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ABSTRACT

We obtain the wave velocities and quality factors of gas-hydrate-bearing sediments
as a function of pore pressure, temperature, frequency and partial saturation. The
model is based on a Biot-type three-phase theory that considers the existence of two
solids (grains and gas hydrate) and a fluid mixture. Attenuation is described with the
constant-Q model and viscodynamic functions to model the high-frequency behav-
iour. We apply a uniform gas/water mixing law that satisfies Wood’s and Voigt’s
averages at low and high frequencies, respectively. The acoustic model is calibrated
to agree with the patchy-saturation theory at high frequencies (White’s model).
Pressure effects are accounted by using an effective stress law for the dry-rock
moduli and permeabilities. The dry-rock moduli of the sediment are calibrated
with data from the Cascadia margin. Moreover, we calculate the depth of the
bottom simulating reflector (BSR) below the sea floor as a function of sea-floor

depth, geothermal gradient below the sea floor, and temperature at the sea floor.

1 INTRODUCTION

Gas hydrate is a clathrate composed of water and natural
gas, mainly methane, which forms under conditions of low
temperature, high pressure, and proper gas concentration.
Bottom simulating reflectors (BSRs) on seismic profiles are
interpreted as representing the seismic signature of the base
of gas-hydrate formation; a free gas zone may be present just
below the BSR (e.g. Andreassen, Hogstad and Berteussen
1990). Where no direct measurements are available, detailed
knowledge of the seismic properties is essential for quantita-
tive estimations of gas hydrate and free gas in the pore space
(Tinivella and Carcione 2001).

Wave velocities and attenuation are two important proper-
ties which can give information about lithology, saturation,
and the in situ conditions of rocks. It is therefore important
to obtain a relationship between these properties and gas-
hydrate concentration, porosity, pore and confining pres-
sures, frequency, and gas and water saturation. Carcione

and Tinivella (2000) modelled the acoustic properties of
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gas-hydrate-bearing sediments saturated with water in the
framework of Biot’s theory of poroelasticity. Unlike previous
theories, Carcione and Tinivella’s (2000) approach uses a
Biot-type three-phase theory that considers the existence of
two solids (grains and gas hydrate) and water. The theory is
generalized here to include the effects of pore pressure, par-
tial saturation (gas and water) and the presence of dissipation
mechanisms of different nature. The coexistence of the three
phases in the pore space (gas hydrate, free gas and water) has
been justified by Xu and Ruppel (1999). Although thermo-
dynamic conditions dictate that only two phases should be
present, in systems undergoing rapid phase changes the three
phases may coexist. Moreover, observational data (ODP Leg
164, Paull et al. 1996; Guerin, Goldberg and Meltser 1999)
indicate that the three phases probably coexist within the
hydrate stability zone.

Pressure effects are introduced by using an effective stress
law. As is well known, at constant effective pressure the
acoustic (or transport) properties of the rock remain con-
stant. The effective pressure depends on the difference bet-
ween the confining and pore pressures, the latter multiplied

by the effective stress coefficient. In general, this coefficient is
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not equal to one and, therefore, the Terzaghi effective
pressure law (that is, effective pressure equal to differential
pressure) is not an appropriate quantity to describe the
acoustic properties of the rock under varying pore pressure.

The effect of partial saturation on velocity and attenuation
depends on the frequency range. At low frequencies, the fluid
has enough time to achieve pressure equilibration (relaxed
regime). In this case, Wood’s model for the bulk modulus of
the fluid mixture yields results that agree with the experi-
ments. On the other hand, at high frequencies the fluid
cannot relax and this unrelaxed state induces a stiffening of
the pore material, which increases the wave velocity consid-
erably (Cadoret, Marion and Zinszner 1995). This effect
implies an uneven distribution of fluids in the pore space,
which is normally termed patchy saturation. In this case,
Wood’s model is not appropriate and, in general, a Hill
average is used to model the wave velocities at ultrasonic
(laboratory) frequencies (Dvorkin et al. 1999; Johnson
2001). No microstructural theory is able to predict the be-
haviour at intermediate frequencies. In the present model, we
use a modified empirical fluid mixing law proposed by Brie
et al. (1995), which gives Wood’s modulus at low frequencies
and Voigt’s modulus at high frequencies.

