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Gassmann Modeling of Acoustic Properties of Sand-clay Mixtures

BORIS GUREVICH1 and JOSÉ M. CARCIONE2

Abstract—The feasibility of modeling elastic properties of a fluid-saturated sand-clay mixture rock
is analyzed by assuming that the rock is composed of macroscopic regions of sand and clay. The elastic
properties of such a composite rock are computed using two alternative schemes.

The first scheme, which we call the composite Gassmann (CG) scheme, uses Gassmann equations to
compute elastic moduli of the saturated sand and clay from their respective dry moduli. The effective
elastic moduli of the fluid-saturated composite rock are then computed by applying one of the mixing
laws commonly used to estimate elastic properties of composite materials.

In the second scheme which we call the Berryman-Milton scheme, the elastic moduli of the dry
composite rock matrix are computed from the moduli of dry sand and clay matrices using the same
composite mixing law used in the first scheme. Next, the saturated composite rock moduli are computed
using the equations of Brown and Korringa, which, together with the expressions for the coefficients
derived by Berryman and Milton, provide an extension of Gassmann equations to rocks with a
heterogeneous solid matrix.

For both schemes, the moduli of the dry homogeneous sand and clay matrices are assumed to obey
the Krief’s velocity-porosity relationship. As a mixing law we use the self-consistent coherent potential
approximation proposed by Berryman.

The calculated dependence of compressional and shear velocities on porosity and clay content for a
given set of parameters using the two schemes depends on the distribution of total porosity between the
sand and clay regions. If the distribution of total porosity between sand and clay is relatively uniform,
the predictions of the two schemes in the porosity range up to 0.3 are very similar to each other. For
higher porosities and medium-to-large clay content the elastic moduli predicted by CG scheme are
significantly higher than those predicted by the BM scheme.

This difference is explained by the fact that the BM model predicts the fully relaxed moduli, wherein
the fluid can move freely between sand and clay regions. In contrast, the CG scheme predicts the no-flow
or unrelaxed moduli. Our analysis reveals that due to the extremely low permeability of clays, at seismic
and higher frequencies the fluid has no time to move between sand and clay regions. Thus, the CG
scheme is more appropriate for clay-rich rocks.
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1. Introduction

Gassmann formulas relate the elastic moduli of a fluid-saturated porous mate-
rial to those of the dry (empty) matrix and fluid compressibility. They are widely
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used in modeling acoustic properties of fluid-saturated rocks, notably sands,
sandstones, and limestones. Application of the same equations to clay-sand mix-
tures, such as shaly sandstones and shales, is not straightforward, because
Gassmann formulas are not valid, in a strict sense, for materials with a heteroge-
neous solid matrix (BROWN and KORRINGA, 1975; BERRYMAN and MILTON,
1991). Thus the use of the Gassmann equation in models of sand-clay mixtures (XU

and WHITE, 1995; GOLDBERG and GUREVICH, 1998) should be regarded as an
approximation, which may be accurate enough only for some geometrical distribu-
tions of sand and clay particles within the solid matrix. One such configuration is
when sand and clay particles are mixed very ‘‘homogeneously,’’ so that the solid
matrix can be considered as an aggregate of composite grains, each grain being a
mixture of sand and clay particles. We refer to a model based on this assumption,
such as the one discussed by GOLDBERG and GUREVICH (1998), as a homogenized
matrix model or HM.

In the present paper we consider a different situation, in which the rock consists
of regions of sand and clay, which are much larger than the characteristic pore or
grain size (Fig. 1). The Gassmann formulas for the whole material clearly do not
apply in this case, and alternative approaches must be employed. Two possible
models are investigated below. One approach is to calculate the properties of the
dry-sand and ‘‘dry-clay’’ matrices, use Gassmann equations to obtain the moduli of
the saturated sand and clay, and then apply a certain mixing law to obtain the
moduli of the fluid-saturated rock as a composite material consisting of two

Figure 1
The rock is composed of macroscopic sand and clay regions.
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constituents, fluid-saturated sand and fluid-saturated clay. We call this approach a
composite Gassmann model (CG).

