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This work studies the wave motion in a fluid-filled borehole in the presence of drill string and geo-

logical formation. The synthetic waveforms are obtained by a three-dimensional axis-symmetric

full-wave numerical simulation in a two-dimensional multi-domain where the medium is uniform

with respect to the azimuth. The discretization is performed in cylindrical coordinates. In order to

simulate the waves at the origin (axis of the polar radius), a very small radius is used to avoid the

singularity. The free-surface and rigid boundary conditions are tested and it is shown that the rigid

one constitutes the best approximation. The simulations provide the amplitude distribution and

motion diagrams in the borehole vertical cross-sections and at the outer boundary, away from the

borehole. Propagation in the presence of hard and soft formations is analysed. The dispersion, the

amplitude, and the orbital polarization of the modes excited by a point source acting in the fluid

inside a drillstring are considered and examples of comparison with literature results obtained using

multi-modal analysis are shown. The proposed approach is more general than the multi-modal anal-

ysis, since it allows for arbitrary variations of the properties in the plane of symmetry.
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I. INTRODUCTION

The study of acoustic wavefield propagation in fluid-

filled boreholes with drilling tubulars is of great importance

for many applications of downhole monitoring in oil and gas

exploration, well drilling, well completion, and production

surveillance (e.g., Refs. 1–6). The analysis of the recorded

data involves the interpretation of the propagating wavefields,

which is supported by the analysis in the low frequency

approximation of the coupled wave modes in the different

borehole domains including the radiation in the surrounding

formation,1,5,7,8 and full-wave numerical simulation.9–11

Numerical simulation is therefore a powerful tool to

provide predictions and support interpretation of wavefields

recorded in real conditions. When the analysis includes the

propagation of acoustic signals in the formation at seismic

distances from the borehole, a main issue is the different

scale to simulate the wavefields in the borehole, where a

radial discretisation of millimetres is typically needed, and

the formation, where the propagation requires cells of tens of

meters to reach distances of hundred of meters away from

the borehole. Here, we restrict the analysis to distances close

to the borehole wall. However, even in this case, cylindrical

multi-domains and non-uniform radial rings are necessary

to implement radial layers and obtain full-wave numerical

solutions.11,12

Approaches based on analytical methods7,8,13 provide the

basis for the calculation of the multi-modal solutions in sys-

tems composed of layered cylindrical sections in fluid-filled

boreholes.14 Karpfinger et al.15 propose a spectral-method

algorithm to study wave propagation of acoustic modes in

elastic cylindrical structures, in which the problem of deter-

mining the modal dispersion is expressed as a generalised

eigenvalues problem.

Numerical algorithms implemented in cylindrical coor-

dinates require irregular radial grids to represent with appro-

priate detail the physical properties of the borehole-

formation system.9,11 This approach poses the problem to

properly define the boundary conditions in the axis of the

borehole, which is located in the inner fluid of the drill

string. If the aim of the study is to simulate phenomena asso-

ciated with the borehole and the characterisation of the

wavefields in the formation, the role of the inner boundary,

which is masked by the presence of the pipe might not be

significant. For instance, Kessler and Kossloff10 propose a

method implementing a free-surface boundary condition

near the origin, using cylindrical coordinates. However,

when the analysis focus on the signal in the inner mud, the

choice of the inner boundary condition is important. The

free-surface boundary condition zeroes the inner pressure

near the radial origin. Thus the pressure field is weakened in

the inner fluid domain inside the drill pipe near the origin,

where it vanishes. Here, we analyse the free-surface and

rigid boundary conditions and show that the rigid one pre-

serves the mode of the innermost fluid domain. A scheme of

the reflection of waves from the inner boundary in the axis-

symmetric geometry is shown in Fig. 1.