Attenuation is described by using a constant-Q model for
the dry-rock moduli (Kjartansson 1979; Carcione et al.
2002). This approach is phenomenological, since a theory
describing all the attenuation mechanisms present in a real
rock is difficult, if not impossible, to develop. The constant-
O kernel is the most simple model based on only one param-
eter. We assume that the lower the frame modulus, the lower
the quality factor (that is, the higher the attenuation). Using
this property, we assign a Q-factor to the frame bulk modu-
lus, and obtain the Q-factor associated with the shear modu-
lus. The attenuation mechanisms predicted by the low-
frequency Biot theory (1962) are modelled by the original
theory (Carcione and Tinivella 2000), and, here, we intro-
duce high-frequency viscodynamic effects, based on an opti-
mal viscodynamic function obtained by Johnson, Koplik and
Dashen (1987).

The acoustic model developed by Carcione and Tinivella
(2000) yields the seismic velocities as a function of gas-hydrate
concentration, porosity, saturation, dry-rock moduli, and fluid
and solid-grain properties. As stated in previous works
(Carcione and Gangi 2000a,b), the large change in seismic
velocity is mainly due to the fact that the dry-rock moduli are
sensitive functions of the effective pressure, with the largest
changes occurring at low differential pressures. The major

effect of porosity changes is implicit in the dry-rock moduli.

Changes in porosity and saturation are important but have a
lesser influence than changes in the moduli. In this sense,
porosity-based methods can be highly unreliable. In fact, vari-
ations of porosity for Navajo sandstone (11.8%), Weber sand-
stone (9.5%) and Berea sandstone (17.8%) are only 0.2%,
0.7% and 0.8% porosity units, respectively, for changes in
the confining pressure from 0 to 100 MPa, while the corres-
ponding increases in bulk moduli are in the range 15-20 GPa
(Coyner 1984; Berryman 1992). To obtain the expression of
the dry-rock moduli versus effective pressure, the model re-
quires calibration based on well, geological and laboratory
data, mainly sonic and density data, and porosity and gas-
hydrate concentration inferred from logging profiles.

Before discussing the acoustic properties we provide a
simple model of gas-hydrate stability, i.e. how to calculate
the depth of the BSR below the sea floor as a function of sea-
floor depth, geothermal gradient below the sea floor, and
temperature at the sea floor. This calculation is performed for
several ODP sites. Site 892 is used to illustrate the acoustic
theory, since laboratory measurements are available for cali-
bration (MacKay et al. 1994; Tobin, Moore and Moore 1995).

2 METHANE HYDRATE STABILITY: BSR
POSITION VERSUS DEPTH

On continental margins, knowledge of pore pressure, tem-
perature and geothermal gradient is necessary to determine
the base of the hydrate stability field. Dickens and Quinby-
Hunt (1994) presented experimental data for methane
hydrate stability conditions in seawater. The following em-
pirical equation for the dissociation temperature, obtained by
Peltzer and Brewer (2000), fits the data fairly well:

%:a—‘-blogp—&-c(logp)z7 (1)
where T is temperature (in kelvin), p is pore pressure
(in MPa), and 2=3.83x10"%, b=-4.09x10"* and
c=8.64x107°, for a salinity of 33.5ppt and a pressure
range of 2.5-10 MPa.

Let us assume a temperature Ty and a pressure pg at the
sea floor. The hydrostatic pore pressure is po= p., £ 20, where
pw 1s the density of water, 2 is the depth of the sea floor, and
g is the acceleration of gravity. For a constant geothermal

gradient G, the temperature variation below the sea floor is
T:T0+G(Z—Zo), (2)

where z is the depth. Typical values of G range from 0.03
to 0.1°C/m (Grevemeyer and Villinger 2001). A linear
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relationship for the hydrostatic pore pressure below the sea
floor is given by

p="0po+py8z—20)=pyg% (3)

because po=pwgz0. We do not account for variations in
water density with p and T and variations in g with latitude
and longitude. The difference is small (approximately 10 m
for a latitude of 30° and p =10 MPa) (Fofonoff and Millard
1982). Substituting (2) and (3) into (1) gives the depth of the
BSR.

Brown and Bangs (1995) fitted the data of Dickens and
Quinby-Hunt (1994) to a different polynomial:

T =To+G(z—z0) = 11.726 +20.5 logz — 2.2[log z]*, (4)

where T is given in °C and z in km (see also Peltzer and
Brewer 2000; they used 11.726 instead of 11.66 reported by
Brown and Bangs 1995). The two curves differ when ex-
trapolated to higher p—T conditions, but there is no conclu-
sive evidence of the behaviour of the data at high p-T

conditions. Only one data set for seawater exists, and it is
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limited to pure methane gas measurements (Peltzer and
Brewer 2000). The equations can be solved for z with a
Newton-Raphson method.

