Quiroga-
Goode [7] to solve the equations of poroelasticity, and subsequently used to solve the ther-
moelasticity equations in the isotropic case (Carcione et al. [9]). The scheme, adapted to the
anisotropic case, is

D1/2vx = ρ−1(∂xσ
n
xx + ∂yσ

n
xy + ∂zσ

n
xz − f n

x ) = �n
x,

D1/2vy = ρ−1(∂xσ
n
xy + ∂yσ

n
yy + ∂zσ

n
yz − f n

y ) = �n
y,

D1/2vz = ρ−1(∂xσ
n
xz + ∂yσ

n
yz + ∂zσ

n
zz − f n

z ) = �n
z ,

ε1 = ∂xA
1/2vx, ε2 = ∂yA

1/2vy, ε3 = ∂zA
1/2vz,

ε̇1 = ∂x�
n
x, ε̇2 = ∂y�

n
y, ε̇3 = ∂z�

n
z ,

�γ T n = C(A1/2ψ + τD1/2ψ)

+ T0[β1(ε1 + τ ε̇1) + β2(ε2 + τ ε̇2) + β3(ε3 + τ ε̇3)] + qn,

T n+1 = T n + dt ψn+1/2,

D1σxx = c11ε1 + c12ε2 + c13ε3 − β1A
1/2ψ − f n

xx,

D1σyy = c12ε1 + c22ε2 + c23ε3 − β2A
1/2ψ − f n

yy,

D1σzz = c13ε1 + c23ε2 + c33ε3 − β3A
1/2ψ − f n

zz,

D1σxy = c66(∂xA
1/2vy + ∂yA

1/2vx) − f n
xy,

D1σxz = c55(∂xA
1/2vz + ∂zA

1/2vx) − f n
xz,

D1σyz = c44(∂yA
1/2vz + ∂zA

1/2vy) − f n
yz,

(A.1)

where

Djφ = φn+j − φn−j

2jdt
, and Ajφ = φn+j + φn−j

2
, (A.2)

are the central differences and mean value operators, based on a Crank-Nicolson (staggered)
implicit scheme (Jain [17], p. 269) for the particle velocities. In this three-level scheme,
(vx, vz,ψ) at time (n+ 1/2)dt and stresses and temperature at time (n+ 1)dt are computed
explicitly from (vx, vz,ψ) at time (n−1/2)dt and stresses and temperature at time (n−1)dt

and ndt , respectively.
The sixth equation yields

(dt + 2τ)ψn+1/2

= 2dt

C
[�γ T n − T0[β1(ε1 + τ ε̇1) + β2(ε2 + τ ε̇2) + β3(ε3 + τ ε̇3)] − qn]

− (dt − 2τ)ψn−1/2.

(A.3)
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An example of stability analysis has been performed in Carcione and Quiroga-Goode [7],
i.e., a Von Neumann stability analysis based on the eigenvalues of the amplification ma-
trix (Jain [17], p. 418). The algorithm has first-order accuracy but possesses the stability
properties of implicit algorithms and the solution can be obtained explicitly.

Appendix B: Plane-Wave Analysis

A general solution representing inhomogeneous viscoelastic plane waves is of the form

[ · ] exp[i(ωt − k · x)], (B.1)

where [ · ] is a constant complex vector, ω is the angular frequency and

k = κ − iα = (κ − iα)κ̂ ≡ kκ̂, (B.2)

is the complex wavenumber vector, with κ and α the real wavevector and attenuation vector,
respectively. The second equality holds for homogeneous waves, where k = κ − iα is the
complex wavenumber and κ̂ = (l1, l2, l3) defines the propagation (and attenuation) direction,
where li are the directions cosines.

In thermoelasticity,

(v, T ) ∝ exp[ik(vct − (l1x + l2y + l3z))], (B.3)

where

vc = ω

k
(B.4)

is the complex velocity.

