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Abstract
Petrophysical seismic inversion, aided by rock physics, aims at estimating reservoir proper-
ties based on reflection events, but it is generally based on the Gassmann equation, which 
precludes its applicability to complex reservoirs. To overcome this problem, we present a 
methodology based on the double-porosity Biot–Rayleigh (BR) model, which takes into 
account the rock heterogeneities. The volume ratio of inclusions in the BR model is treated 
as a spatially varying parameter, facilitating a better description of the pore microstructure. 
The method includes the Zoeppritz equations to extract reservoir properties from prestack 
data. To handle the ill-posedness of the inversion and achieve a stable solution, the algo-
rithm is formulated as a multi-objective optimization based on the Bayes theorem, where 
the reservoir-property estimation is jointly conditioned to seismic and elastic data with 
multiple prior terms. The method is validated with field data of a tight gas sandstone res-
ervoir, illustrating its effectiveness compared to the Gassmann-based estimation, reducing 
uncertainties and improving the accuracy of identifying gas zones.

Article Highlights 

• The petrophysical seismic inversion is based on the double-porosity Biot–Rayleigh 
model

• Spatially varying inclusion volumes are used to describe complex pore structures
• A multi-objective optimization with joint data misfit enables stable results
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1 Introduction

Seismic inversion aided by rock physics (so-called petrophysical seismic inversion) esti-
mates reservoir properties from reflection data (Gunning and Glinsky 2007; Bosch et al. 
2010; Zong et al. 2015; Grana et al. 2017; Luo et al. 2020; Huang et al. 2021a). The seis-
mic and petrophysical inversions can be implemented either sequentially or jointly. The 
sequential method carries out the petrophysical inversion from elastic or impedance models 
(Hammer et al. 2012; Zhao et al. 2013; Hafez et al. 2014), whereas the joint one performs 
the two inversions simultaneously (Zong et al. 2015; Aleardi et al. 2018; Fjeldstad et al. 
2021). Moreover, the methodology can be deterministic or probabilistic. The first usually 
linearizes/approximates a rock-physics model or a seismic reflectivity and an analytic solu-
tion to the inverse problem can be derived (Hansen et al. 2006; Huang et al. 2021b). The 
probabilistic approach formulates an objective function (or posterior probability) based on 
the Bayes theorem and nonlinear seismic and petrophysical forward operators (Bachrach 
2006; Spikes et al. 2007). In practice, an inverse problem can be solved either by a sto-
chastic sampling (Mosegaard 1998; Bosch et al. 2007) or a global optimization algorithm 
(Sambridge and Mosegaard 2002; Sen and Stoffa 2013). In general, the joint approach can 
avoid accumulative errors that might be present in the sequential one, and the probabilistic 
approach can handle nonlinear rock-physics and seismic models, assessing the uncertain-
ties of the results. Moreover, the adopted rock-physics model can be empirical or theoreti-
cal. The former requires a fit with experimental data (Avseth and Veggeland 2014; Aleardi 
et  al. 2018) or spatial mapping relations assisted by geostatistical stochastic modeling 
(González et al. 2008; Connolly and Hughes 2016; Azevedo et al. 2019), while the theoret-
ical approach is based on predictive models (Zhao et al. 2013; Teillet et al. 2021; Li et al. 
2021), which is more adapted to specific or complex geological/lithological conditions.

Many rock-physics models have been proposed as, for instance, effective medium theo-
ries (Mavko et al. 2009), which involve inclusion models (Norris 1985; Markov et al. 2005) 
and contact models (Avseth and Bachrach 2005; Dvorkin et al. 2014). The Gassmann equa-
tion (Gassmann 1951) is the zero-frequency limit of the dynamic poroelasticity theory 
and provides an approximation of the seismic velocity, and mineral heterogeneity can be 
handled with averaging (e.g., Xu and White 1995). These models assume homogeneous 
properties at the seismic scale, which facilitates the inversion for conventional reservoirs 
(e.g., Zong et al. 2015; Grana, 2020; Teillet et al. 2021; Bredesen et al. 2021; Guo et al. 
2021a), but fail when dealing with reservoirs, where complex pore microstructures and 
fluid patches are present. To overcome this problem, much work has been done by con-
sidering meso- and micro-scale heterogeneities, including attenuation/ dispersion effects 
(Dvorkin and Nur 1993; Santos et al. 2004; Pride et al. 2004; Ba et al. 2011, 2017; Wang 
and Tang 2021; David and Zimmerman 2012; Gurevich et al. 2009; Carcione et al. 2013). 
However, such models usually employ sequential approaches and mainly non-iterative 
inversion methods (Picotti et al. 2018; Pang et al. 2021).