Figure 1 shows the depth of the BSR for different sites.
This depth is given by the intersection between the black
curve (equation (1)) and the dotted line (equation (2)). The
measured data are indicated by asterisks. The grey line cor-
responds to Brown and Bangs’s (1995) curve (4). The upper
horizontal line indicates the sea floor. As can be appreciated,
Peltzer and Brewer’s (2000) equation provides the best ap-
proximation.

Let us consider site 892, for which py=1040kg/m?>,
To=4.05°C, g=9.8 m/s?, zo="748m and G =0.0694°C/m
(Grevemeyer and Villinger 2001). Figure 2 shows the position
of the BSR as a function of (a) the geothermal gradient G,
(b) the depth of the sea floor zg, and (c) the sea-floor tempera-
ture Tp. The BSR position is deeper for lower geothermal
gradients. Moreover, it is more sensitive than for high geother-
mal gradients. The depth of the BSR increases with increasing

depth and decreasing temperature of the sea floor.
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Figure 2 Position of the BSR below the sea floor as a function of
(a) the geothermal gradient G, (b) the depth of the sea floor zo, and
(c) the sea-floor temperature Tj.

3 THE ACOUSTIC MODEL

The model, developed by Carcione and Tinivella (2000) and
based on the theory of Leclaire, Cohen-Ténoudji and
Aguirre-Puente (1994), takes explicitly into account the

presence of three phases: grains, gas hydrate and fluid. The
input quantities that play a role in the generalization to
include pressure, attenuation and saturation effects are:

the solid-grain fraction, ¢,

the gas-hydrate fraction, ¢y,

the water fraction, ¢,

the gas fraction, ¢,

the porosity, ¢= ¢y + by + ¢y,

the water saturation, Sy, = ¢y / (dy + dg),

the gas saturation, Sg = g/ (dy + o),

the bulk modulus of the rock frame (without hydrate), K,
the shear modulus of the rock frame (without hydrate), ptm,
the fluid-mixture bulk modulus, K,

the fluid-mixture viscosity, 7y,

the tortuosity of the fluid mixture flowing through the rock

frame, 7, (a1, in Carcione and Tinivella 2000),

o the tortuosity of the fluid mixture flowing through the gas-
hydrate matrix, 73 (a3 in Carcione and Tinivella 2000),

o the rock-frame permeability in the absence of gas hydrate,
Ks05

o the permeability of the gas-hydrate matrix in the absence
of fluid, xpo,

o the friction coefficient between the rock frame and the
fluid, b44,

o the friction coefficient between the gas-hydrate matrix and

the fluid, b33.

The following relationship holds:

¢s+¢h+¢w+¢g:1‘ (5)

Water, gas and gas hydrate fill the pore volume, represented by
the porosity ¢. Use of the equations of Carcione and Tinivella
(2000) requires the substitution of ¢, by ¢+ ¢, Ky by Ky,
pw by pf and 1y, by 5. (Note an omission in equations (B2),
(B3) and (B4) of Carcione and Tinivella (2000): the term K,
has to be added to Ky and K;,,, (K}, here) to K3.)

4 PORE PRESSURE AND DRY-ROCK
MODULI

The theory needs calibration either with log data or with

laboratory data, as described in the following sections.

4.1 Calibration with log data

We consider the model of Krief et al. (1990) to obtain an
estimation of the dry-rock moduli Ky, g (frame), and Ky,

and fin, (gas-hydrate matrix) versus porosity and gas-hydrate
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content. The porosity dependence of the rock frame and
gas-hydrate matrix should be consistent with the concept of
critical porosity, since the moduli should be small above a
certain value of the porosity (usually from 0.4 to 0.6) (e.g.
Guerin et al. 1999). This dependence is determined by the
empirical coefficient A (see (6)). This relationship was
suggested by Krief er al. (1990) and applied to sand/clay
mixtures by Goldberg and Gurevich (1998). The bulk and
shear moduli of the rock frame and gas-hydrate matrix are

respectively given by

Hhm(R) = Khm(z):uh/Kh? (6)

where K and pg are the bulk and shear moduli of the grains,
and K, and g, are those of the gas-hydrate particles. Krief
et al. (1990) set the A parameter to 3 regardless of the
lithology, and Goldberg and Gurevich (1998) obtained values
between 2 and 4. Alternatively, the value of A can be esti-
mated by using regional data from the study area.

