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ABSTRACT 

Permeability is a critical parameter for evaluating reservoir properties, and accurate prediction is 

an important basis for identifying high-quality reservoirs and geological modeling. However, the 

strong heterogeneity, complex lithology and diagenesis in the reservoirs of this region pose a major 

challenge for the accurate assessment of reservoir permeability. In recent years, the use of machine 

learning (ML) to solve problems in geophysical well logging and related fields has gained much 

attention thanks to advances in data science and artificial intelligence. ML is any predictive algorithm 

or combination of algorithms that learns from data and makes predictions without being explicitly 

coded with a deterministic model. The most immediate example is deep neural networks (DNN) that 

are trained with data to minimize a cost function and make predictions. The tight reservoirs in the 

Chang 7 Member of the Ordos Basin host significant oil and gas resources and have recently emerged 

as the main focus of unconventional oil and gas exploration and development. In this work, we 

performed DNN-based permeability prediction for the tight reservoirs in the Ordos Basin area. From 

19 well logs, we selected effective data points from 17 wells for DNN training after preprocessing and 

used the remaining two wells for testing. First, we trained the DNN with all collected parameters as 
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inputs, resulting in permeability prediction R
2
 values of 0.64 and 0.72 for the two wells, indicating a 

good fit. We then optimized the input parameters by performing a crossplot analysis between these 

parameters and the permeability. Using the same network structure (with all hyperparameters set the 

same), we trained the DNN again to obtain a new DNN-based model. The prediction results showed 

that removing input parameters with poor correlation to permeability improved the prediction 

accuracy with R
2
 values of 0.70 and 0.87 for the two wells. 

Keywords: Permeability prediction; well-log data; machine learning; deep neural networks; Ordos 

Basin; tight reservoirs 

1. Introduction 

New geophysical exploration technologies are expected to provide information not only on the 

presence and saturation of geofluids (e.g. geologically stored CO2 and H2, etc.) in the reservoirs, but 

also information on whether the geofluid can flow so that it can be exploited (Guo and Gurevich, 2020; 

Guo et al., 2022; Ba et al., 2023a; Guo et al., 2023; Carcione et al., 2023; Lu et al., 2023). A key 

parameter that determines the flowability of geofluid is the permeability of the reservoir rock 

(Carcione et al., 2018, 2019; Guo et al., 2019; Guo et al., 2022a, b). Establishing a quantitative 

relationship between permeability and the petrophysical properties of the reservoir at log and seismic 

frequencies is crucial for efficient recovery of oil and gas resources (Ahmed et al., 1991). 

The permeability at well locations is primarily determined from core samples or logging data. 

Laboratory measurements of permeability using drill core samples (He et al., 2020; An et al., 2023; Ba 

et al., 2023b) are very accurate but time-consuming and costly. Methods based on rock physics 

theories and multiple logs to fit permeability have improved efficiency and reduced costs to some 

extent. Rock physics models used for permeability prediction include the Archie equation (Archie, 
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1941), the Kozeny-Carman model (Carman, 1961), the Timur model (Timur, 1968) and various 

improved models (Carcione et al., 2010; Srisutthiyakorn and Mavko, 2017; Madadi and Müller, 2019; 

Xiong et al., 2020; Zhang et al., 2023). The accuracy of permeability estimation by different models 

depends on factors such as their representation of actual conditions, the selection of log sensitive 

parameters and optimal parameter combinations. However, existing rock physics models are often 

based on numerous assumptions, which makes it difficult to effectively simulate the physical 

mechanisms of complex oil and gas reservoirs and leads to discrepancies between the predicted and 

actual permeability. 