Petrophysical seismic inversion involves two mainly aspects, namely to improve the accu-
racy/applicability of the forward modeling, e.g., modeling the rock skeleton by considering 
multiple pore shapes/types (Guo et al. 2021b; Wang et al. 2021), or deriving a reflectivity for-
mula based on sensitive geofluid/petrophysical parameters (Pan and Zhang 2018; Chen et al. 
2021). A third aspect is to mitigate the instability/non-uniqueness of the inversion process, 
e.g., by incorporating reliable/multiple prior information into the objective function (Grana 
2020; Astic et al. 2021), or designing advanced optimization/sampling algorithms (de Figue-
iredo et al. 2019; Zidan et al. 2021). Although these methods improve or stabilize the results 
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to some extent, they are based on homogeneous models (hereafter referred to as the Gassmann 
model) and cannot be appropriate for complex reservoirs. On the other hand, using heteroge-
neous models has two main drawbacks. First, the integrated petro-seismic forward operator 
can be highly nonlinear and the petrophysical parameters may have a low sensitivity to the 
seismic response, thus causing instabilities. Second, the heterogeneous model usually requires 
more parameters (e.g., crack density and pore aspect ratio), which also contributes to the 
instabilities.

We present a methodology based on a heterogeneous rock-physics theory, namely the 
Biot–Rayleigh (BR) model (Ba et al. 2011). By incorporating the predicted elastic parameters 
into the Zoeppritz equation (Aki and Richards 1980), we extract the reservoir properties from 
seismic-angle gathers. In practice, we assign a volume fraction of inclusions in the BR equa-
tion as a spatially varying parameter (in addition to porosity and fluid saturation), by which a 
complex pore structure can be modeled as a double-porosity medium. Moreover, to stabilize 
the algorithm, we formulate it as a multi-objective optimization problem based on the Bayes 
theorem. The estimation of the parameters is jointly conditioned by the seismic and petro-elas-
tic data, based on multiple prior terms from a Gaussian mixture model. The problem is treated 
as a weighted objective function, minimized by a simulated annealing algorithm to achieve a 
stable solution. The methodology is applied to field data acquired from a tight gas sandstone 
reservoir in the Sichuan Basin, China, and compared to the Gassmann model.

2  Theory and Method

2.1  Forward model relating the seismic responses to petrophysical properties

In order to model the complexity of reservoirs, we employ the BR model (Ba et al. 2011) to 
describe the seismic wave propagation. This model assumes a double-porosity medium, where 
spherical inclusions are embedded into a host medium with two pore structures (the govern-
ing equations are given in Appendix A). Differing from the Gassmann model, the BR model 
considers heterogeneities that may be caused by fluid distribution, mineral grains and pore 
structures.

The forward modeling consists in three steps, i.e., estimating first the properties of the min-
eral mixture, then those of the skeleton, and finally those of the wet rock. For simplicity, we 
express the mapping of the petrophysical parameters r to the elastic parameters m, based on 
the BR equation, as

where R is the forward operator, m includes the P- and S-wave velocities and bulk density, 
r involves parameters such as the total porosity and fluid saturation, and L denotes an aux-
iliary parameter.

To extract petrophysical parameters directly from seismic data, we combine rock-physics 
modeling and prestack amplitude variation with offset (AVO) inversion, i.e., the predicted 
elastic parameters are incorporated into the Zoeppritz equation (Aki and Richards 1980), 
based on which we obtain the forward model that relates the petrophysical parameters to the 
seismic response. We express the integrated forward model as

(1)� = �(�,�),

(2)�seis = �(�(�,�)) ∗ � + �,
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where G is the Zoeppritz equation, w is the source wavelet (the symbol "*" denotes time 
convolution), dseis is the PP-wave prestack seismic data, and e is random error caused by 
the modeling or measurements. Since the forward operators R and G are nonlinear, the 
integrated forward model may exhibit a high nonlinearity, and the inverse problem can be 
unstable.

The BR model assumes that stiff and soft pores (e.g., cracks) are randomly distributed 
spatially; hence, the rock skeleton exhibits the isotropic properties as a whole. Besides, 
the double-porosity model can be treated as a homogeneous media at the seismic scale 
(~ 50 Hz) since the inclusions have a radius of ~ 0.05 m (which is much smaller than the 
seismic wavelength). Therefore, the Zoeppritz equation which is under the isotropic and 
homogeneous assumption can be combined with the BR model at seismic frequencies.