We assume the following functional form for the dry-rock
moduli as a function of depth and effective pressure:

Kim(z,p) = PKus[1 — exp(=pe(p)/P (2)));

Hsm (2 1) = Brps[1 — exp(=pe(p)/pu(2))], ()

where p*(z) is obtained (for each modulus) by fitting Krief
et al.’s (1990) expressions (6), and 8 is an empirical coeffi-
cient (see below). The effective pressure at depth z is assumed
to be p. =p. — np, where p. is the confining pressure, p is the
pore pressure and 7 is the effective stress coefficient, which
can be assumed equal to 1 (Zimmerman 1991, p. 43). (Alter-
natively, the effective stress coefficients can be estimated
from sonic-log information and direct pressure measure-
ments (if available) by fitting the theoretical velocities to
the experimental velocities.) Moreover, Kygs and pygs are
the Hashin-Shtrikman (HS) upper bounds (Hashin and
Shtrikman 1963; Mavko, Mukerji and Dvorkin 1998,
p. 106). The Voigt bounds are (1— @)K, and (1— @)us,
respectively. For quartz grains with gas hydrate, K;=39 GPa
and p,=33 GPa (Mavko et al. 1998, p. 307), and if the
porosity is 0.2, the HS upper bounds for the bulk and shear
moduli are 26 GPa and 22 GPa, compared with the Voigt
upper bounds 31GPa and 26 GPa, respectively. However,
the HS bounds are too large to model the moduli of in situ
rocks. These contain clay and residual water saturation,

inducing a chemical weakening of the contacts between
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grains (Knight and Dvorkin 1992; Mavko et al. 1998,
p- 203). Therefore, these bounds are multiplied by the par-
ameter ff, which can be obtained by fitting regional data.

4.2 Calibration with laboratory data

An alternative and more precise evaluation of the dry-rock
moduli can be obtained from laboratory experiments. The
seismic bulk and shear moduli K, and pgn,, respectively,
versus confining pressure can be obtained from laboratory
measurements in dry and saturated samples (see Section 8).
The moduli of the matrix formed by gas hydrate are obtained
from the percolation model described by Leclaire et al.
(1994) and Carcione and Tinivella (2000). The effective
stress coefficients can be measured in the laboratory from
experiments on wet-rock samples versus confining and pore
pressures. In this way, the effective pressure law can be
obtained. When using laboratory experiments to determine
n, we should keep in mind that this ‘laboratory’ 7 does not
reflect the behaviour of the rock in the in situ conditions, due
to two main reasons. First, laboratory measurements of wave
velocity are performed at ultrasonic frequencies, and, there-
fore, the ‘seismic’ and ‘laboratory’ n’s should be different.
Second, the in situ stress distribution is different from the
stress applied in the experiments. In this sense, log data
should provide a better evaluation of the effective stress
coefficients.

The evaluation of the dry-rock moduli and 7 from wet-
rock velocities is illustrated in the example.

5 EFFECTIVE FLUID MODEL FOR PARTIAL
SATURATION

The mixture free gas/water behaves as a composite fluid with
properties depending on the constants of the constituents and
their relative concentrations. The modulus and density are

Ki = (SgK,' + Sy K™ (8)
(Wood’s model) and
Ps = Sg Py + Sw Py ©)

where K, and K, are the water and gas bulk moduli, and p,,
and p, are the respective densities. Moreover, the fluid vis-
cosity is

Sw
TW
=1, (;—) (10)
g
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(Teja and Rice, 1981a, b), where 7, and 5, are the viscosities
of the free gas and water, respectively. Equation (10) is a
good approximation for most values of the saturations. In
the examples, we compare this equation to the linear law
0= Sw Nw + Sg g

Equation (8) corresponds to the low-frequency range.
When the fluids are not mixed in the pore volume, but
distributed in patches, the effective bulk modulus of the
fluid at high frequencies is higher than that predicted by
(8). We use an empirical mixing law introduced by Brie
et al. (1995). The effective fluid bulk modulus is given by

K¢ = (Kyw — Kg)(Sw)" + Ko, (11)

where e = (f,/f)°-3° is an empirical parameter, with f, being a
reference frequency. The exponent 0.36 fits data from the
seismic to the ultrasonic band, particularly, the sonic-band
values provided by Brie ef al. (1995). As shown later, the
reference frequency is chosen such that the model fits the Hill
average at 1 MHz. Equation (11) gives Voigt’s mixing law for
e=1 and Wood’s model for e=40.

