
A brief overview on seismic attenuation

Introduction

Seismic waves decay due to geometrical spreading (in 2D and 3D) and scattering (energy is conserved),
and anelastic – or intrinsic – attenuation (energy is lost to heat). Amplitude decay in the last two cases is
accompanied with wave-velocity dispersion, by which each Fourier component of the signal travels with
a different phase velocity (Kramers-Kronig relations). Attenuation can be described by a phenomeno-
logical (non-predictive) theory, as the Burgers mechanical model – composed of springs and dashpots –,
or with predictive models, such as the scattering theory, and the Biot and related models of poroelasticity
(wave-induced fluid-flow attenuation). Another phenomenological approach is the use of temporal or
spatial fractional derivatives, e.g., Kjartansson and Cole-Cole models. In the following, I present a brief
overview on the various attenuation mechanisms, where most of the material refers to Carcione (2014).

Phenomenological models

Mechanical models

The Burgers mechanical model, depicted in Figure 1, describes all the useful models of viscoelasticity,
composed of springs and dashpots, whose stress (σ)-strain (ε) relations are σ = Kε and σ = ηε̇,
respectively, where K is stiffness and η is viscosity. The dot above the strain (a time derivative) makes
the difference between full energy storage at the spring (no dot), and full dissipation at the dashpot.
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Figure 1 Burgers viscoelastic model and particular
cases.

The concepts can be explained in 1D, considering
the Fourier components of the signal, namely a
traveling plane wave exp[i(ωt − kx)], where i =√
−1, ω is the angular frequency, t is time, k is the

complex wavenumber and x is the traveled dis-
tance. The complex velocity is v = ω/k, where
k = κ−iα, with κ the real – physical – wavenum-
ber and α the attenuation factor. It is clear that
this plane wave has a phase exp[i(ωt − κx)] and
a decay exp(−αx). The phase velocity and atten-
uation factor are then

vp =
ω

κ
= [Re(v−1)]−1 and α = −ωIm(v−1),

(1)
respectively. Attenuation is usually described
with the quality factor, Q, twice the stored energy
divided by the dissipated energy, whose expres-
sion is

Q =
Re(v2)

Im(v2)
, with α/κ =

√
1 +Q2 −Q, α =

ω

Qvp
(Q� 1) (2)

(Carcione, 2014). Typical values of reservoir-rock P and S seismic Q factors are in the range 10–100.
These expressions hold also in 2D and 3D for each wave type (P and the two S) and homogeneous waves,
i.e., when the real wavevector points in the same direction as the attenuation vector. As an example,
consider the Kelvin-Voigt model (see Figure 1). In the Fourier domain, σ1 = K2ε2 and σ2 = iωη2ε2,
where σ1 and σ2 are the stresses acting on the spring and dashpot, respectively. Since σ = σ1 + σ2,
the stress-strain relation is σ = (K2 + iωη2)ε2 ≡ Mε2, the complex velocity is v =

√
M/ρ, (ρ is the

mass density), and Q = K2/(ωη2). Removing the dashpot (η2 = 0) gives a lossless medium, i.e., an
infinite Q factor. The Kelvin-Voigt model describes a solid with wave loss, but rocks (and metals) are
better described with the Zener model (Zener, 1948), which has a relaxation peak in Q−1 as a function
of frequency, and whose phase velocity is bounded between a lower limit (at ω = 0) and an upper limit
(at ω =∞).

The energy velocity is defined as the ratio of the average energy flux to the average total energy density.
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It equals the phase velocity in isotropic media. In 3D anisotropic and viscoelastic media, σ = C · ε, a
scalar product of a 6× 6 complex (and frequency dependent) stiffness matrix, C, with a six-components
array ε (in the so-called Voigt notation). In 3D poro-viscoelasticity, C is a 7 × 7 matrix, and equations
(1) and (2) equally hold, with these properties being direction dependent. The reciprocal of the phase
velocity (slowness surface) describes the propagation of plane waves. The group and energy velocity
describe the location of the wavefront, and are equal only in the elastic limits. At finite frequencies, the
group velocity looses its physical meaning, and as a kinematic concept can be replaced with the envelope
velocity, which is a good approximation of the energy velocity (Carcione, 2014). To be more rigorous,
the concept of centrovelocity is introduced in Carcione at el. (2010a), related to the centroid of the pulse
in the time and spatial domains.