2.2  Multi‑objective petrophysical seismic inversion

To evaluate the uncertainty of the result, we cast the inverse problem into the Bayes 
theorem, where the posterior distribution of the model parameters z given the observa-
tion d can be expressed as (Buland and Omre 2003)

where P(d|z) is the likelihood function that describes the relation between z and d and P(d) 
is the marginal probability of d that can be viewed as a constant. To jointly estimate the 
petrophysical and auxiliary parameters, we set z = [r, L]T, where the choice of L will be 
discussed later.

The seismic response to petrophysical parameters based on the BR model is highly 
nonlinear, and it is difficult to estimate the model parameters only from seismic data. To 
this end, we enable the estimation to be jointly conditioned to seismic and elastic data. 
By treating these (dseis and delas) as the observation, we express Eq. (3) as

By considering that P(dseis, delas|z) = P(dseis|z,delas) × P(delas|z), and assuming 
P(dseis|z,delas) ≈ P(dseis|z), we rewrite Eq. (4) as

Because the statistical characteristics of z usually vary in different lithofacies under 
complex geological conditions, the Gaussian mixture model (Sauvageau et  al. 2014; 
Grana et al. 2017) is employed to describe its prior distribution. As a linear combination 
of Gaussian distributions, it takes the form

where Nk denotes the kth Gaussian component with mean μz|k and covariance matrix Σz|k, 
πk is the weight of the linear combination that satisfies ΣNc

k=1
�k = 1 , and Nc is the number of 

components.

(3)P(�|�) = P(�|�) × P(�)

P(�)
∝ P(�|�) × P(�),

(4)P(�|�seis, �elas) ∝ P(�seis, �elas|�) × P(�).

(5)P(�|�seis, �elas) ∝ P(�seis|�) × P(�elas|�) × P(�).

(6)P(�) =

Nc∑
k=1

�kNk(�;��|k,��|k),
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We assume that the error in Eq. (2) follows a zero-mean Gaussian distribution. By sub-
stituting Eqs. (1), (2), (6) into (5), the posterior distribution becomes a linear combination 
of posterior components Pk(z|dseis,delas) (k = 1,2,…,Nc) as

with

where C is a normalization constant and σs and σe are the data variances associated with 
the seismic and elastic observations, respectively.

The estimation of z can be achieved by maximizing all the posterior objective com-
ponents in Eq. (8), which can be treated as a multi-objective optimization problem. Each 
component can be expressed as the negative logarithmic form of Pk. Then, we solve the 
problem by minimizing a linear combination of the components weighted by πk, which 
leads to the following objective function

The weights of the objective components should be carefully selected to achieve a stable 
and accurate result.

2.3  Multi‑objective optimization approach

Without loss of generality, we assume that the rock contain two primary lithofacies, classi-
fied as reservoir and non-reservoir rocks. Therefore, for two Gaussian components (Nc = 2), 
the objective function can be rewritten as

with

By introducing posterior weights β (to replace the objective component weights and 
data variances) and considering �1 + �2 = 1 , Eq. (10) can be further expressed as

(7)P
(
�|�seis, �elas

)
=

Nc∑
k=1

�kPk

(
�|�seis, �elas

)
,

(8)
Pk

(
�|�seis, �elas

)
= Ck exp

[
−

1

2�s

‖‖�seis −�(�(�))‖‖2 − 1

2�e

‖‖�elas − �(�)‖‖2

−
1

2

(
� − �

�|k
)T(

�
�|k
)−1(

� − �
�|k
)]

,

(9)
Fobj(�) =

Nc∑
k=1

�k

[
1

2�s

‖‖�seis −�(�(�))‖‖2 + 1

2�e

‖‖�elas − �(�)‖‖2

+
1

2

(
� − �

�|k
)T(

�
�|k
)−1(

� − �
�|k
)]

.

(10)Fobj(�) =
�1 + �2

�s

‖‖�seis −�(�(�))‖‖2 +
�1 + �2

�e

‖‖�elas − �(�)‖‖2 + �1Ω1 + �2Ω2,

(11)Ωk =
(
� − �

�|k
)T(

�
�|k
)−1(

� − �
�|k
)
, k = 1, 2.

(12)Fobj(�) =
‖‖�seis −�(�(�))‖‖2 + �1

‖‖�elas − �(�)‖‖2 + �2
[
�1
(
Ω1 − Ω2

)
+ Ω2

]
,
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where the posterior weights β = [β1, β2]T aim at balancing the two data misfits and the prior 
terms during the optimization process.