In recent years, the use of machine learning (ML) to solve problems in geophysical well logging, 

seismic exploration, and related fields has gained much attention with the advances in data science and 

artificial intelligence (Anemangely et al., 2017; Botterill and McMillan, 2023). In contrast to 

conventional methods, data-driven ML approaches go beyond domain-specific knowledge, offer a 

new perspective on data and explore larger functional spaces. By mapping data and targets in 

situations where physical relationships are unknown, these methods provide a means to characterize 

relationships between variables in high-dimensional spaces, reducing the need for researchers to have 

extensive knowledge of geology, geophysics, and rock physics (Bergen et al., 2019). In particular, 

various ML technologies have been used for reservoir permeability prediction, e.g., backpropagation 

(BP) neural networks, k-nearest neighbor (KNN) regression, extreme gradient boosting (XGBoost) 

regression, decision tree (DT) regression, and random forest (RF) regression (Helle et al., 2001; 

Jamshidian et al., 2015; Zhao et al., 2022), etc. Most of these methods have proven to be reliable 

prediction methods. However, they provide unsatisfactory predictions for heterogeneous reservoirs, 
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especially in the case of limited logging data (Huang et al., 1996. Helle et al., 2001; Nkurlu et al., 2020; 

Zhang et al., 2021). 

Deep learning (DL) is a branch of ML and has already been researched in many different 

applications (Pilz et al., 2020). Deep neural networks (DNN) are a data-driven technology in DL that 

can establish complex nonlinear mapping relationships between inputs and outputs, which has led to 

extensive applications in fields such as oil and gas exploration. Compared to traditional ML methods, 

DL models, especially DNNs, can automatically extract complex features from raw data. This means 

that they can discover important patterns and relationships in the data without manual feature 

engineering. In addition, DL models have strong generalization capabilities that enable them to learn 

complex patterns and relationships in the data and perform well on new data (Najafabadi et al., 2015). 

For example, You et al. (2020) use a DNN model based on the Hudson-Cheng forward model (Cheng, 

1993) to generate a large amount of training data, inverting shale anisotropy. Xiong et al. (2021) 

utilized Biot theory and DNNs to train elastic parameters of the wave propagation equation using 

logging data, establishing a DNN-based Biot theory for predicting seismic properties of shale oil 

reservoirs. In terms of permeability prediction, Qadrouh et al. (2019) provide guidance on ML, 

including petrophysical log prediction. They employed a neural network (NN) to link the density, 

sonic, gamma ray and neutron porosity logs to permeability. Synthetic data were generated using a 

theoretical model developed by Carcione et al. (2000) for training and testing. The tight reservoirs in 

the Chang 7 Member of the Ordos Basin host significant oil and gas resources and have recently 

become the main focus of unconventional hydrocarbon exploration and development. Current 

permeability mapping research in this region is mainly based on traditional permeability models or 

extended models based on laboratory measurements (Zhang et al., 2023). However, DNN has not yet 
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been used to predict permeability from of actual well logging data. Therefore, based on Qadrouh et 

al.'s research, a study on the log permeability of Chang 7 Member tight reservoir using DNNs is 

conducted in this work. 

2. Study area and data 

2.1. Overview of the study area 

The Ordos Basin in western China is an extensive and stable polygenetic craton with a slightly 

westward tilted monocline (Guo et al., 2020). It can be divided into six different tectonic units, with the 

Tianhuan Depression and the Shanbei Slope being the most prominent units (Figure 1). These units 

also correspond to the regions with significant hydrocarbon deposits. In particular, the Shanbei Slope 

is the most important area for the distribution of Paleozoic natural gas and Mesozoic petroleum. Over 

time, beginning with the Late Triassic, the Ordos Basin transitioned to a lacustrine sedimentary 

environment in which the Upper Triassic Yanchang formation contains a series of fluvial-deltaic and 

lacustrine clastic rocks. The Yanchang formation can be divided into ten members, including the 

Chang 7 Member (Bai and Ma, 2020; Fang et al., 2022, 2024). 
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Figure 1. (a) Location of the Ordos Basin in China and (b) schematic geologic map of the basin. 