II. EQUATIONS OF MOTION AND ALGORITHM

We design a two-dimensional (2-D) algorithm imple-

mented for solving three dimensional axis-symmetric elastica)Electronic mail: bfarina@inogs.it
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wave equation in fluid-filled boreholes in the presence of

drill string.11 The algorithm uses a multi-domain approach

and the problem is solved in cylindrical coordinates r, z, and

h, representing the distance from the centre of the borehole,

the depth, and the polar angle, respectively. According to the

axis-symmetry, the medium is uniform with respect to the

azimuth. The simulation is performed by using Chebyshev

and Fourier differential operators to calculate the spatial

derivatives along the radial and vertical direction, respec-

tively, and a fourth-order Runge-Kutta time-integration

scheme. The numerical technique is based on the combina-

tion of the equation of momentum conservation and stress-

strain relation calculated for solid (drill pipe, casing, forma-

tion) and fluid layers (inner and outer mud).

A free surface or rigid boundary condition is applied in

the innermost boundary, i.e., the axis of the borehole, while

a non-reflecting boundary condition is applied in the outer-

most boundary, i.e., the formation external boundary. Wave

modes and radiated waves are simulated in the borehole-

formation system, and we show that rigid boundary is neces-

sary to preserve the pressure component of the mode that

propagates in the inner mud.

A. Equations of motion

The 2-D numerical simulation of three-dimensional

(3-D) axis-symmetric seismic wave propagation is based on

the solution of the equations of momentum conservation

combined with the stress-strain relations. We consider the

equations for solid [i.e., pipe (drill string), casing and forma-

tion] and fluid (inner and outer mud) layers. The equations

of momentum conservation, expressed in cylindrical coordi-

nates (r, z, h), for the solid are11,12

q _vr ¼
@rrr

@r
þ @rrz

@z
þ 1

r
rrr � rhhð Þ þ fr; (1)

q _vz ¼
@rrz

@r
þ @rzz

@z
þ rzr

r
þ fz; (2)

where v, r, and q represent particle velocity, stress, and

mass density, respectively, and fr and fz are excitation body

forces per unit volume. A dot above a variable denotes time

differentiation. The equations of momentum conservation

for the fluid are

q _vr ¼
@rrr

@r
; q _vz ¼

@rrr

@r
; (3)

where �rrr is the fluid pressure.

The stress-strain relations in cylindrical coordinates for

the solid are
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where k and l are the Lam�e constants. The stress-strain rela-

tion of the fluid is

_rzz ¼ k
@vr

@r
þ @vz

@z
þ vr

r

� �
þ _f rr; (8)

where frr is a dilatational source per unit volume.

B. Solution scheme and boundary conditions

The equations of motion contain both spatial and tempo-

ral derivatives. The numerical solution is achieved by using

the Chebyshev and the Fourier expansion to calculate the

spatial derivatives along the radial and the vertical direction,

respectively, and the fourth order of the Runge-Kutta scheme

to perform the time integration.

The domain is decomposed in four (or more) subdo-

mains corresponding, in principle, to the inner mud, drill

string, outer mud, and casing/formation media. Each subdo-

main is non-uniformly discretized with the Gauss–Lobatto

collocation points along the radial direction and uniformly

discretized along the vertical direction.11 To combine two

adjacent meshes, the wavefield is decomposed in incoming

and outgoing wave mode at the interfaces between the media

and these modes are modified on the basis of the fluid/solid

boundary conditions12 (Chaps. 9.3.2 and 9.5). The ingoing

waves are connected with the solution outside the subdo-

mains and are calculated by the boundary condition of stress-

and particle velocity-components continuity. The outcoming

waves, instead, depend on the solution inside the subdomains

(e.g., Refs. 9, 16, and 17). The connection of two grids at

their common boundary is carried out by adopting the char-

acteristic variables of the wave equation.9,11,18

To model the singularity at the borehole axis (r¼ 0), the

minimum radius (r¼ e) of the innermost mesh has been

taken different from zero but small with respect to the wave-

length. Free surface or rigid body boundary conditions are

applied at the inner radius boundary of the innermost mesh

(r¼ e, Fig. 2), while a non-reflecting boundary condition is

applied at the outer radius of the outermost mesh (r¼ d, Fig. 2),

by appropriately setting the characteristic variables.9,11,18

FIG. 1. Reflection of waves in the axis-symmetric geometry. (a) Inward and

(b) Outward cylindrical wavefields at the origin are modeled by the rigid

boundary condition, which represents (c) The reflected outcoming waves at

the axis, with a negligible delay through the small inner disk portion (of

radius e) surrounded by the boundary. The sign of the inner reflection coeffi-

cient changes for pressure and velocity.
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Carcione et al.11 showed results obtained with the appli-