We use a fast simulated annealing (FSA) algorithm (Ingber and Rosen 1992; Sen and 
Stoffa 2013) to optimize the objective function of Eq. (12). Besides, we iteratively update 
the posterior weights by the maximum likelihood method during the FSA-based optimiza-
tion process.

In practice, the model perturbation and the acceptance probability at the (n + 1)th itera-
tion can be expressed as (Ryden and Park 2006)

and

where η is a random number between 0 and 1 and T(n+1) and Tinit are the current and initial 
temperatures, respectively. The perturbation and its acceptance (or rejection) are repeated 
several times (defined by the Markov chain length). The optimization/sampling proceeds as 
the temperature anneals until the maximum iteration or the ending temperature is reached.

We update β by maximizing the likelihood function P(d|β) as

By taking the negative logarithmic form of P(d|β) as L(β), the estimation of Eq.  (15) 
can be achieved by minimizing L(β). Here, we employ the Gauss–Newton method to 
update β iteratively, by which β at the (n + 1)th iteration is updated by

The analytic computation of the derivative of L(β) is estimated via the expectations of 
the posterior and prior distributions (Jalobeanu et al. 2002; Guo et al. 2021a). In practice, 
the model perturbation of the FSA proceeds at inner and outer loops, respectively. In each 
outer loop (at a fixed temperature), the empirical mean of the Monte Carlo sampling for the 
model parameters (after completing all inner loops) is used to compute the expectations, 
the derivative of L(β) can be achieved, and β is updated. Then, the model perturbation con-
tinues to the next outer loop (with temperature reduced), and the sampling of model param-
eters and the update of β are repeated. Note that the superscript n in Eq. (16) only denotes 
the iteration of the outer loop, whereas that in Eqs. (13) and (14) denotes the total iteration. 
The expression and computation of the derivative in Eq. (16) are given in Appendix B.

2.4  Workflow

For complex reservoirs (e.g., tight gas sandstone reservoirs), the pore structure and min-
eral components often exhibit inhomogeneous distributions. In the BR model, spherical 
inclusions with a low volume ratio vc are embedded in a host medium with a higher 

(13)�(n+1) = �(n) +

(
T (n+1)

T init
�1 tan

(
�2
�

2

))
Δ�,

(14)P
(
�(n) → �(n+1)

)
= min

[
1,exp

(
−
Fobj

(
�(n+1)

)
− Fobj

(
�(n)

)

T (n+1)

)]
,

(15)�̂ = argmax
�

P
(
�seis, �elas|�

)
.

(16)�
(n+1)

i
= �

(n)

i
−

[(
�L

��
i

)T(
�L

��
i
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�L

��
i

, i = 1, 2.
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volume ratio vh. The total rock porosity is ϕ = ϕ10vh + ϕ20vc with vh + vc = 1, where ϕ10 
and ϕ20 are the porosities of the two porous components. To account for the fabric het-
erogeneities, we treat the volume ratio of inclusions (inclusion volume) vc as an auxil-
iary parameter L. In practice, we set the inclusion volume as an spatially variable vec-
tor v = [v1,v2,…,vm]T (with m denoting the sample number at each seismic trace) during 
the inversion process, which honors the heterogeneity and improves the accuracy of the 
modeling.

The workflow of the BR rock-physics modeling is shown in Fig. 1. First, the elastic 
properties of the mineral mixture are computed by the Voigt–Reuss–Hill average. Then, 
by adding cracks and pores into the inclusion and host media with the differential effec-
tive medium (DEM) model (Berryman et  al., 2002), the elastic properties of the two 
skeletons are obtained, and subsequently we add the inclusions into the host medium 
to compute those of the skeleton. Finally, the wet-rock properties are computed with 
the BR equation. We perform a plane-wave analysis on the BR differential equations 
to obtain the phase velocity of the P wave (see Appendix A). The S-wave velocity is 
computed from the shear modulus of the skeleton and the density of the fluid-saturated 
rock. The bulk modulus of the fluid mixture (brine and gas) is obtained from the Wood 
equation.

The Xu–White model (Xu and White 1995) is combined with the Gassmann model 
and compared with the proposed method. In the Gassmann model, the skeleton moduli 
are obtained with the DEM method, followed by fluid substitution (see Fig. 2).