The study area is located at the convergence point of the sediment sources in the southwest and 

northeast of the basin. The hydrocarbons in the tight sandstones and source rocks have not undergone 

long-distance migration and accumulation. They are defined as a variety of high-grade shale oils and 

tight oils and are especially abundant in the Changqing oil field. In recent years, the Chang 7 Member 

has emerged as an important exploration target. It can be subdivided from top to bottom into the Chang 

71, 72 and 73 layers. Chang 71 consists of mudstone interbedded with siltstone/sandstone and oil shale. 

Chang 72 consists of siltstone and fine sandstone locally interbedded with sandy siltstone, and thin 

layers of shale are also developed. Chang 73 consists mainly of black oil shale and siltstones (Fu et al., 

2020). 
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As part of the preliminary investigations, we examined 21 rock samples from the study area. 

Figure 2 shows the thin sections of two most representative tight sandstone rocks examined in the 

laboratory. Figure 2a shows that the rock has a fine to silty sand structure. The detrital particles are 

predominantly fine to silty-sandy, well sorted and moderately round and belong to the fine to 

silty-lithic feldspathic sandstone. Figure 2c shows that the rock has a silty to fine sandy structure. The 

detrital particles are predominantly of fine sand size, well sorted and moderately round and belong to 

the silty to fine lithic feldspar sandstone. X‐ray diffraction analysis shows that the main mineral 

components of the rock are quartz, feldspar and clay with a lower volumetric content of other minerals. 

Pores and cracks of different sizes can be observed (Figures 2b, d). The porosity and permeability of 

the rock samples were measured using the CMS-300 type overburden pressure porosity and 

permeability meter. As shown in Figure 3, the porosity is between 4.49 and 9.25%, while the 

permeability is between 10
-17.3

 and 10
-16.1

 m
2
. 

 

a)

Pore

Crack

b)
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Figure 2. Thin sections of tight sandstone from the study area. Figures 2a, c show thin sections in 

cross-polarized light (XPL), and 2b and 2d in plane polarized light (PPL). The blue color 

corresponds to the pore space. 

 

 

Figure 3. Porosity (a) and permeability (b) of the rock samples. 

2.2. Data preparation 

The dataset belong to19 wells, which were processed and interpreted by the oilfield companies. 

After pre-processing the data, we obtained a total of 3783 data points from the reservoir sections of the 

wells. These data points are suitable for training and testing our models and include all required 

variables. The amount of data points may vary from well to well. To evaluate the model performance, 

c) d)

Pore

Crack

a) b)
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we selected two wells with enough data points as an independent test dataset. The remaining wells 

with 3037 data points were used to train the DNN model. Figure 4 shows the data from one of the 

wells, including S-wave and P-wave velocities (Vs and Vp), gamma ray (GR), resistivity (RT), 

impedance (Ip), density (ρ), permeability (κ), clay content (Vcl), porosity ( ), and Poisson’s ratio 

(PR). 

 

Figure 4. Well log data. (a) S-wave velocity, (b) P-wave velocity, (c) gamma ray, (d) resistivity, (e) 

impedance, (f) density, (g) permeability, (h) clay content, (i) porosity, and (j) Poisson’s ratio. 

3. Methodology 

3.1. Deep neural networks 

DNNs are networks with an input and output layer and at least one hidden layer in between. 

DNNs use sophisticated modelling in a complex way and can handle non-linear dependencies between 

different data sets. The performance of a DNN is strongly influenced by hyperparameters that must be 

specified in advance. Hyperparameters determine the structure of a DNN and how the network is 

trained. How to determine the optimal hyperparameters of a DNN model is an active area of research, 

but is outside the scope of our study. We determined these hyperparameters by trial and error. The 

(a)              (b)             (c)             (d)              (e)            (f)              (g)            (h)             (i)              (j)
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optimal DNN architecture is shown in Figure 5. We use a fully connected neural network and the input 

and output are ( , , , , , , , , )X         Vs Vp GR RT PR Vcl Ip   and  , respectively. In between is a 

fully linked hidden layer, and each layer consists of ten units. In the NN, we choose the hyperbolic 

tangent function (tanh) as the activation function and use the adaptive moment estimation (Adam) 

algorithm as the optimization technique (Kingma and Ba, 2014). In training, we set 0.01 as the initial 

learning rate and choose the learning decay rate strategy. The learning process is based on the function 