cation of the free-surface boundary condition at the innermost

boundary. They presented the comparison between numerical

and analytical solutions, with a reciprocity test, simulation of

the propagating modes and analysis of propagation velocities.

The free-surface boundary condition of zero traction (pressure

in fluid) does not preserve the pressure mode component at

r¼ e (Fig. 2). Therefore, among different boundary condi-

tions,9,11 in order to model the wave motion in the drill string

mud channel we choose the rigid condition at the innermost

boundary. This condition is achieved by retaining the charac-

teristic variable that describes inward motion and zeros the

radial particle velocity. The resulting relations are19

vðnÞr ¼ 0 (9)

and

rðnÞrr ¼ rðoÞrr � qVpv
ðoÞ
r ; (10)

where the superscripts “o” and “n” denote old and new

values of variables before and after the application of the

boundary condition, respectively.

III. NUMERICAL SIMULATIONS

A. Comparison between analytical and numerical
solutions

To test the algorithm and verify the performance of the

rigid boundary condition at the origin we compare numerical

and analytical solutions for acoustic axis-symmetric propa-

gation in two cases.

The first example considers a homogeneous fluid with

compressional velocity VP¼ 1558 m/s and density q¼ 1000 kg/

m3. We show in Fig. 3 the model and the pressure signals,

recorded in two different radial points, corresponding to the

analytical solution (solid line) and numerical simulation (dot-

ted line). To obtain the analytical solution we consider a ring

source, with radius Rc¼ 16 m, composed of 10 000 point

sources. The analytical signal at the receiver is the linear

superposition of the Green functions of all the point sources.11

The numerical simulation uses one mesh with radial and ver-

tical dimensions of 74 and 200 m, discretized with 91 and 250

grid points, respectively. The innermost radius is r¼ e¼ 1 cm,

where the rigid boundary condition is applied [Eqs. (9) and

(10)]. Both in the analytical and numerical simulations the

point source is a Ricker wavelet with a pick frequency of

250 Hz. The solutions of the pressure signal are acquired at

R¼ 3 cm [Fig. 3(a)] and R¼ 16 m [Fig. 3(b)] from the bore-

hole axis (and from the source-ring center). The bold dotted

and the dotted arrows show the ray paths from the source to

the receivers for the analytical and numerical simulations,

respectively. The first arrivals present the same phases since

the signal paths for both solutions are the same [ray paths 1 in

Figs. 3(a) and 3(b)]. The phases of the second arrival are

opposite because in the numerical case the signal is reflected

by the innermost boundary, while in the analytical case it

arrives from the farthest sources [ray path 2 in Fig. 3(b)]. The

agreement is good and the presence of the rigid boundary

FIG. 2. Section of the borehole-pipe-formation system, modified after

Carcione et al. (Ref. 11). The ranges of each mesh are ra – e for the inner

mud, rb – ra for the drill pipe, rc1
� rb for the outer mud, rc2

� rc1
for the

casing and rd � rc2
for the formation. The dashed line represents the bore-

hole axes.

FIG. 3. Model and comparison between

the analytical (solid line) and numerical

(dotted line) signals recorded by (a) a

receiver located at 3 cm from the bore-

hole axis and (b) a receiver located

at 16 m from the borehole axis. The

numerical signals are obtained by using

the rigid boundary condition in the

innermost domain [figure modified after

Carcione et al. (Ref. 11)].
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implies a non-zero signal pressure near the borehole disconti-

nuity whereas, by definition, the free-surface condition

implies zero rrr.