Another alternative is based on the equations of BROWN and KORRINGA

(1975), who generalized GASSMANN (1951) formulas to materials with heteroge-
neous solid matrix. The equations of Brown and Korringa contain four bulk elastic
parameters which characterize the solid matrix, compared with two parameters
(bulk modulus of the solid grains and that of the dry matrix) for the Gassmann
equations. The additional two parameters of Brown and Korringa are, in general,
difficult to estimate. However, BERRYMAN and MILTON (1991) demonstrated that,
when the matrix consists of macroscopic homogeneous regions which are large
enough to be characterized by effective elastic constants, the two additional elastic
constants of Brown and Korringa can be related to the moduli of the two
constituent dry matrices and the moduli of the composite dry matrix. In other
words, if we know the properties of the two dry matrices, we can apply a composite
mixing law to compute the moduli of the composite dry matrix, then compute
Brown-Korringa parameters using the equations of BERRYMAN and MILTON

(1991), and, finally, calculate the properties of the fluid-saturated rock using the
equations of BROWN and KORRINGA (1975). This model is called Berryman-Milton
model or BM.

In this paper we analyze the feasibility of using the CG and BM models to
calculate elastic properties of sand-clay mixtures. The paper is organized as follows.
First, we define the geometrical model of a sand-clay mixture under investigation.
Then, we describe the CG and BM models and their implementation. Finally, we
apply both procedures to the same material, compute the corresponding velocity-
porosity relationships, and compare the predictions of the CG and BM models with
each other and with the homogenized matrix model (HM) of GOLDBERG and
GUREVICH (1998).

2. Geometrical Model

We consider our rock to be a mixture of three materials: non-clay mineral (e.g.,
quartz), clay particles, and a fluid. These constituents are characterized by densities
rsand, rclay, and rf, bulk moduli K sand

m , K clay
m , and Kf, and shear moduli m sand

m , m clay
m ,

and 0. The volume fraction of clay in the solid portion of the rock is C and the total
porosity is f. The geometrical distribution of clay and quartz grains is such that the
rock consists of macroscopic regions where the solid component is either pure
quartz or pure clay. ‘‘Macroscopic’’ here means that the size of these regions is
substantially larger than the characteristic grain size, so that they may be character-
ized by porosities fsand, fclay and effective elastic constants K sand

0 , K clay
0 and m sand

0 ,
m clay

0 , respectively. The volume fractions of these sand and clay regions are denoted
by fsand and fclay, so that
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fsand+ fclay=1.

These volume fractions can be uniquely related to the clay content C and the sand
and clay porosities fsand and fclay. Indeed, if the volume of all solid particles in a
unit volume of the rock is 1−f, then the volume of solid clay particles Vclay in the
same unit volume of the rock is C(1−f). On the other hand, Vclay can be
considered as a solid part of the clay matrix, i.e., Vclay= (1−fclay)fclay. Therefore,

C(1−f)= (1−fclay)fclay

or

fclay=
C(1−f)
1−fclay

. (1)

Similarly,

fsand=
(1−C)(1−f)

1−fsand

. (2)

Our aim is to determine the effective elastic moduli (and compressional and shear
velocities) of the composite rock as a function of clay content C and porosity f.

To do this, we must specify the values of fsand and fclay, which define the
distribution of the total porosity

f=fsandfsand+fclayfclay (3)

between the two porous matrices, and are usually unknown. By definition, fsand=
f for pure sand (C=0), and fsand=0 for pure shale (C=1). We thus assume that
for a rock with the clay content C, the sand porosity is given by the equation

fsand=f(1−C)g (4)

where g]0 is a parameter of porosity distribution, a dimensionless number. The
corresponding ‘‘clay’’ porosity can be found by substituting expressions (1) and (2)
into equation (3):

1−C
1−fsand

+
C

1−fclay

=
1

1−f
. (5)

Solving equation (5) for fclay yields

fclay=
f−fsand(1−C+fC)

C+f−Cf−fsand

. (6)

Equation (4) implies that for a clean sand all the pores are within the sand matrix,
fsand=f, whereas for high clay content and g"0 the isolated sand grains are
surrounded by a clay-fluid mixture containing all the porosity. For g=0 we have

fsand=fclay=f,
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so that the porosities are the same for both sand and clay matrices, whatever the
clay content. On the other hand, for a clay-bearing rock setting g=� implies that
the solid grains contain no pores but are surrounded by a clay-fluid mixture,
meaning

fsand=0, (7)

fclay=
f

f+C(1−f)
. (8)

3. Computational Schemes

Elastic Moduli for a Homogeneous Dry Matrix

In both the CG and BM models we need to define the bulk and shear moduli
of the macroscopic constituents K sand

0 , K clay
0 and m sand

0 , m clay
0 as functions of the

corresponding porosities fsand and fclay. Following GOLDBERG and GUREVICH

(1998), we employ here a modified Krief model (KRIEF et al., 1990),

si=1− (1−fi)
Ai /(1−fi ), (9)

where si=1−Ki
0/Ki

m, i is either sand or clay, and Ai is a dimensionless number
which defines the steepness of the velocity-porosity curve (for an idealized material
with spheroidal pores Ai can be approximately related to the dominant pore aspect
ratio, see XU and WHITE, 1995). Any other known velocity-porosity relationship
(see e.g., MAVKO et al., 1998) can be used instead.