The analysis can also be performed for standing waves, exp[i(Ωt− κx)] = exp[i(ωt− κx)] exp(−ωIt),
where Ω = ω+ iωI is complex. In this case, v = Ω/κ, vp = Re(v), ωI = (ω/vp)Im(v), and the energy
velocity and Q factor have the expression (1) and (2), respectively.

Fractional-derivative models

Attenuation can also be modeled with fractional derivatives (e.g., Picotti and Carcione, 2017). An
example is the fractional Kelvin-Voigt model, where the time derivative of the strain in the dashpot (the
dot) is replaced by ∂qt , where q is the order of the derivative. Then, σ = Kε + η∂qt , 0 ≤ q ≤ 1,
where η is a pseudo-viscosity, which is a stiffness for q = 0 and a viscosity for q = 1. The limits q = 0
and q = 1 give Hooke’s law and the constitutive relation of the Kelvin-Voigt model, respectively. In
the frequency domain, M = K + η(iω)q. If K = 0, we obtain a constant Q = cot(πq/2), as in
Kjartansson (1979). Simulations with fractional time derivatives require much memory storage. On the
other hand, fractional spatial derivates are more efficient. For instance, the uniform-density pressure (p)
wave equation is ω2−q

0 cq∂qxp = ∂2t p, where ω0 is a reference frequency and 2 ≤ q ≤ 4 (q = 2 yields the
classical wave equation). In the Fourier domain, ∂qx → (ik)q, v = c(iω/ω0)

1−2/q (Kjartansson, 1979)
and Q = − cot(2π/q) is constant with frequency. In both cases (time and spatial fractional derivatives),
q = 2 gives the lossless case, i.e., Q = ∞. Attenuation is a low-pass filter, since the decay factor is
approximately exp(−ωx/β), where β = 2Qvp ≈ constant, for a frequency-independent Q factor.

Predictive models

Scattering occurs as reflection, refraction, and diffraction of elastic energy, and this is conserved. A ma-
jor cause of attenuation in porous media, at the reservoir scale, is wave-induced fluid flow, which occurs
at different spatial scales. The flow can be classified as macroscopic, microscopic and mesoscopic. At
larger scales, grain boundary relaxation is the predominant cause of seismic attenuation in the Earth’s
crust and mantle.

Scattering

At low frequencies, when the wavelength is much larger than the characteristic scales of heterogeneity,
the medium behaves like an equivalent medium, e.g., finely-layered media is a transversely isotropic
homogeneous medium (Backus averaging is its mathematical model). At high frequencies, scattering
attenuation causes energy to be distributed into coda waves and the primary pulse behaves viscoelastic
of the Zener type (e.g., Kikuchi, 1981). Intrinsic (αi) and scattering (αs) attenuations are approximately
additive, since the decay factor is exp(−αix) exp(−αsx) = exp[−(αi +αs)x], and in the low-loss case
(Q� 1), the total dissipation factor is

Q−1 = Q−1
i +Q−1

s , (3)

based on equation (2). Both types of attenuation can, in principle, be separated on the basis of equation
(3) and a proper scattering theory (Frankel and Wennerberg, 1987). The location of the scattering peak
is inversely proportional to the size of the heterogeneity. For instance, for cracks of length a the peak
P-wave loss frequency is

fs ≈
vP
5a
, (4)
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where vP is the P-wave velocity (Kikuchi, 1981).

Wave-induced fluid-flow attenuation

Macroscopic Biot attenuation: The attenuation mechanism predicted by Biot in 1956 has a macroscopic
nature. It is the wavelength-scale equilibration between the peaks and troughs of the P wave. The
dissipation factor of the fast P wave, Q−1, can be approximated by that of a Zener model. The location
of the relaxation peak is

fB ≈
φηρ

2πκ̄ρf (ρT − φρf )
, (5)

where φ is the porosity, η is the fluid viscosity, ρ is the bulk density, κ̄ is the permeability, ρf is the
fluid density, and T is the rock tortuosity. This equation shows that the relaxation peak moves to-
wards the high frequencies with increasing viscosity and decreasing permeability. This means that, at
low frequencies, attenuation decreases with increasing viscosity (or decreasing permeability). This is
in contradiction with experimental data at seismic and sonic frequencies, since the macroscopic-flow
mechanism underestimates the wave-velocity dispersion and attenuation in rocks.