The second example consists in a smaller mesh of homo-

geneous fluid with compressional velocity VP¼ 1304 m/s and

density q¼ 1500 kg/m3. The numerical domain, 125 m depth,

is radially discretized with 21 Gauss–Lobatto collocation

points [black lines in Fig. 4(a)]. The outermost radius is 10 cm

and the innermost one (e) is 0.5 cm. The dilatational source (S)

is located at 5.25 cm from the borehole axis. The radius of the

ring source made of 1000 point sources to obtain the analytical

simulation, is 5.25 cm. Figures 4(b), 4(c), and 4(d) show the

pressure signals for the analytical solution and numerical sim-

ulations with rigid and free-surface boundary, respectively.

The signals at the outermost boundary (numerical simulation)

vanish due to the presence of absorbing boundaries. The sig-

nals at the innermost boundary, near the borehole discontinu-

ity vanishes only when the free-surface boundary is applied,

while the rigid boundary preserves the signal pressure near the

borehole axis and the comparison with the analytical result

shows a good agreement. A detail of the pressure component

as a function of the radial distance from the borehole

discontinuity to the source is shown in Fig. 5. The analytical

result (ANA) is compared with the numerical simulation cal-

culated by using the rigid boundary condition [NRB in Fig.

5(a)] and free surface boundary conditions [NFS in Fig. 5(b)]

and the differences (DIF) are shown for both cases. It can be

observed how the rigid boundary condition performs better at

the borehole discontinuity.

B. Simulation of propagation modes

Next, using the rigid body boundary condition, we simu-

late wave propagation in a fluid-filled borehole with a drill

string considering two different formations surrounding the

well, namely, a hard formation, where the shear velocity is

higher than the fluid acoustic velocity, and a soft formation,

where the shear velocity is lower than the fluid velocity. The

material and geometrical properties of the models are the

same of that of Lea and Killingstad8 and are reported in

Table I. The inner mud, drill pipe, and outer mud are radially

discretized with nr¼ 11 grid points, while the formation is

radially discretized with nr¼ 91 grid points. The 160 m

depth interval is discretized with 300 grid points equally

FIG. 4. Model used to obtain the analytical solution and numerical simulation (a). The triangles shows the receiver radial position. (b) Analytical pressure sig-

nals compared with the numerical pressure signals calculated using the rigid (c), and free-surface (d) boundary conditions.

FIG. 5. Detail of the pressure compo-

nent from the borehole discontinuity to

the source location for the example

shown in Fig. 4. (a) Analytic solution

(ANA), numerical simulation with

rigid boundary (NRB), and the differ-

ence (DIF). (b) Analytic solution

(ANA), numerical solution with free

surface boundary (NFS), and the dif-

ference (DIF).
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spaced with Dz¼ 53.6 cm. The perturbation is a dilatational

source applied in the center of the inner fluid at a depth of

128 m. The source is a Ricker wavelet with peak frequency

375 Hz and time duration of 12 ms. The solution is

propagated up to 70 ms with a time step of 10 ns and the out-

put time traces are resampled to 10 ls. We record pressure

and vertical and radial particle-velocity components in the

vertical and radial directions of all the subdomains (a verti-

cal array at a fixed radial position provides a vertical seismic

profile or VSP).

We observe the three propagating borehole modes

(associated to the inner mud, drill pipe, and outer mud)

expected in the low frequency solutions for a frequency

below 1 kHz,1 which are generated by the radial motion of

the drill string and formation that allows the pressure waves

inside the string to communicate with the annulus.