Assume that the dry matrix moduli K sand
0 , K clay

0 and m sand
0 , m clay

0 are known. The
moduli of the corresponding saturated homogeneous constituents can be obtained
from Gassmann equations,

Ki
sat=Ki

0+s i
2Mi

where Mi is so-called pore space modulus given by

1
Mi

=
si

Ki
m+f

� 1
Kf

−
1

Ki
m

�
and i is either sand or clay. The shear moduli are not affected by the saturation, so
that

m i
sat=m i

0.

Once the saturated moduli are known, the bulk and shear moduli of the saturated
composite rock may be computed by applying one of the mixing laws used to
compute the elastic properties of composite materials (CHRISTENSEN, 1979; BERRY-

MAN, 1995; MAVKO et al., 1998). We consider the choice of the mixing law in a
later section.
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Berryman-Milton Model

Beginning again with the dry matrix moduli K sand
0 , K clay

0 and m sand
0 , m clay

0 , the
bulk and shear moduli of the dry composite matrix K�

0 and m�
0 may be computed

by applying one of the composite mixing laws discussed in the next section.
Thereafter, the moduli of the saturated composite rock can be computed using the
formulas of Brown and Korringa

K sat=K0+s2M (10)

1
M

=
s

Ks

+f
� 1

Kf

−
1

Kf

�
, (11)

s=1−K�
0 /Ks, (12)

and

m sat=m�
0 , (13)

where Ks, and Kf are constants that depend on the moduli of the matrix con-
stituents and their geometrical distribution. For a rock consisting of macroscopic
regions, each having a homogeneous matrix, the equations for Ks and Kf have been
derived by BERRYMAN and MILTON (1991)

s−ssand

sclay−ssand

=
K�

0 −K sand
0

K clay
0 −K sand

0 , (14)

f

Kf

=
s

Ks

−%
i

si−fi

Ki
m fi+

�%
i

si fi−s
�� ssand−sclay

K sand
0 −K clay

0

�
, (15)

where i refers to either sand or clay. Once K�
0 and m�

0 have been determined, we can
use (14) to compute s, then use eq. (12) to evaluate Ks, compute Kf from eq. (15),
and, finally, evaluate the saturated bulk modulus using the Brown-Korringa
equations (10)–(13).

Composite Mixing Law
Lower Hashin-Shtrikman bound
Both the CG and BM schemes require a composite mixing law relating the

elastic moduli of a composite material to the elastic moduli and volume fractions of
the constituent materials. This is a classical problem in mechanics of composite
materials (CHRISTENSEN, 1979). The elastic moduli of a composite are not uniquely
defined by the moduli and volume fractions of constituents, but depend on the
geometrical distribution of the constituents in the composite. However, the range of
possible moduli of the composite is not infinite; for an isotropic geometry, its bulk
and shear moduli must lie within the so-called Hashin-Shtrikman bounds (CHRIS-

TENSEN, 1979; BERRYMAN, 1995). The lower (upper) Hashin-Shtrikman bound
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corresponds to the geometrical distribution of the constituents such that the softer
(harder) material serves as the primary load-bearing phase. For any other isotropic
geometrical distribution of the constituents the moduli lie between these two bounds.

A clay-sand mixture can be thought of as a material with two constituents, in
which sand is the harder and clay is the softer constituent. In many (though clearly
not in all) situations the primary load bearing constituent is clay. For shales and sandy
shales this is quite obvious. Shaly sandstones are also believed to have a fair amount
of clay between the sand grains. For this reason, the lower Hashin-Shtrikman bound
is sometimes used as a mixing law for sand-clay mixtures, such as in the homogenized
matrix model of GOLDBERG and GUREVICH (1998).