'lr_schedule', i.e. a function integrated in PyTorch that allows the learning rate to be adjusted as the 

number of epochs progresses (Paszke et al., 2017). In addition, the weights and biases are continuously 

adjusted to minimize the loss function. This is the mean squared error (MSE), which quantifies the 

discrepancy between the DNN predictions and the provided labels. 

 

Figure 5. Schematic diagram of the deep neural network for permeability prediction. 

It is crucial to normalize the data set, as each quantity varies greatly in unit and size, and the 

selection of the activation function also requires this action. In addition, data normalization helps to 

speed up convergence. The maximum and minimum values of the inputs, referred to as xi
max

 and xi
min
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respectively, can be determined since X is always available. One can use the mean and standard 

deviation of X in the training dataset to normalize the input. Here xi is normalized to [-1, 1] by the 

following relationship: 

 min

max min

2
1 ( )i i i

i i

x x x
x x

    


, (1) 

where 1, 2, , 9    i   . 

It should be noted that the label   is available when training the network, but the actual use of 

a well-trained DNN model is not. In this work, each label   is normalized by dividing by 20. 

Therefore, when obtaining the prediction results, each label '  is denormalized by multiplying by 

20. 

3.2. Evaluation metrics 

The root-mean-squared error (RMSE) and R-squared (R2) are used to quantitatively evaluate the 

accuracy of the predicted results: 

 well 2

1

1
RMSE ( )

n

j j

jn
 



  , (2) 

    
2 2

2 well well well

1 1

1 /
n n

j j j j

j j

R    
 

     , (3) 

where n  is the number of data points, well

j  denotes the j-th set of permeability of the real log data, j  

denotes the j-th set of permeability of the DNN-based prediction, well well

1

/
n

j j

j

n 


  is the average. R2=1 

indicates that the DNN model performance is optimal.  

4. Results 
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To train the DNN model, we consider 3783 data points from the reservoir sections of the 19 wells. 

The data from wells A and B (746 in total) are used to verify the performance of the DNN model and 

analyze the prediction accuracy. The loss value during the training process is shown in Figure 6a. It 

can be seen that the training loss gradually decreases and reaches a minimum value after 40,000 

epochs. The convergence indicates that there is no overfitting and that the trained DNN model has 

reliable generalization capabilities. Figure 6b shows the comparison between the real and the 

calculated permeability values for the training set. 

 

Figure 6. (a) Loss curve of a DNN model, and (b) results for the training set. 

The comparison between the permeability predicted by the DNN model (blue curves) and the 

actual log data (black curves) are shown in Figures 7a and 8a. It can be seen that the prediction shows 

a good agreement with the real data. The relative errors of the predictions of the DNN model are 

Training loss

Test loss

(40000, 0.0093)

a)

b)
Real data Predicted data
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calculated (Figures 7b and 8b). The error is mainly within 5%. The distribution diagram of the relative 

error of the permeability for the two boreholes is shown in Figure 9. The prediction errors have a 

relatively narrow distribution, with average relative errors of 1.80% and 1.32% for wells A and B, 

respectively. 

 

Figure 7. Permeability (a) and relative error (b) for well A. 

 

Figure 8. Permeability (a) and relative error (b) for well B. 

a) Real data Predicted data

b)

Real data Predicted dataa)

b)
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Figure 9. Errors for well A (a) and well B (b).  

Table 1 lists the R
2
, relative RMSE and average relative error corresponding to the two wells. 

Overall, the errors are small. A correlation analysis is performed to compare the results of the DNN 

model prediction with the real data. As can be seen in Figure 10, the prediction results correlate with 

the actual data, whereby the data scatter is mostly distributed close to the standard line. 