B.1 Uncoupled Case

In the uncoupled case, βi = 0 and the elasticity equations correspond to a lossless or-
thorhombic medium, whose properties are well known (e.g., Carcione [5], Chap. 1). Substi-
tuting the plane wave (B.3) into the heat equation (5), we obtain, for homogeneous waves,
the following complex velocity for the T wave:

vc =
√

ωG

iηC
, (B.5)

where

G = γ1l
2
1 + γ2l

2
2 + γ3l

2
3 (B.6)

and

η = 1 + iωτ. (B.7)

The velocity ranges from 0 at low frequencies to

v =
√

G

τC
(B.8)

at high (infinite) frequencies, the latter being the phase velocity related of the wavefront.
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The actual wavefront velocity is given by the envelope velocity, whose components and
absolute value are (Carcione [5], Sect. 1.4.3), i.e.

venv )i = ∂v

∂li
= γili

vτC
, i = 1, . . . ,3. (B.9)

and

venv = 1

vτC

√
γ 2

1 l2
1 + γ 2

2 l2
2 + γ 2

3 l2
3 , (B.10)

respectively. In the isotropic case, we have venv = γ /(vτC) = v.
A more strict approach to obtain the velocity of the wavefront associated with each

Fourier component is based on an energy balance that gives the energy velocity (e.g., Baner-
jee and Pao [2]). This and the envelope velocity are the same in the lossless case and high
and low frequency limits (see Carcione [5], Sect. 1.4.3 and 4.6.3), and it is the case that for
certain diffusion equations both velocities coincide (Carcione [5], Eq. 7.813).

The phase velocity vector is

vp =
(ω

κ

)
κ̂ =

[
Re

(
1

vc

)]−1

κ̂ (B.11)

and the attenuation vector is

α = −ωIm

(
1

vc

)
κ̂ (B.12)

(Carcione [5]).

B.2 Coupled Case

Substituting the plane wave (B.3) into the heat equation (5), we obtain for homogeneous
waves

T = −ν(β1ε1 + β2ε2 + β3ε3), (B.13)

where the ε are strains here, and

ν = ηT0

(γ1l
2
1 + γ2l

2
2 + γ3l

2
3)k

2 + iωCη
. (B.14)

Substituting equation (B.13) into (2) gives

σxx = p11ε1 + p12ε2 + p13ε3

σyy = p12ε1 + p22ε2 + p23ε3

σzz = p13ε1 + p23ε2 + p33ε3

σxy = 2p66εxy,

σxz = 2p55εxz,

σyz = 2p44εyz,

(B.15)
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where

pIJ = cIJ + iωνβIβJ , I = 1,2,3, pII = cII , I = 4,5,6. (B.16)

These pIJ = pIJ (li , k,ω) depend on the direction cosines and wavenumber k, because ν =
ν(li , k,ω) and k is the solution of the dispersion equation (see below). In the isothermal
anisotropic-viscoelastic case, we have pIJ = pIJ (ω).

Equation (B.15) can be re-written in matrix form as

σ = P · e = (C + iωνB) · e, (B.17)

where

σ = (σxx, σyy, σzz, σyz, σxz, σxy)
�, (B.18)

e = (εxx, εyy, εzz,2εyz,2εxz,2εxy)
�, (B.19)

C =

⎛

⎜⎜⎜⎜⎜⎜
⎝

c11 c12 c13 0 0 0
c12 c22 c23 0 0 0
c13 c23 c33 0 0 0
0 0 0 c44 0 0
0 0 0 0 c55 0
0 0 0 0 0 c66

⎞

⎟⎟⎟⎟⎟⎟
⎠

(B.20)

and

B =

⎛

⎜⎜⎜⎜⎜⎜
⎝

β2
1 β1β2 β1β3 0 0 0

β1β2 β2
2 β2β3 0 0 0

β1β3 β2β3 β2
3 0 0 0

0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

⎞

⎟⎟⎟⎟⎟⎟
⎠

, (B.21)