Fig. 1  Workflow of the Biot–Rayleigh-based rock-physics modeling

Fig. 2  Workflow of the DEM-
Gassmann-based rock physics 
modeling
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The inclusion volume v cannot be directly obtained from observed data, and we esti-
mate it via well-log calibration by matching the predicted and log P-wave velocities, VP

est 
and VP

log, respectively, i.e.,

Moreover, since the proposed method requires the elastic model as input data in 
Eq. (12), we obtain this model from a conventional prestack AVO inversion by

where μm and Σm are the mean and covariance matrix of the elastic parameters, respec-
tively. For simplicity, we assume the elastic parameters follow a standard Gaussian distri-
bution [in Eq. (18)], whereas the Gaussian mixture model can be used alternatively. We set 
the P-wave velocity of the BR model as the elastic data delas in the objective function of 
Eq. (12).

In summary, Fig. 3 outlines the workflow of the proposed inversion method as follows:

(1) Initialize the rock-physics parameters, estimating the inclusion volume v with Eq. (17), 
and the P-wave velocity model m with Eq. (18);

(2) The rock-physics modeling is performed to formulate the elastic misfit with the esti-
mated m and the seismic misfit with the prestack seismic data;

(3) Estimate the Gaussian mixture model of Eq. (6) from the log-measured porosity and 
water saturation and v (from Step 1) by using the expectation–maximization algorithm, 
formulating the prior term, and building the objective function of Eq. (12);

(17)�̂ = argmin
�

‖‖‖�
est
P
(�, �) − �

log

P

‖‖‖2,

(18)�̂ = argmin
�

[
1

2𝜎s

‖‖�seis −�(�)‖‖2 + 1

2

(
� − �

�

)T(
�
�

)−1(
� − �

�

)]
,

Fig. 3  Workflow of the proposed 
inversion method
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(4) Initialize the parameters of the FSA, i.e., the initial temperature, the temperature damp-
ing factor, the Markov-chain length (inner loops), and the chain number (outer loops);

(5) Perturb the model parameters according to Eq. (13) with its acceptance/rejection 
according to Eq. (14), and repeat the model update several times defined by the inner 
loops;

(6) Update the posterior weights according to Eq. (16), reducing the temperature, and 
switching to the next chain (outer loop);

(7) Repeat steps 5–6 till the model update is complete for all the chains, and z is output as 
the final result.

3  Test and application

The method is tested and applied on field seismic data acquired from a tight gas sand-
stone reservoir in Sichuan Basin, China. The data set includes two well logs and a pre-
stack seismic section. We first build the rock-physics modeling by using the Gassmann and 
BR models, extract prior information of petrophysical parameters, followed by inversion/
uncertainty tests based on Well 1, and finally validate the method by inverting the seismic 
section with a blind test on Well 2.

3.1  Rock‑physics modeling

The reservoir has low porosity and permeability and contains relatively high clay content, 
where microcracks are well developed. Figure 4 displays the log curves and the borehole-
side angle gather of Well 1, used for the calibration by using the Gassmann (Fig. 1) and 
BR (Fig.  2) models. Table  1 shows the rock-physics parameters for the tests. The BR 
equation is evaluated at seismic frequencies (Wang et al. 2020). In this approach, the rock 
matrix (for host and inclusions) is a mixture of quartz, clay, and feldspar minerals with 
their percentages of 68.4, 15.2, and 16.4%, respectively; the cracks are modeled by the 
inclusions, where the inclusion volume (v) quantifies the relative percentage of cracks and 
pores with the aspect ratios of 0.035 and 0.12, respectively. Figure  5a and b shows the 
predicted P-wave velocity by the two models as a function of porosity and clay/inclusion 
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volume, respectively, where we can see that the BR model exhibits a better agreement for 
the well samples which have a low clay volume (which are mainly gas-saturated rocks) and 
for the gas-reservoir samples that have a relatively low water saturation (Fig. 5c), while the 
Gassmann model generally underestimates the velocity (Fig. 5d).

Figure 6a, b shows the predicted elastic parameters by the Gassmann and BR model that 
are calibrated on Well 1, respectively. The Gassmann prediction (with fixed aspect ratio) 
exhibits an apparent deviation in the gas-saturated section (2.49–2.53 s). Although the pre-
diction with spatially varying aspect ratios (Yan et al. 2002; Guo et al. 2021b) improves 
the agreement to some extent (see Fig. 6d), it requires two extra parameters for the DEM 
modeling, i.e., the sand- and clay-related pore aspect ratios (Fig. 6e, f). Remarkably, the 
BR model (Fig. 6b) exhibits the best agreement among the three, and it only requires the 
inclusion volume [see Fig. 6c, estimated by Eq. (17)] to achieve the desired accuracy. The 
estimated curves of the aspect ratio (Fig.  6e, f) and the inclusion volume (Fig.  6c) are 
given. The inclusion volume, which cannot be directly measured, is treated as an auxiliary 
parameter to describe the spatial complexity of pore structure and facilitate the accuracy of 
rock physics modeling.