 

Figure 10. Crossplot of the real and predicted permeability by DNN model of nine inputs for well A 

(a) and well B (b). 

 

 

a) b)

a) b)

R2=0.64 R2=0.72
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Table 1. R
2
, relative RMSE, and average relative error between the log data and prediction results in 

Figures 7a and 8a. 

Well 
Evaluation metrics 

R
2
 Relative RMSE Average relative error (%) 

A 0.64 0.023 1.80 

B 0.72 0.019 1.32 

The nine inputs of the NN model were each analyzed against permeability, as shown in Figure 11. 

It can be seen that the correlations between the P- and S-wave velocities, resistivity and Poisson's ratio 

with permeability are relatively weak. Therefore, we chose new inputs to train the NN model. We use 

the same network architecture as mentioned above, where the inputs and outputs are denoted 

' ( , , , , )X     GR Vcl Ip   and κ, respectively. Figure 12 shows the comparison between the real and 

calculated permeability values for the training set. 

 

 

a) b) c)

d) e) f)
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Figure 11. Crossplot of the permeability and S-wave velocity (a), P-wave velocity (b), density (c), 

gamma ray (d), resistivity (e), porosity (f), Poisson’s ratio (g), clay content (h), and impedance (i). 

 

Figure 12. Results for the training set. 

We used the trained network model to predict the permeability of wells A and B. The results are 

shown in Figures 13 and 14. It can be observed that the predicted results for both wells are in better 

agreement with the real data and have lower errors. As can be seen in Figure 15, the prediction errors 

have a relatively narrow distribution, with the average relative errors of 1.74% and 1.06% for wells 

A and B, respectively. 

g) h) i)

Real data Predicted data
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Figure 13. Permeability (a) and relative error (b) for well A. 

 

Figure 14. Permeability (a) and relative error (b) for well B. 

a) Real data Predicted data

b)

Real data Predicted dataa)

b)
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Figure 15. Errors for well A (a) and well B (b). 

Table 2 lists the R
2
, relative RMSE and average relative error, corresponding to the two wells, for 

the newly-trained DNN model. As can be seen in Figure 16, the prediction results correlate with the 

actual data, with the data scatter mostly close to the standard line. A comparison of Table 1 and Table 

2 shows that the newly-trained model has improved the prediction accuracy for wells A and B by 

reducing the input parameters of the DNN model and selecting parameters that are highly correlated 

with permeability. 

 

Figure 16. Crossplot of the real and predicted permeability by DNN of 5 inputs for well A (a) and 

well B (b). 

 

a) b)

a) b)

R2=0.70 R2=0.87
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Table 2. R
2
, relative RMSE, and average relative error between the log data and prediction results in 

Figures 13a and 14a. 

Well 
Evaluation metrics 

R
2
 Relative RMSE Average relative error (%) 

A 0.70 0.021 1.74 

B 0.87 0.013 1.06 

5. Discussion 

This part primarily compares the DNN-based permeability prediction method proposed in this 

work with current ML-based methods, emphasising the advantages of the proposed method. In 

addition, the generalizability of the proposed method is tested using log data from different regions. 

5.1. Comparison with common ML-based methods 

As mentioned in the Introduction, BP neural networks, KNN, XGBoost, DT and RF regression 

are the most common ML methods for simulating the intrinsic relationships between logging 

parameters and permeability. Therefore, the above common ML methods are used separately to predict 

permeability for wells A and B, with the data set, inputs and outputs matching the prediction processes 

shown in Figures 13 and 14. The results are shown in Figure 17. It can be seen from Figures 17a and b 

that the permeability prediction for wells A and B using the BP and KNN methods show significant 

deviations from the real data. The average relative errors for the predictions of well A are 3.23 % and 

2.73 %, respectively, while the average relative errors for the predictions of well B are 5.19 % and 2.86 

% for BP and KNN, respectively. As can be seen in Figures 17c to 17e, the prediction results correlate 

with the actual data, with the data scatter mostly close to the standard line. The average relative errors 

for the predictions of well A are 2.16%, 1.91% and 1.83%, respectively, while the average relative 
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errors for the predictions of well B are 1.21%, 1.29% and 1.15% for XGBoost, DT and RF, 

respectively. The errors are all larger than the method proposed in this work. 