The isothermal gas bulk modulus K, and the gas compress-
ibility ¢,=K, " depend on pressure. The latter can be calcu-

lated from the van der Waals equation,
(b +ap;)(1 = bpy) = pRT, (12)

where p is the gas pressure, p, is the gas density, T is the
absolute temperature and R is the gas constant. Moreover,
a good approximation can be obtained using a=0.225Pa
(m®/mole)* =879.9MPa (cm’/g)* and b=4.28x10""m?
mole = 2.675 cm®/g (one mole of methane, CHy, corresponds
to 16 g). Then,

_1.dpg _

g dp

peRT

(1~ bp,)?

-1
Zapé:| . (13)

We assume that the viscosity of water is independent of
pressure.

The gas (methane) viscosity is that proposed by Luo
and Vasseur (1996). It depends on pore pressure and tem-

perature T:

ng [Pas] =107 +1.5 x 10°° (,%) —22x107(T - Ty),

(14)

where Ty is the surface temperature and p is the average

density of the overburden.

6 PERMEABILITY, PORE PRESSURE AND
PARTIAL SATURATION

The permeabilities of the frame and gas-hydrate matrix
versus pore and confining pressure can be obtained by multi-
plying ks and xno by the factor [1 — (pa/p1)™]>, i.e.

m1 3 m3
Ks = K0 {1 - (i—?) } and &, = K {1 - <Z—T) } ;o (15

where pg=p.—p is the differential pressure and p; and m
are constants. This pressure dependence is due to Gangi
(1981) and we have assumed that effective stress coefficients
for permeability are equal to 1.

For a partially saturated medium, the permeabilities are

further multiplied by the factor
Krw SW + Krg ng (16)

where x,,, and «,, are normalized relative permeabilities given

by
Sy — Sug

Kew = V8uell = (1= SU)™ P, Sye = , (17
1— Sug
and
m, Sg— S W
g =/ See[l = (1= SL78)™ P, Spe = 5% (18)
W

(Van Genuchten 1978; Bear and Bachmar 1990, p. 360). In
(17) and (18), Sgw and S, are residual saturations of water
in gas and gas in water, respectively, and we set 1, = 0.8 for
water and m, = 1.8 for gas.

7 ATTENUATION AND VISCODYNAMIC
EFFECTS

Constant-Q models provide a simple parametrization of seis-
mic attenuation in rocks in oil exploration and in seismology.
By reducing the number of parameters they allow an im-
provement of seismic inversion. Moreover, there is physical
evidence that attenuation is almost linear with frequency
(therefore QO is constant) in many frequency bands. Bland
(1960) and Kjartansson (1979) discussed a linear attenuation
model with the required characteristics, but the idea is much
older (Scott-Blair 1949).

The attenuation kernel corresponding to a constant Q over

all frequencies is

M(o, Q) = <w> 1= tan (5): (19)

where my is a reference frequency. Attenuation is modelled by
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making the frame bulk and shear moduli viscoelastic. Then,

Ksm - KsmM((U7 QK): (20)
where

_ Kin(z,p)
Ok = QO (21)

where Qg is the loss parameter of the frame and Kj,(z) is the
bulk modulus at full water saturation and hydrostatic pore
pressure. The corresponding Q factors for the shear modulus

Table 1 Material properties of the gas-hydrate-bearing sediment
(e.g. Mavko et al. 1998). The values for the gas properties corres-
pond to the depth of the BSR of site 892 (hydrostatic pore pressure)
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are given by
Msm(z7 p)
= s P 22
Ql Ksm (z’ p) QK ( )
and
Hsm = Hsm M(CU,QM) (23)

Equation (22) implies that the lower the modulus the higher
the attenuation. Equations (21) and (22) should be considered
with caution, since for unconsolidated sediments (suspen-
sions) the bulk and shear moduli of the frame are zero. In
this case, the attenuation can be described by the theory of
sound absorption in suspensions (e.g. Urick 1948; McCann
1969). Our model implies that attenuation decreases with
increasing hydrate concentration. Guerin and Goldberg
(2002) observed the opposite behaviour in sonic waveforms.
They used the viscodynamic operator developed by Leclaire
et al. (1994) to qualitatively explain this effect. In our case, the
inclusion of a medium stiffer than water (hydrate) and grain
cementation with increasing hydrate content makes the
porous medium more cohesive and attenuation should de-
crease. Viscodynamic effects of the Biot type, similar to
Leclaire et al.’s (1994) formulation, are described below.