However, for the particular geometry considered in this paper, the use of the lower
Hashin-Shtrikman bound as a mixing law is not fully justified. Indeed, it implies that
all macroscopic sand regions are completely surrounded by macroscopic clay regions.
In particular, if the parameter g is high (g]1), it means that most of the porosity
is contained within the clay matrix (fsand�f), i.e., all sand grains are surrounded
by the clay matrix containing most of the pore space. This configuration may be
appropriate for shales, however for sandstones with a moderate clay content (CB0.3)
it leads to high values of clay porosity fclay, see equation (8). This would mean that
the solid grains are surrounded by a suspension of clay particles in the fluid, which
thus becomes the load-bearing phase. This picture is very unrealistic and leads to a
steep decrease in both bulk and shear moduli of the rock with porosity (Fig. 2) for
modest clay concentrations and to a decidedly less steep decrease for high clay
content, thus creating a crossover point at a porosity of about 0.27. The only condition
in which the low Hashin-Shtrikman bound yields reasonable values of compressional
and shear velocities is when the porosity is distributed uniformly between the sand
and clay matrices (g=0, or fsand=fclay=f, see Fig. 3). But this does not create
a more realistic circumstance.

Self-consistent scheme
In order to choose a more realistic mixing law, we must first think of a realistic

geometrical relationship between sand and clay regions. It is reasonable to assume
that when the sand component dominates (C�1, fsand� fclay), the sand will be a
continuous phase and the clay matrix will form isolated inclusions, and 6ice 6ersa.
That is, the dominant component is the load-bearing phase. Such a configuration is
modeled in a self-consistent (SC) scheme proposed by BERRYMAN (1980a,b). This
scheme is sometimes called the self-consistent coherent potential approximation or
CPA and can be considered as an extension of the well-known theory of KUSTER

and TOKSÖZ (1974) to arbitrary volume fractions of the constituents (BERRYMAN,
1995). This mixing law has an additional parameter n that denotes the aspect ratio
of the inclusions, which are assumed ellipsoidal in shape. In the CPA scheme, the
effective bulk K* and shear m* moduli of a composite consisting of two con-
stituents 1 and 2 with volume fractions f1 and f2, bulk moduli K1 and K2, and shear
moduli m1 and m2, are obtained as the roots of the following system of equations
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Figure 2
Compressional and shear velocities computed with Berryman-Milton (BM) and Composite Gassmann
(CG) schemes versus porosity for different clay content using the lower Hashin-Shtrikman bound as a
mixing law. The lines showing lower Vp and Vs at zero porosity correspond to higher clay content. The

porosity distribution parameter g is 1.

Figure 3
Compressional and shear velocities computed with Berryman-Milton (BM) and Composite Gassmann
(CG) schemes versus porosity for different clay content using the lower Hashin-Shtrikman bound as a
mixing law. The lines showing lower Vp and Vs at zero porosity correspond to higher clay content. The
porosity distribution parameter g is 0, which corresponds to the homogeneous distribution of porosity

between sand and clay, fsand=fclay=f.
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%
2

i=1

fi(Ki−K*)Pi=0 (16)

%
2

i=1

fi(mi−m*)Qi=0 (17)

where Pi and Qi are given by simple but cumbersome analytical expressions
involving Ki, mi, K*, m*, and the shape factor n, see BERRYMAN (1980b). For
spherical inclusions (n=1) the functions Pi and Qi are given by

Pi=
K*+4

3m*
Ki+

4
3m*

Qi=
m*+F*
mi+F*

with

F*=
m*
6

9K*+8m*
K*+2m*

.

We use the CPA scheme in our numerical examples, solving equations (16)–(17)
for K* and m* by iteration.

4. Numerical Results

To analyze the predictions of the two schemes we have computed compressional
and shear velocities as functions of porosity and clay content for a set of parameters
typical for shaly sandstones: rsand=rclay=2.65 g/cm3, rf=1 g/cm3, bulk moduli
K sand

m =40 GPa, K clay
m =20 GPa, Kf=2.25 GPa, shear moduli m sand

m =40 GPa,
m clay

m =10 GPa, and Krief’s exponents Asand=3.0, Aclay=3.5. Figures 4a–b show the
predictions of the CG and BM schemes compared with the HM model of Goldberg
and Gurevich. The porosity distribution parameter g was 1 and the shape of inclusions
in the composite model was assumed spherical (n=1). The figures that follow show
the corresponding predictions for g=1, n=0.2 (Fig. 5), g=0, n=1 (Fig. 6), g=20,
n=1 (Fig. 7).

From Figures 4–7 we can make the following observations:
� For relatively small values of the porosity distribution parameter g (g51), the

predictions of the CG and BM schemes in the usual reservoir porosity range
(0BfB0.3) are quite similar both qualitatively and quantitatively.