The inner fluid mode, denoted by M1, is characterized

by a dominant motion in the inner mud and determined

TABLE I. Material and geometrical properties.

vP vS q e ra rb rc rd

(m/s) (m/s) (g/cm3) (cm) (cm) (cm) (cm) (m)

Inner mud 1304 0 1.000 0.27 5.4 — — —

Drill pipe 5943 3177 7.850 — 5.4 6.35 — —

Outer mud 1304 0 1.000 — — 6.35 17.0 —

Hard formation 3290 1900 2.000 — — — 17.0 20

Soft formation 1423 822 2.000 — — — 17.0 20

FIG. 6. Hard formation. VSP of pressure, vertical and radial particle velocity wavefields recorded at the center of the inner mud, drill pipe, outer mud and for-

mation with a receiver located at 1 m from the outer mud/formation interface. The labels indicate the modes: M1 (inner mud mode), M2 (drill string mode),

M3 (outer mud mode), and M4 (formation mode).
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mainly by the properties of the inner mud and drill pipe. The

mode M2 (drill pipe mode) that has motion and stress mainly

over the cross-section of the pipe,1 represents the extensional

wave traveling in the drill string. The mode M3 (outer fluid

mode) is strongly influenced by the formation and weakly by

the pipe. We observe also another mode characterized by

dominant motion in the formation, that we call M4, which is

significantly influenced by the compressional wave propa-

gating in the formation.

Figures 6 and 7 show the VSP of pressure, vertical and

radial particle velocity fields recorded in the center of the

inner mud, drill pipe, outer mud, and formation at a radial

distance 1 m from the outer mud/formation interface, for the

hard and the soft formation, respectively. In each subdomain,

FIG. 7. Soft formation. VSP of pressure, vertical, and radial particle velocity wavefields recorded at the center of the inner mud, drill pipe, outer mud, and for-

mation with a receiver located at 1 m from the outer mud/formation interface. The labels indicate the modes: M1 (inner mud mode), M2 (drill string mode),

M3 (outer mud mode), and M4 (formation mode).

FIG. 8. Dispersion characteristic of mode M3 in the presence of a soft for-

mation calculated with the free-surface (dotted bold line) and rigid (solid

bold line) boundary conditions. The dotted line represents the formation

shear-wave velocity.
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the modes are interpreted and highlighted. The presence of a

rigid boundary condition allows us to observe the inner fluid

mode M1, which is not detectable using the free surface

boundary condition. We calculate the mode velocities by

picking the arrival time at the maximum of its energy and

analyze the travel times as a function of depth.

Mode M2 is the dominant mode in the drill string and

the measured velocity is 5142 and 5137 m/s with the hard

and soft formation, respectively, in agreement with Rama

Rao and Vandiver1 who measured a velocity slightly faster

in the hard formation compared to that of the soft formation.

Mode M1 is dominant in the inner fluid and its velocity is

1290 and 1286 m/s in the hard and soft formation, respec-

tively. Modes M1 and M2 are weakly influenced by the

variations in the formation properties and are non-dispersive.

Mode M3, which is dominant in the outer mud, is strongly

affected by formation properties. In the hard formation, this

mode is weakly dispersive and its velocity slightly increases

with frequency, as shown by Rama Rao;13 it varies from

1110 and 1119 at 100 and 600 Hz, respectively. On the other

hand, in the soft formation mode M3 is strongly dispersive

and its phase velocity decreases as the frequency increases.13

FIG. 9. Mode M3 dispersion curves corresponding to the numerical simula-

tion (solid line) and analytical solution (dotted line) using the properties

listed in Table II.

FIG. 10. Hard formation. Amplitude

analysis of pressure (a), vertical (b),

and radial (c) particle velocity compo-

nents for modes M1, M2, M3, and M4.

RMS amplitudes are represented as a

function of the radial distance (e is the

innermost radius, ra, rb, and rc are the

inner-mud, drill-pipe, and outer-mud

radii, respectively).