The introduction of high-frequency viscodynamic effects

implies

R KK K KK KW
@
ok
>

41 * 20

* *

42

21 *

Solid grain Bulk modulus, K 35 GPa
Shear modulus, 35 GPa
Density, ps 2650 kg/m®
Gas hydrate* Bulk modulus, Kj, 7.9 GPa
Shear modulus, 3.3 GPa
Density, py 900 kg/m>
Fluids Bulk modulus, K, 2.4 GPa
Density, py 1030 kg/m®
Viscosity, 1y, 1.798 cP
Bulk modulus, K, 7 MPa
Density, pg 70 kg/m?®
Viscosity, 1 0.021 cP
*Helgerud et al. (1999).
Figure 3 Dry-rock bulk modulus at zero 5 —
pore pressure versus confining pressure 7]
(solid line). The stars correspond to the _
dry-rock moduli obtained by using (28) —
and the experimental data of Tobin et al. 4 ]
(1995). ]
— 34
© _
o
g —
e _
X 5 _|
1
0
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Fio), i=1,3, (24)

Ki

by {m(qsw + o)

where F; and F3 are viscodynamic functions corresponding
to the interaction between the rock frame and gas-hydrate
matrix with the fluids, and k1 =k, and x3 =K}, (Biot 1962).
Johnson et al. (1987) obtained an expression for the visco-
dynamic function, which provides a good description of both
the magnitude and phase of the exact dynamic tortuosity of
large networks formed from a distribution of random radii
(see also Carcione 2001, p. 252). The viscodynamic functions
can be expressed as

Filo) = ¢ R Tey TTT on
i=1,3, (25)

where L; is a geometrical parameter, with 2/L; being the
surface-to-pore volume ratio of the pore-solid interface.
The following relationship between 7;, k; and L; can be
used: &7/ (o + bg) L?=1, where ¢; describes the shape
of the pore network; &; =12 for a set of canted slabs of fluid,

and &; =8 for a set of non-intersecting canted tubes.

8§ EXAMPLE

We use laboratory measurements to calibrate the theory, i.e.
to obtain the properties of the dry rock as a function of pore
and confining pressure. Effective stress and effective pressure
play an important role in rock physics. The use of this
concept is motivated by the fact that pore pressure and
confining pressure tend to have opposite effects on the acous-
tic and transport properties of the rock. Thus, it is convenient
to characterize those properties with a single pressure, the
effective pressure. First, we obtain the dry-rock moduli
versus confining pressure (zero pore pressure). Then, we
obtain the effective stress coefficients and replace the confin-
ing pressure by the effective pressure. This constitutes the
effective pressure law.

We consider water-saturated sediments of the Oregon
accretionary prism (clayey silts). Tobin et al. (1995) per-
formed laboratory experiments for wave velocity versus
confining and pore pressure. We chose the sample 146-
892D-18X-2,0-22cm from site 892 (their fig. 5b). Since
only P-wave velocity is available, we assume the Vp to Vs
relationships reported by Hamilton (1979) for 20 areas, con-

sisting of silt clays, turbidites and mudstones:

57 43 22 1
0.0 LN O O I I o O B

0.0 2.5 5.0 7.5 10.0 12.5
pg (MPa)

Ksm (GPa)

L0 o e e sy e e e e e e e
0.0 25 5.0 7.5 10.0 12.5

pe (MPa)

Figure 4 (a) Effective stress coefficients and corresponding exponen-
tial fit (solid line) versus differential pressure, and (b) dry-rock bulk
modulus versus effective pressure.

1650 m/s <Vp < 2150 m/s
Vs =0.991 — 1.136Vp + 0.47V3,
Vp>2150 m/s Vs =0.78Vp —0.962. (26)

For each data point in fig. 5(b) of Tobin et al. (1995), we

compute the wet-rock bulk modulus as
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Figure 5 P-wave velocities versus over-
pressure ratio obtained with the effective
pressure law (solid curves). The original
data points of Tobin ez al. (1995) are rep-
resented, where the confining pressures
corresponding to the dashed curves are
13.8,11.2,5.65 and 1.32 MPa, from top
to bottom, respectively.
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Figure 6 Frame permeability versus differential pressure.