� In the same porosity range these predictions have the same general trends as the
homogenized matrix (HM) scheme. The visible difference in velocity-porosity slope
can be accounted for by a slight change in the Krief’s exponents in different
schemes. Indeed, Krief’s exponent need not be taken the same for different models.
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Figure 4
Compressional and shear velocities computed with Berryman-Milton (BM) and Composite Gassmann
(CG) schemes versus porosity for different clay content using the Coherent Potential Approximation as
a mixing law. The lines delineating lower Vp and Vs at zero porosity correspond to higher clay content.
(a) Comparison of BM and CG schemes; (b) Comparison of Homogenized-matrix (HM) and CG
schemes. The porosity distribution parameter g is 1; aspect ratio of inclusion n=1 (spherical inclusions).

� For larger values of g (g]1) at high porosities, both the CG and BM schemes
predict certain crossover points at small and large clay contents. In particular, in
the high C range (shale) the curves for lower clay content decrease with porosity
more rapidly than those with higher clay content, so that above a certain porosity
value all these velocities are approximately identical. This behavior is consistent
with the concept of critical porosity (YIN et al., 1994; MAVKO et al., 1998).
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� For these moderate to large values of g the predictions of the CG and BM
schemes exhibit significant velocity differences at high porosities and medium
clay content.

� For uniform distribution of porosity between the sand and clay matrices (g=0),
the predictions of the CG, BM, and HM schemes are almost identical.

� Large values of g (g\10) lead to unrealistically steep decreases of velocities with
porosity even in a low porosity range.

These observations are analyzed in the next section.

Figure 5
The same as Figures 4a,b but for g=1, n=0.2.
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Figure 6
The same as Figures 4a,b but for g=0, n=1.

5. Discussion

In this paper we have used the composite Gassmann (CG) and Berryman-Milton
(BM) schemes to model the compressional and shear velocities in sand-clay mixtures
as functions of porosity and clay content. By construction, both schemes are thought
to be rigorous and exact, meaning that with the correct elastic moduli of the dry sand
and clay matrices K sand

0 , K clay
0 and m sand

0 , m clay
0 , and the correct mixing law, they should

predict the moduli of the composite saturated rock exactly. Thus a basic question
arises: why are the predictions of the CG and BM schemes different?
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Indeed, the difference observed cannot be explained by the use of the approxi-
mate modulus-porosity law of Krief [equation (9)]. Though the moduli may not be
exact for any rock, they have been taken the same for both schemes. Likewise the
coherent potential approximation we used as a composite mixing law is approxi-
mate, although it is known to be physically realizable (MILTON, 1985), in the sense
that there exists a geometrical configuration of the two constituents for which the
effective elastic moduli predicted by CPA are exact. Thus the moduli of the
composite saturated material predicted by the CG and BM schemes should also be
exact. The fact that they differ poses two questions:

Figure 7
The same as Figures 4a,b but for g=10, n=1.
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1. What are the physical reasons behind the difference observed?
2. Which of these schemes is more adequate for modeling rock properties in

seismics/geoacoustics?
To answer these questions, we must revert to the construction of these schemes.

The BM scheme is based on a rigorous mechanical extension of Gassmann
equations to account for the heterogeneity of the solid matrix. On the other hand,
the CG scheme applies Gassmann equations to compute the saturated moduli of
the sand and clay, and then utilizes these moduli to predict the properties of the
composite rock. Since the composite mixing law was designed for elastic com-
posites, we effectively replace both saturated sand and clay with the equivalent
elastic materials. This may sound slightly arbitrary, since both materials are
poroelastic rather than elastic. In particular, by doing so, we neglect a possible flow
of the pore fluid between the sand and clay matrices, effectively ignoring one of the
degrees of freedom in the system. For matrices that differ substantially in their
compliances, the compression of the composite rock may lead to significant
movement of the pore fluid from more compliant to less compliant regions, thus
reducing the overall stiffness. Ignoring this effect by effectively sealing the
boundaries between sand and clay regions may lead to an overestimation of the
effective elastic moduli.