Matrix P = C + iωνB is symmetric, as in the isothermal case.
Let us consider the time-space domain. In the absence of external forces, the equation of

motion and strain-displacement relation are in the Voigt notation,

e = ∇� · u, (eI = ∇Ij uj ), j = 1,2,3 I = 1, . . . ,6 (B.22)

and

∇ · σ = ρü (B.23)

(Carcione [5], Eqs. 1.26 and 1.28), respectively, where

u = (u1, u2, u3) (B.24)

is the displacement vector, and

∇ =
⎛

⎝
∂1 0 0 0 ∂3 ∂2

0 ∂2 0 ∂3 0 ∂1

0 0 ∂3 ∂2 ∂1 0

⎞

⎠ . (B.25)

is an spatial-derivative operator.
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For the plane waves (B.1), the operator (B.25) takes the form

∇ → −iK, (B.26)

where

K =
⎛

⎝
k1 0 0 0 k3 k2

0 k2 0 k3 0 k1

0 0 k3 k2 k1 0

⎞

⎠ = k

⎛

⎝
l1 0 0 0 l3 l2
0 l2 0 l3 0 l1
0 0 l3 l2 l1 0

⎞

⎠ ≡ kL, (B.27)

with k1, k2 and k3 being the components of the complex wavevector k.
Using equations (B.26) and (B.27)), and combining equations (B.17)), (B.22) and (B.23),

we obtain

k2�(k) · u = ρω2u, (B.28)

where

� = L · P · L� (B.29)

is the symmetric Kelvin-Christoffel matrix,
Unlike the isothermal case, � = �(vc), i.e., it depends on the complex velocity (B.4).

Equation (B.28) yields

A · u = 0, with A = �(vc) − ρv2
c . (B.30)

This is a nonlinear eigenvalue problem (Effenberg [13]; Voss [34]). A non-zero solution for
u requires:

det A = 0. (B.31)

In the orthorhombic case,

�11 = p11l
2
1 + p66l

2
2 + p55l

2
3 ,

�22 = p66l
2
1 + p22l

2
2 + p44l

2
3 ,

�33 = p55l
2
1 + p44l

2
2 + p33l

2
3 ,

�12 = (p12 + p66)l1l2,

�13 = (p13 + p55)l3l1,

�23 = (p44 + p23)l2l3

(B.32)

(Carcione [5]).
An alternative approach to solve the coupled case is the following. For the plane wave

(B.3), the stress strain relation (2) and momentum equation (B.23) can be written in matrix
form as

σ = C · e − βT = −ikC · L� · u − βT (B.33)

and

ikL · σ = ρω2u, (B.34)
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respectively, where

β = (β1, β2, β3,0,0,0)�. (B.35)

Combining the two equations, we obtain

ω(� − ρv2
c I3) · u + ivcL · βT = 0, (B.36)

where here

� = L · C · L� (B.37)

is the isothermal Kelvin-Christoffel matrix.
On the other hand, the heat equation becomes

ωvcηT0β
� · L� · u + (ωG + iCηv2

c )T = 0. (B.38)

Equations (B.36) and (B.38) can be re-written in matrix form as

(
ω(� − ρv2

c I3) ivcL · β
ωvcηT0β

� · L� (ωG + iCηv2
c )

)
·
(

u
T

)
= 0. (B.39)

Equations (B.36) and (B.38) provide a non-trivial solution for u and T if the determinant of
their coefficients vanishes,

det
[
(ωG + iCηv2

c )(� − ρv2
c I3) − iηT0v

2
c (L · β) · (β� · L�)

] = 0, (B.40)

which gives the complex velocity vc as solution.
In the uncoupled case, β = 0 and we have the isothermal case and a pure heat equation

with complex velocity (B.5).
The solution of the coupled case will be treated in a separate paper.
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