TABLE II. Material and geometrical properties. Soft formation with drill

collar (Ref. 1).

vP vS q e ra rb rc rd

(m/s) (m/s) (g/cm3) (cm) (cm) (cm) (cm) (m)

Inner mud 1558 0 1.000 0.19 3.81 — — —

Drill collar 5900 3400 7.800 — 3.81 10.16 — —

Outer mud 1558 0 1.000 — — 10.16 15.24 —

Soft formation 1409 813 2.000 — — — 15.24 100
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The measured phase velocity changes from 810 to 771 m/s,

when the frequency goes from 100 to 600 Hz.

In the range of investigated frequencies, using the geo-

metric and physical properties given in Table I, mode M3

radiates energy into the soft formation, while its energy is

trapped within the borehole in the hard formation. Mode M4

has a velocity of 3210 and 1416 m/s for the hard and soft for-

mation, respectively, close to the two formation compres-

sional velocities.

To test the velocity variations with respect to the bound-

ary conditions applied in the innermost domain, we simulate

wave propagation with the soft formation using the free-

surface and rigid boundary conditions. Using the first condi-

tion, which zeros the stress at the discontinuity, the weak-

ened inner mud mode M1 is not detectable, therefore we

compare the velocity of modes M2, M3, and M4.

The pipe mode speeds M1 are 5137 and 5130 m/s with

the rigid and free-surface conditions, respectively, while the

velocities of the formation mode are 1416 and 1415 m/s,

respectively. Since the outer mud mode M3, in the presence

of the soft formation, is dispersive, we show the dispersion

curves calculated with the two conditions in Fig. 8. We

observe that the velocity variation is weakly sensitive to the

condition type used in the inner domain. The effect induced

by the boundary condition creates small fluctuations in the

mode velocities.

For comparison, we calculate the mode M3 dispersion

curve in the presence of soft formation using the analytical

approach proposed by Rama Rao and Vandiver1 with a

model using the properties given in Table II. We compare

the results with our simulations using the rigid boundary

condition that has proven to be the best choice to model all

the coupled modes generated in a fluid-filled borehole sur-

rounded by the formation. Figure 9 shows the comparison,

where the solid and dotted line represents the dispersion

obtained using the numerical and analytical approaches,

respectively. The dashed line represents the shear-wave for-

mation velocity. The agreement is good.

IV. SIGNAL ANALYSIS

Although the modal analysis of multi-domain guided

waves identifies fundamental modes characterized by the

same propagation velocity in all the domains, the amplitude

of the modal vibrations varies in the domains, with different

curves for the different components. We analyze amplitude

and orbital polarization of the motion vibrations of the simu-

lated signals obtained in the multi-domain using a

FIG. 11. Model with soft formation.

Amplitude analysis of pressure (a),

vertical (b), and radial (c) particle

velocity components for modes M1,

M2, M3, and M4. RMS amplitudes are

represented as a function of the radial

distance (e is the innermost radius, ra,

rb, and rc are inner-mud, drill-pipe, and

outer-mud radii, respectively).
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dilatational source in the inner mud with applied rigid-

boundary condition at hole axis, corresponding to a model

defined by the properties given in Table I.

A. Amplitude

To calculate the mode amplitude, we record the VSP

signals at every radial grid point of each domain and select

the depth interval that better evidences the signals that we

consider, paying attention to avoid local amplitude variations

in near the source. At each radial position of the single

domain, we align the selected mode and subsequently stack

it in depth to minimize unwanted events. Then, we calculate

the RMS amplitude of the stacked data and plot the normal-

ized amplitude curves as a function of the radial distance.