Comparing the prediction errors in Figures 17c and d, it can be seen that the error of DT for well 

A is lower than that of XGBoost, while the opposite is the case for well B. This also indicates that DL 

models have stronger generalization capabilities compared to traditional ML methods, resulting in 

better performance on new data. 

 

 

(a)

Well A Well B

(b)
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Figure 17. Crossplot of the real and predicted permeability by the different ML-based models: (a) BP, 

(b) KNN, (c) XGBoost, (d) DT, and (e) RF. 

 

 

 

(c)

(d)

(e)
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5.2. Generalizability of the proposed method 

To illustrate the general aspects of the proposed method, log data from a tight-gas sandstone 

reservoir are selected to train the networks. The data are from the Sulige gas field, Ordos Basin, 

China. It includes 1704 data points with , , , ,GR Vcl Ip      and κ. The dataset consists of 5 wells. To 

evaluate the performance of the model, we selected one well (well C) as an independent test dataset. 

The remaining wells with 1338 data points were used to train the DNN model. We use the same 

network architecture as mentioned above, where the inputs and outputs are ( , , , , )GR Vcl Ip     and 

κ, respectively. 

The results are shown in Figure 18. It can be observed that the predicted results for well C are in 

better agreement with the real data and have lower errors. The relative RMSE for the permeability 

predictions is 0.032, with an R
2
 value of 0.75. As can be seen in Figure 19a, the prediction errors have 

a relatively narrow distribution with an average relative error of 1.91 %, and Figure 19b shows that the 

prediction results correlate with the actual data, with the data mostly scattering close to the standard 

line. The previous examples mainly focus on a shale/tight oil reservoir, while the example in this 

subsection shows that the proposed method can also be used for a tight-gas sandstone reservoir. These 

examples show that the DNN-based permeability prediction method in this work can provide high 

accuracy and general applicability. 
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Figure 18. Results (a) and the relative error (b) for well C. 

 

Figure 19. Errors (a) and crossplot (b) of the real and predicted permeability for well C. 

6. Conclusions 

In this work, permeability prediction studies were carried out in the tight reservoirs of the Chang 

7 Member in the Ordos Basin based on a deep neural network. Data from 19 wells in the study area 

were used to train and test the network. First, the borehole data were pre-processed, resulting in 3783 

valid data points. Two wells with many data points were selected for permeability prediction. The 

obtained parameters were used as inputs for the network, while the permeability data served as output. 

Real data Predicted dataa)

b)

a) b)

R2=0.75



Jo
ur

na
l P

re
-p

ro
of

Journal Pre-proof

24 

 

After normalizing the data, the network was trained. The permeability prediction results for the two 

boreholes agreed well with the actual data with R
2
 values of 0.64 and 0.72 (1 is optimal). We then 

performed a correlation analysis between the inputs and permeability and selected parameters that 

correlated strongly with permeability as new inputs to the network. Keeping the structure (with the 

same hyperparameters), we retrained the network. The new R
2
 values were 0.70 and 0.87. Compared 

with conventional ML methods, the method proposed in this work provides more accurate and reliable 

permeability prediction. In addition, the prediction for different regions show that the proposed 

method has certain generalization capabilities and provides a technical approach to evaluate the sweet 

spots of tight reservoirs. 
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 DNN-based method is developed to predict permeability using logging data of tight reservoirs. 

 Optimizing the input parameters by performing a crossplot analysis between input parameters 

and the permeability to improve prediction accuracy. 

 The proposed method achieves satisfactory results in the practical applications for tight 

reservoirs. 