4
k=p(Vi-39). 27)
where p=(1— ¢)ps+ dpw, and the porosity ¢ is given by
MacKay et al. (1994). We consider a constant value of

¢=0.45. Tobin et al. (1995) showed that for pore pressures

V, (km/s)
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less than 0.93 times the confining pressure, porosity changes
are nearly insignificant, despite relative large variations in
velocity.

We compute the dry-rock moduli by using Gassmann’s

equation:

ko _ (9K /Ky +1- KK,
T GK, /Ky + K/K—1— ¢

(28)

(Carcione 2001, p. 225). The bulk moduli and density of
quartz and water are given in Table 1. The lower value for
Uq With respect to pure quartz assumes that the sediments are
clayey silts (Mavko et al. 1998, p. 307). Next, we consider
the data points corresponding to zero pore pressure (over-
pressure ratio A=p/p.=0), and fit those points with the

following curve:

Kim(pe) [GPa] = 2.23 + 0.19p. — 2.23 exp(—p./0.66), (29)

where p. is given in MPa. Equation (29) provides a better
approximation than (7). The number of parameters is re-
duced in the case of calibration with log data, because direct
measurements of pressure are not available in general.

Since we are dealing with sediments, which at zero confin-
ing pressure should not have any frame bulk modulus and
rigidity, we obtain Ky, =0 for p.= 0. The dry-rock bulk
modulus at zero pore pressure versus confining pressure
is shown in Fig. 3 (solid line). The stars correspond to the

dry-rock moduli obtained by using (28) and the experimental
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0.5

Relative permeability

0.25

Figure 7 (a) Normalized relative permeabilities and (b) viscosity of
the water/gas mixture as a function of water saturation. The dashed
line is the linear viscosity law.

data of Tobin e al. (1995). As the confining pressure in-
creases, the medium becomes load-bearing with a frame
that develops rigidity. At this point, the effective stress be-
comes non-zero and the medium becomes rocklike in its
behaviour. At zero confining pressure, both the bulk modulus
and the rigidity modulus are zero.

In order to obtain the effective pressure law, we have to
calculate the effective stress coefficient ng for each data point
in Fig. 3. We assume that nx depends on the differential
pressure pg=p.— p. Gangi and Carlson (1996) and Prasad

2.0

1.5

1.0

K; (GPa)

0.5

0.0

o

Cx
o
o

|
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T T T

10’ 102 108 104 105 108
Frequency (Hz)

Figure 8 Bulk modulus of the water/gas mixture versus (a) water

saturation and (b) frequency. The dashed line is Wood’s modulus.

and Manghnani (1997) showed that 7 for P-wave velocity is
approximately linearly dependent on the differential pressure.
The value of ng for each point is obtained as follows. Assume
that the pressure pair (p., p) is associated with each data point.
The existence of an effective pressure law implies K (pe,
p=0)=Kin (pe=pe—nxp). Then, from (29), nx=(p. —
peo)/p, where p.o is given by the intersection of the zero
pore-pressure curve with a horizontal line passing through
the point (p., p). The effective stress coefficients and an

exponential fit (solid line),
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Figure 9 P- and S-wave velocities versus water saturation at different
frequencies. The other saturating fluid is free gas and the gas-hydrate
fraction is 0.3. Also shown, the P-wave velocity obtained by using
Hill’s equation (dashed line).

ng = 0.89 exp(—0.43p4),

are represented in Fig. 4(a) (pq is given in MPa). It is clear
that for sediments, the dependence on differential pressure is
not linear. Figure 4(b) shows the dry-rock bulk modulus
versus the effective pressure. To obtain the effective pressure
law, we fit the data points in Fig. 4(b); the result is the solid

line shown in the figure and represented by the curve:
Kon(pe) [GPa] = 1.73 + 0.23p. — 1.7 exp(—p./0.17),  (30)

where p. is given in MPa. Similarly, we obtain the following

expression for the dry-rock shear modulus:
Usm (Pe) [GPa] = 0.54 + 0.06p. — 0.54 exp(—p./0.12).  (31)

To obtain the wet-rock moduli and the P-wave velocity, we
use Gassmann’s equation,

KistKm+¢Km(Ks/Kw - 1)
B 17¢7Km/Ks+¢Ks/Kw

(32)