Figures 10 and 11 show the amplitude analysis for the hard

and soft formations, respectively, for pressure (a), and the

vertical (b), and radial (c) particle-velocity components of

the inner mud M1, drill pipe M2, outer mud M3, and forma-

tion M4 modes. The pressure, axial, and radial particle-

velocity components of the drill pipe mode M2 have a

mode-shape similar in both the hard and soft formation

(Figs. 10 and 11, M2). The axial particle velocity and the

pressure are uniform over the cross section of the pipe, and

concentrated in the pipe domain. The radial particle velocity

increases in the inner fluid domain for both formations,

reaching a maximum at the interface with the drill pipe

where it decreases. The vertical particle-velocity component

of modes M1 and M3 is uniform and concentrated in the

inner and outer fluid layer, respectively, while the pressure

component of these modes is dominant in the drill pipe,

which is stiffer, for both formations. Mode M4 has pressure,

FIG. 12. Polarization in the presence

of hard [(a), (c), (e), (g)] and soft [(b),

(d), (f), (h)] formations of modes M1

[(a), (b)], M2 [(c), (d)], M3 [(e), (f)],

and M4 [(g), (h)] at 100, 300, and

600 Hz. The model properties and

dimensions are shown in Table I.
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axial and radial particle velocity more relevant in the forma-

tion domain.

B. Polarization

To analyze the relative magnitude of the axial and radial

particle velocities, we calculate the orbits of modes M1, M2,

M3, and M4 at three different frequencies, namely, 100, 300,

and 600 Hz for the hard and soft formations using the proper-

ties shown in Table I (Fig. 12). The sign of the phase differ-

ence between the axial and radial particle velocities defines

the direction of the orbits. Positive values corresponds to

counterclockwise (þ) and negative values to clockwise (–)

orbits. The orbits of the four modes are calculated in the cen-

tre of the pipe and the fluid domains and at one and half the

borehole radius in the formation. For each mode, the orbits

are displayed with respect to the maximum of the axial and

radial particle velocities.

In order to appreciate the relative variations of the axial

and radial particle velocities along the radial direction, we

calculate the particle orbits in different points of the inner

fluid, drill pipe, outer fluid, and formation domains at the

fixed frequency of 300 Hz. Figures 13 and 14 show the polar-

ization of modes M1, M2, M3, and M4 plotted in each

domain with respect to the largest of the axial and radial par-

ticle velocities, specifying the scaling factor, in the hard and

soft formation, respectively.

Now we focus on the behaviour of the individual modes

in each domain. Mode M1 [Figs. 12(a) and 12(b) for the

hard and soft formation, respectively] is mainly localized in

the inner fluid layer, with negligible radial particle velocity.

Its orbits are positive in the fluid domains and negative in

the solid domains. At the higher frequency of 600 Hz, the

radial component of this mode can be seen in the soft forma-

tion [Fig. 12(b)]. The amplitudes of the radial and axial par-

ticle velocities of mode M1 observed in the inner mud are 50

FIG. 13. Hard formation. Polarization

of modes M1, M2, M3, and M4 in the

inner mud, drill pipe, outer mud, and

in the first 0.4 m of formation. For each

mode, the particle orbits are plotted in

the single domain with respect to the

largest of the axial and radial particle

velocities. The scaling factor is

reported on the side.

FIG. 14. Soft formation. Polarization

of modes M1, M2, M3, and M4 in the

inner mud, drill pipe, outer mud, and

in the first 0.4 m of the formation. For

each mode, the particle orbits are plot-

ted in the single domain with respect

to the largest of the axial and radial

particle velocities. The scaling factor is

reported on the side.
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times higher than that in the drill pipe (Figs. 13 and 14). In

the presence of hard formation, the energy of the radial and

axial particle velocity components of mode M1 is mainly

confined in the inner mud and partially in the outer mud,

where the orbits are only four times weaker than that in the

inner fluid and the radial motion still remains negligible. In

the presence of the soft formation, the signal of mode M1 is

better detectable in the formation, where the scale factor is

25 compared to 80 in the presence of hard formation.

The pipe mode M2 has a dominantly vertical orbit and it

is felt mainly in the pipe [Figs. 12(c) and 12(d)]. The phase

of the axial particle velocity is greater than that of the radial

particle velocity in the outer fluid and in both the formations.

The amplitudes of the radial and axial particle velocities

recorded in the other domains are lower than that observed

in the drill pipe but more energy is trapped in the outer fluid

in the presence of hard formation (Figs. 13 and 14, M2).