3.2  Well‑log data test

The estimated inclusion volume (Fig.  6c) and the log porosity and saturation (Fig.  4d, 
e) are employed to extract the prior information for the inversion. Figure 7a–c shows the 
Gaussian mixture distribution of the model parameters (with two Gaussian components 
weighted by 0.32 and 0.68, estimated by the expectation–maximization algorithm), by 
which the prior term is formulated. Particularly, the inclusion volume exhibits a fairly good 
correlation with the clay volume (see Fig. 7d), from which an empirical relationship can be 
derived. Since the inclusions with microcracks are primarily determined by clay minerals 

Table 1  Rock properties
Bulk moduli of quartz, Kqz 42 GPa
Shear moduli of quartz, μqz 37 GPa
Density of quartz, ρqz 2.66 g/cm3

Bulk moduli of feldspar, Kds 75 GPa
Shear moduli of feldspar, μds 26 GPa
Density of quartz, ρds 2.72 g/cm3

Bulk moduli of clay, Kcl 23 GPa
Shear moduli of clay, μcl 7 GPa
Density of clay, ρcl 2.25 g/cm3

Bulk moduli of brine, Kw 2.2 GPa
Bulk moduli of gas, Kg 0.0015 GPa
Density of brine, ρw 1.1 g/cm3

Density of gas, ρg 0.002 g/cm3

Aspect ratio of pore, αs 0.12
Aspect ratio of crack, αc 0.035
Radius of inclusion, Ro 0.05 m
Permeability of host, κ1 0.01 D
Viscosity of fluid, η 0.001 Pa·s
Angular frequency, ω 94π rad/s
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where soft pores are likely developed (Xu and White 1995), such a correlation is reason-
able in tight gas sandstones.

We carry out three inversion tests by using the Gassmann model, and the BR model 
with single misfit and joint misfits (the proposed method). The last two tests are designed 
to validate the effectiveness of the multi-objective optimization. For the joint misfits, a 
low-frequency filtered P-wave velocity (it has a correlation coefficient of 0.85 with the log 
curve) is used as the input elastic model. The initial temperature and damping factor of the 
FSA are set to 1.05 and 0.98, respectively. For each simulation, the total iteration is 20000 
(with 500 inner loops and 40 outer loops).

Figure 8a–c shows the three test results. In each test, fifty independent simulations are 
performed, of which the mean result (red) and one simulation result (yellow) are displayed. 
By comparing the results by using the Gassmann and BR models (Fig. 8a, b), the latter 
shows the best agreement for all the petrophysical parameters. See Table  2 for a quan-
titative comparison. The clay volume for the BR method is obtained from the inclusion 
volume according to the empirical relation shown in Fig.  7d. The BR model with joint 
misfits, based on the multi-objective optimization, further improves the accuracy (Fig. 8c). 
Figure 8d displays an overall comparison of the three results, indicating that the proposed 
method delineates the gas- and water-saturated zones more distinctively aided by the 
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porosity and clay volume (indicated by the arrows). However, the saturation shows less 
improvement, considering that the tight gas sandstone is less insensitive to fluid saturation. 
Figure 9 shows the misfit evolution during the inversion process for the BR model with 
single and joint misfits, from which we can see that the proposed multi-objective inversion, 
conditioned to seismic and elastic data, achieve a better convergence on the elastic misfit 
(Fig. 9a), which improves the convergence of the seismic misfit (Fig. 9b).

The uncertainty analysis is also performed by considering the randomness of the algo-
rithm. Figure 10 shows the posterior probability distributions for the three tests, estimated 
by setting the objective function with a fixed temperature of 0.25 (which corresponds to 
15% data variance. At each spatial/temporal point, the distribution is estimated from one 
hundred samplings, each sampling runs for a Markov chain length of 10,000 to achieve the 
stationary state. Comparing the results in Fig. 10a–c, we observe that the BR model gener-
ally predicts a narrow distribution tail (Fig. 10c) with fewer uncertainties. The The maxi-
mum of the a posteriori (MAP) results (red curves in Fig. 10) (according to the estimated 
posterior distributions) indicate that the BR model exhibits a better concentration around 
the true value. To further evaluate the uncertainties, Fig. 11a–c shows the results of one 
hundred samplings in detail and the estimated posterior distributions (for example, at the 
spatial point of 2.46 s). The posterior distributions are estimated by assuming the Gaussian 
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mixture model with three (Gaussian) components, of which statistical parameters are com-
puted by using the expectation–maximization algorithm. Figure 11d–f displays an overall 
comparison among the posterior distributions, overlain by the relevant prior distributions, 
from which we can see that the porosity predicted by the proposed method (red curve in 
Fig. 11d) exhibits the best accuracy with the least uncertainty (the narrowest distribution 
tail). Although the saturation estimated by the single misfit method (blue curve in Fig. 11e) 
exhibits a slightly better accuracy than that of the proposed method (red curve), the latter 
shows a narrower distribution with fewer uncertainties. The clay volume estimated by the 
proposed method (red curve in Fig. 11f) shows a better accuracy than the others. However, 
all the methods overestimate the clay content.