We could just conclude from this analysis that the BM scheme is rigorous, while
the CG is a no-flow approximation that may or may not be accurate enough in a
given situation. However, a more thoughtful look into the above analysis suggests
that this conclusion is not as obvious as it may appear. As mentioned above, the
BM scheme implicitly takes into account a possible fluid flow between the two
constituents under the deformation. This implies that the deformation is slow
enough for the fluid to flow from one constituent to the other (the so-called relaxed
conditions). To analyze whether this is the case for a given situation, we must make
our analysis dynamic rather than static, i.e., consider the frequency. Indeed, it has
been shown (GUREVICH and LOPATNIKOV, 1995; GUREVICH et al., 1998) that the
fluid can be considered as fully relaxed below the characteristic frequency

v0�
kKf

fhh2

where h is the fluid viscosity, h is the characteristic size of the constituent regions,
and k is the permeability that characterizes the flow between the constituents. In
general k is average permeability, although for rocks composed of constituents
whose permeabilities differ by orders of magnitude, it is obviously controlled by the
lowest permeability. In the case of sand-clay mixtures, k is dominated by the
permeability of clay or shale. For frequencies v�v0, the fluid has no time to move
from one constituent matrix to another, therefore the rock is characterized by
no-flow moduli, which can be obtained by the CG scheme.
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To obtain an upper limit for the characteristic frequency v0 we recall that h is
the characteristic size of the constituent regions. For these regions to be macro-
scopic h must be large compared with the main grain size. For sand-clay mixtures,
the largest possible grain size is 1 mm. We thus can take 1 cm as the lower estimate
for h. Assuming water saturation (Kf=2.25 GPa, h=10−3 Pa s), porosity of 0.2,
and maximum clay permeability of k=10−4 Darcy or 10−16 m2, we obtain v0510
s−1, which approximately corresponds to a circular frequency of 1.6 Hz. In fact, for
most shales the permeability is much lower than 10−16 m2 (BEST and KATSUBE,
1995). This means that the relaxed moduli as predicted by the BM model are only
relevant for frequencies below 1 Hz. For seismic and higher frequencies, the
unrelaxed moduli as predicted by the CG scheme should be used. We should
emphasize that this conclusion is a direct result of the extremely low permeability
of shales, and thus is only relevant for sand-clay mixtures. For other heterogeneous
porous rocks v0 can be much higher, in which case the relaxed moduli as predicted
by the Berryman-Milton scheme may be relevant.

We have explained and analyzed the difference between the compressional and
shear velocities in clay-sand mixtures predicted by CG and BM schemes. The
physical significance of the other observations is not as obvious. In particular, the
crossover at large clay content and large-to-medium porosity may be characteristic
of the particular distribution of porosity between the sand and clay regions, as
defined by equations (4) and (6), rather than of the models themselves. More
studies of the microstructure of real rocks in the wide range of porosity and clay
content are needed to define a more realistic distribution of porosity between sand
and clay regions.

6. Conclusions

We have compared two schemes for modeling the elastic properties of a rock
composed of macroscopic sand and clay regions. The composite Gassmann (CG)
scheme uses Gassmann equations to compute elastic moduli of the saturated sand
and clay from their respective dry moduli. The effective elastic moduli of the
fluid-saturated composite rock are then obtained by applying one of the mixing
laws commonly used to estimate the elastic properties of composite materials.

In the second scheme, the so-called Berryman-Milton scheme, the elastic moduli
of the dry composite rock matrix are computed from the moduli of dry sand and
clay matrices, using the same composite mixing law as used in the first scheme. The
moduli of the saturated composite rock are then obtained using the equations of
BROWN and KORRINGA (1975). These equations, together with the expressions for
the coefficients derived by BERRYMAN and MILTON (1991), provide a rigorous
extension of Gassmann equations to rocks with a heterogeneous solid matrix.
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The moduli of the dry homogeneous sand and clay matrices are assumed to
obey Krief’s formula (KRIEF et al., 1990) and as a mixing law we use the
self-consistent coherent potential approximation proposed by BERRYMAN

(1980a,b).
The compressional and shear velocities as functions of porosity and clay content

for a given set of parameters depend on the distribution of total porosity between
the sand and clay regions. If the distribution of porosity between sand and clay is
relatively uniform, the predictions of the two schemes in the porosity range up to
0.3 are very similar. For higher porosities and medium-to-large clay content the
elastic moduli predicted by the CG scheme are significantly higher than those
predicted by the BM scheme.

This difference is explained by the fact that the BM model predicts the fully
relaxed moduli, wherein the fluid can move freely between sand and clay regions. In
contrast, the CG scheme predicts the no-flow or unrelaxed moduli. Our analysis
reveals that due to the extremely low permeability of clays, at seismic and higher
frequencies the fluid has no time to move between sand and clay regions and 6ice
6ersa. Consequently the CG scheme is more appropriate for the frequencies used in
geophysical exploration.
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