Mode M3 has prevalently a vertical orbit in the outer

fluid for both the hard [Fig. 12(e)] and soft [Fig. 12(f)] for-

mations even though its radial component increases with fre-

quency in the presence of the soft formation. The orbit

directions are the same as those of the fluid mode M1, posi-

tive in the fluid domains and negative in the solid domains.

Figures 13 and 14, M3, show that the radial particle velocity

component increases approaching the formation, as expected

for the so-called tube waves.20 Like for the other modes the

presence of hard formation limits the energy flow out of the

outer mud/formation boundary.

The formation M4 mode has a dominantly vertical orbit

for both the hard [Fig. 12(g)] and the soft [Fig. 12(h)] forma-

tions. The radial component begins to grow in the hard for-

mation at the higher frequency 600 Hz. The magnitude of the

orbits recorded in the formation and in the other domains are

the same, both in the presence of hard (Fig. 13, M4) and soft

(Fig. 14, M4) formations. Some differences can be observed

in the relative magnitudes of the axial and particle velocities

in the outer mud, where the radial component increases

approaching the formation.

To further analyse the particle motion, we calculate the

radial and axial displacements of mode M3 at given frequen-

cies for the model proposed by Rama Rao and Vandiver1 in

the presence of soft formation and drill pipe (see Table III).

Figure 15 shows the comparison between (a) the particle

orbits of mode M3 calculated by Rama Rao and Vandiver1

at 100, 300, and 1000 Hz and (b) that calculated with our

numerical simulation at 100, 300, and 700 Hz using the rigid

boundary condition at the borehole axis. The radial displace-

ment component of mode M3 increases with frequency and

it is evident both in the analytical solution of Rama Rao and

Vandiver1 and in our numerical results. The direction of the

orbits is counterclockwise corresponding to a positive phase

difference (þ) between the axial and radial displacement

components in the two fluid domains, both in the analytical

and numerical solutions. The orbit directions of mode M3

calculated with the numerical approach are clockwise (–) in

the drill pipe and in the formation.

V. CONCLUSIONS

We analyse borehole wave-guide signals, using a full-

wave numerical grid method, implemented in axis-

symmetric multi-domains represented by polar coordinates.

The systems consist of drill string and formation, including

the inner and outer mud. The approach uses the rigid bound-

ary condition to avoid the singularity in the inner-fluid

domain at the origin. The results are validated by analytical

solutions and the analysis of the mode amplitudes across the

vertical cross-section of the cylindrical layers, together with

the properties of the orbital particle motions at different

locations. The vibration modes confirm the expected results

for a relevant known in literature. The use of the rigid

boundary condition prevents the inner fluid pressure to van-

ish. The analysis shows that the wave modes at the outer

boundary of the borehole, at the formation contact, are influ-

enced by the compressional-wave velocity and density of the

formation.

Although other approaches, analytical and pseudo-

spectral method provide dispersion relations for the charac-

terization of downhole measurements, the elastic numerical

approach presented in this work provides a powerful tool to

FIG. 15. Comparison between (a) the particle orbits of mode M3 modified

after Rama Rao and Vandiver (Ref. 1) at 100, 300, and 1000 Hz and (b) that

computed with the numerical simulation at 100, 300, and 700 Hz, using the

rigid boundary condition at the borehole axis. The orbits directions are

specified by (þ) if counterclockwise and (–) if clockwise.

TABLE III. Material and geometrical properties. Soft formation with drill

pipe (Ref. 1).

vP vS q e ra rb rc rd

(m/s) (m/s) (g/cm3) (cm) (cm) (cm) (cm) (m)

Inner mud 1558 0 1.000 0.19 5.32 — — —

Drill pipe 5900 3400 7.800 — 5.32 6.35 — —

Outer mud 1558 0 1.000 — – 6.35 15.24 —

Soft formation 1409 813 2.000 — – – 15.24 100
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investigate well acoustic data and formation radiation in

arbitrary-geometry settings. The limitations of axis symme-

try has to be overcome by development of full 3-D elastic

codes.
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