3.3  Field data application

We apply the methodology to invert a seismic section (Fig. 12), penetrated by Well 2 
at the 83rd common depth point (CDP), where the gas layer of interest is identified 
between 2.50 and 2.54  s (with a depth of ~ 4.5 km). The section has 146 CDPs, and 
each CDP contains 6 angle traces ranging from 5 to 30 degrees. In order to validate 
the method by a blind test, we exclude Well 2 from formulating the prior term and only 
make use of the data samples of Well 1. The target gas layer in Well 2 has a relatively 
lower water saturation of 0.6–0.7 (compared with 0.8 in Well 1), and we set the mean 
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value of saturation to 0.68 for the Gaussian component of the reservoir rocks. The field 
data inversion is performed trace by trace; hence, the initial temperature of the fast sim-
ulated annealing (FSA) varies in different traces, and it is estimated by setting the initial 
acceptance probability to 90% (other settings are the same as those of the well-log data 
test).

Figure  13 shows the P-wave velocity model from prestack AVO inversion. The 
inverted model has a correlation coefficient of 0.81 with the log curve and is used 
as input elastic data to measure the elastic misfit. The initial values of the posterior 
weights are set to 0.0015 and 0.023 according to the data variances. Figures 14 and 15 
show the inversion results by using the Gassmann and proposed methods, respectively. 
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Fig. 8  Inversion results by using a the DEM-Gassmann model, b the BR model, and c the multi-objective 
BR method (the proposed method), and d mean results in the respective plots (a–c), where the arrows indi-
cate the improvements achieved by the proposed method

Table 2  Correlation coefficients 
between the log data and the 
mean results in Fig. 8d

ϕ Sw Vc

Gassmann model 0.738 0.776 0.609
BR model with a single misfit 0.768 0.796 0.628
BR model with joint misfits 0.821 0.795 0.634
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The porosity predicted by the BR model (Fig.  15a) exhibits a better performance to 
identify the reservoir rocks, where the prediction fairly agrees with the log profiles. In 
contrast, the Gassmann method (Fig.  14a) generally underestimates the porosity and 
also exhibits a poor lateral continuity along the gas layer. Although the accuracy in esti-
mating the water saturation for the gas zone by the two methods is comparable, the BR 
model (Fig.  15b) removes a few anomalies in the non-reservoir areas. The clay vol-
ume (Fig. 15c) predicted by this model is obtained from the inverted inclusion volume. 
Since the conversion highly depends on the in-situ fit (empirical) relation, no apparent 
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improvement is observed in this case. Nevertheless, the clay-volume estimation is useful 
to identify the zones with relatively lower clay content, which may be helpful to deline-
ate the gas zones.

Furthermore, Fig.  16 displays the result (red curve) by the proposed BR method, 
compared with the log data (black curve). Generally, the agreement for the petrophysi-
cal parameters is acceptable and the porosity exhibits a fairly good match. The corre-
lation coefficients with the log curves (blind test) are 0.736, 0.693, and 0.612, for the 
porosity, saturation, and clay-volume results, respectively. The predicted elastic param-
eters (from the inverted petrophysical parameters in Fig. 16a) generally honor the log 
profiles (Fig. 16b), and the predicted seismic data also show an acceptable agreement 
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with the borehole-side angle gather (Fig.  16c). However, the clay volume (converted 
from the inclusion volume) underestimates the result to some degree, probably due to 
uncertainties in the derived empirical relation by excluding the data of Well 2.