Microscopic squirt-flow attenuation: An important attenuation mechanism in rocks is the the so-called
“squirt flow", by which there is flow from fluid-filled micro-cracks (or grain contacts) to the pore space
and back. Biot (1962) considered this mechanism and proposed the Zener mechanical model to describe
it. The squirt-flow model assumes that the rock becomes stiffer when the fluid pressure does not have
enough time to equilibrate between the stiff and compliant pores (grain contacts and main voids, respec-
tively). This state is described by the unrelaxed limit of Zener elements. The squirt-flow peak frequency
is

fsf ≈
Ksr

2

3πηγ
, γ =

Ks

φc

(
1

Km
− 1

Kh

)
, (6)

where r is the crack thickness to crack length ratio, φc is the compliant porosity and Kh is the dry-rock
bulk modulus at a confining pressure when all the compliant pores are closed, i.e., an hypothetical rock
without the soft porosity (Carcione and Gurevich, 2011).

Mesoscopic attenuation: Local fluid flow explains the high attenuation of low-frequency waves in fluid-
saturated rocks. When seismic waves propagate through small-scale heterogeneities, pressure gradients
are induced between regions of dissimilar properties. White (1975) was the first to show that attenuation
and velocity dispersion measurements can be explained by the combined effect of mesoscopic-scale in-
homogeneities and energy transfer between wave modes, with P-wave to slow P (Biot)-wave conversion
being the main physical mechanism. I refer to this mechanism as mesoscopic loss. The mesoscopic-
scale length is intended to be larger than the grain sizes but much smaller than the wavelength of the
pulse. A review of the different theories and authors, who have contributed to the understanding of this
mechanism, can be found in Müller et al. (2010), Carcione et al. (2010b) and Carcione (2014). At seis-
mic frequencies, the mesoscopic loss mechanism seems to be dominant. Mesoscopic patches of gas in
a water saturated sandstone dissipate significant energy through conversion to the diffusive slow mode.
The corresponding peak frequency is

fm ≈
κ̄Kf

φηa2
, (7)

where here a is the size of the patches and Kf is fluid bulk modulus. Note the inverse dependence on
κ̄/η compared to the Biot mechanism in equation (5). Generalization of the Biot theory to the case of
multiple material phases and/or double porosity describe more realistic situations (see Ba et al., 2015).

Ductility and partial melting. Grain boundary relaxation

Seismic propagation in the upper part of the crust, where geothermal reservoirs are located, shows strong
velocity dispersion and attenuation due to varying permeability and saturation conditions and is affected
by the brittle-ductile transition (BDT), including zones of partial melting. From the elastic-plastic aspect,
the seismic properties (velocity, quality factor and density) depend on effective pressure and temperature.
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The related effects can be described with the Burgers mechanical model applied to the shear modulus of
the dry rock. The Arrhenius equation combined with the octahedral stress criterion define the Burgers
viscosity responsible of the ductile behaviour of partial melting through a process called grain boundary
relaxation (Carcione et al., 2018). The viscosity of the earth highly affects the S waves to the point
that they disappear at total melting. P waves show high attenuation and dispersion (Zener-like peaks)
with frequency and temperature – at a critical temperature, which depends on frequency and the Burgers
viscosity. Seismic-wave behaviour in the presence of partial melt can be used to identify the BDT.

Grain Bulk modulus, Ks 40. GPa
Density, ρs 2650 kg/m3

Matrix Porosity, φ 0.3
Bulk modulus, Km 10 GPa
Shear modulus, µm 8 GPa
Permeability, κ̄ 100 mD
Tortuosity, T 2.3

Fluid Bulk modulus, Kf 2.25 GPa
Density, ρf 1040 kg/m3

Viscosity, η 1 cP

Conclusions (peak frequencies for a sandstone)

Consider the material properties for a water-saturated
sandstone (see table). Using Gassmann equations
(e.g., Carcione, 2014), the P-wave velocity is vP =
3366 m/s, and the bulk density is ρ = 2167 kg/m3.
Assuming a = 10 cm and r = 0.0008, the relax-
ation frequencies of the different attenuation mech-
anisms are: fs = 6.7 kHz (scattering), fB = 213
kHz (Biot global flow), fsf = 815 Hz (squirt flow,
with φc = 0.0002, Kh = 12 GPa), and fm = 75
Hz (mesoscopic). While scattering has a peak at
the sonic frequencies and the Biot one is domi-
nant at high (laboratory) frequencies, the squirt-
flow and mesoscopic loss mechanisms are impor-
tant at VSP and seismic frequencies. Replacing
water by oil (ρf = 800 kg/m3, Kf = 2 GPa and η
= 100 cP), the peak frequencies are fs = 6.8 kHz,
fB = 27 MHz, fsf = 8 Hz, and fm = 0.7 Hz.
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