3.4  Discussion

The proposed method is applied to a tight gas sandstone reservoir in this paper, and it can be 
extended to other reservoirs (e.g., carbonates) by considering the capability of the BR model 
to describe heterogeneous rocks (Ba et al. 2017; Pang et al. 2020), but a different approach to 
obtain the elastic properties of the host/inclusion skeletons may be required. Here, we have 
used this model at seismic frequencies (~ 50 Hz), although it is more general. The inclusion 
of frequency-dependent properties, such as seismic attenuation and dispersion, may improve 
the inversion and will be a task for future work. The method combines the joint (single-step) 
and sequential inversion approaches in which the estimation is conditioned both to seismic 
and elastic data. The well-log data test demonstrates that, provided the input P-wave velocity 
data having a coefficient correlation of 0.85 with the log curve, the method can be better than 
the joint approach (being conditioned only to seismic data). The elastic data with low quality 
may cause deviations in the elastic misfit term of objective function and thereby worsen the 
convergence performance of optimization process, which will affect the prediction of reservoir 
parameters. Besides, we only set P-wave velocity as the input elastic data, whereas including 
S-wave velocity or bulk density as an additional input may facilitate improving the result but 
would cause more uncertainties associated with the elastic data accuracy and acquisition. We 
solve the problem by minimizing a linear weighted objective function by a global optimization 
algorithm while updating the weights via stochastic sampling estimation. However, other opti-
mizations or sampling methods, e.g., Pareto optimization (Zidan et al. 2021), can be applied 
to have comparable or even better performance. One drawback is that for inverting a seismic 
section, the BR method consumes more than twice computer time than the Gassmann model, 
which takes 8.5 h on a standard workstation. Therefore, the efficiency should be improved 
when the method is applied to 3D seismic data.

4  Conclusions

We have proposed a seismic petrophysical inversion method by combining the DEM and dou-
ble-porosity Biot–Rayleigh models with the Zoeppritz equation, to extract reservoir proper-
ties. The inversion method takes into account the rock microstructure, yielding better results 
than Gassmann-based methods under complex reservoir conditions. The inclusion volumes in 
the Biot–Rayleigh equation are unknown variables to account for the heterogeneities and han-
dle spatially complex structures. The estimation of the petrophysical properties is formulated 
as a multi-objective optimization problem, where the objective function contains joint data 
misfits and multiple prior terms, to stabilize the algorithm with reduced uncertainties. The 
method is successfully validated by tests on data from a tight gas sandstone reservoir.

Appendix A: The Biot–Rayleigh equation and its plane‑wave solution

Ba et al. (2011) proposed the Biot–Rayleigh model to describe the seismic wave propaga-
tion in a double-porosity medium. The governing equations are
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where u, U(1), and U(2) are the average particle displacements of the skeleton, and the aver-
age fluid displacements in the host and inclusion, respectively, with volume strains ε, ζ(1), 
and ζ(2), ϕ10 and ϕ20 are the porosities of the host and inclusion with their absolute porosi-
ties ϕ1 and ϕ2, κ1 and η are the host-medium permeability and fluid viscosity, respectively, 
ς denotes the fluid strain increment in the local fluid flow and Ro is the radius of inclusion. 
The equations contain six stiffness parameters A, N, Q1, Q2, R1, R2, five density coefficients 
ρ11, ρ12, ρ13, ρ22, ρ33, and two Biot dissipation coefficients b1 and b2.

By substituting a plane-wave kernel into Eqs. (19)–(20), the complex wave number k 
can be obtained from

where

and
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Equation  (23) yields three roots, and we choose the fast P-wave one (the classical 
compressional wave). The phase velocity is given by Carcione (2014) as

where ω is the angular frequency.

Appendix B: Update of posterior weights

Jalobeanu et al. (2002) and Guo et al. (2021a) proposed to update the regularization param-
eters by using the Monte-Carlo-based maximum likelihood method. We hereby extend the 
method to be applicable to the multi-objective optimization problem with joint data misfits.

The likelihood function of Eq. (15) is

where the Ω denotes the data space of z. Given the known β, we have

where F1 and F2 denote the seismic and elastic misfit terms in Eq. (12), and

are the normalization constants.
The prior distribution of P(z|β) is

where F3 denotes the prior term in Eq. (12), and

is a normalization constant.
By substituting Eqs.  (28) and (30) into (27), the likelihood function of β can be 

expressed as the negative logarithm of P(dseis,delas|β)
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with

By employing the Gauss–Newton descent method to minimize the log-likelihood func-
tion 32, β can be iteratively updated as

with

Introducing the expectation of z, regarding its probability distribution, Eq. (35) can be 
estimated from the expectations of one prior distribution (Eβ) and two posterior distribu-
tions (Ez and Ee) as

By setting the quadratic form of � =
[
�2
1
, �2

2

] T to compute the derivative and to ensure 
its value positive, the derivative in Eq. (32) [or Eq. (16)] can be estimated as

where F2
* and F3

*denote the F2 and F3 terms without β1 and β2.
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