(Carcione 2001, p. 225) and the above relationship between
Vp and Vi (see (26)). With regard to the rigidity modulus, we
compute the wet-rock p using Hamilton’s (1979) Vs values.
Then, we fit the zero pore-pressure curve (since figm=u
according to Biot’s (1962) theory), and obtain the effective
stress coefficient as before. Figure 5 shows the original data
points (Tobin et al. 1995) and the P-wave velocities versus the

overpressure ratio obtained with the effective pressure law.
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Figure 10 Three-dimensional plots of (a) the P-wave velocity and
(b) the dissipation factor versus effective pressure and water
saturation. The gas-hydrate fraction is 0.3 and the frequency is 30 Hz.

We now consider the rock containing gas hydrate, saturated
with water and gas, and use the three-phase theory to compute
its acoustic properties. Table 1 shows the properties of the
different constituents. The values for the gas properties cor-
respond to the depth of the BSR of site 892 (hydrostatic pore
pressure). These properties were obtained using the van der
Waals equation (see Section 5). (Depth is 70 m, T= 8.9 °C and
p=28.3MPa.) The frame moduli Ky, and pyy, are calculated
using the equations given in Appendix A of Carcione and
Tinivella (2000) (K;, and p;,, respectively); the residual
saturations are S,,=0.2 and S,, =0.2; the reference fre-
quency in Brie et al.’s (1995) equation is fy = 5.46 MHz; the
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Figure 11 Three-dimensional plots of (a) the P-wave velocity and
(b) the dissipation factor versus water saturation and frequency. The
gas-hydrate fraction is 0.3, and the differential pressure is 0.6 MPa.

permeabilities are =107 m?=100mdarcy (Moran,
Gray and Jarrett 1995) and w;o =5 x 10~*m? (Leclaire et al.
1994); the relative permeability parameters are m,, =0.8
and m,=1.8 (Van Genuchten 1978); the loss parameters are
Qo=160 and wg=2n MHz (assumed); p; = 14 MPa; m =0.26
(Gangi 1981); and the parameters describing the shape of the
pore network are £, = &3 =28 (Johnson et al. 1987).

Let us consider ¢,=0.3 and S, =1 (i.e. ¢y =0.15 and
¢, =0). Figure 6 shows the permeability versus differential
pressure. The normalized relative permeabilities (a) and the
viscosity of the water/gas mixture (b) are shown in Fig. 7 as a

function of water saturation. Both permeabilities decrease for

(Hz)
\Log ireque"cz 5 2

Figure 12 Same properties as in Fig. 11 but for S-waves.

decreasing saturation of the corresponding fluid. In particu-
lar, there is practically no water flow below 50% water
saturation. Figure 7(b) compares the linear mixing law
(dashed line) with the more realistic mixing law of Teja and
Rice (1981a,b) (continuous line). The linear relationship
overestimates the viscosity of the mixture. Figure 8 shows
the bulk modulus of the water/gas mixture versus water
saturation (a) and frequency (b). Brie et al.’s (1995) model
is in good agreement with Wood’s bound at 20 Hz (dashed
line).

Figure 9 shows the P- and S-wave velocities predicted by our
model. The velocities are represented for several frequencies,
from the seismic to the ultrasonic band. Also shown are the
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Figure 13 (a), (b) P- and S-wave velocities and (c), (d) dissipation factors versus water saturation for different values of the gas-hydrate fraction

at a frequency of 30 Hz. The differential pressure is 0.6 MPa.

P-wave velocities obtained by using Hill’s equation (dashed
line, see Mavko et al. 1998, p. 115). In this case, we averaged
the reciprocal of the P-wave modulus (pV3) at 1 MHz in the
absence of attenuation. The reference frequency f, in Brie
et al’s (1995) equation was chosen to fit White’s phase
velocity (White 1975; Dutta and Odé 1979; Mavko et al.
1998, p. 207), using a diameter of 1cm for the patches. (In
this calculation, ¢, =0.) The use of Brie et al.’s (1995) model,
though empirical, allowed us to model the acoustic properties

of the sediment in the whole frequency range.

Three-dimensional plots of the P-wave velocity (a) and
dissipation factor (b) versus effective pressure and water
saturation are shown in Fig. 10. The gas-hydrate fraction is
0.3 and the frequency is 30 Hz. Note the strong decrease in
the velocity and Q-factor with decreasing effective pressure.
This effect is due mainly to the fact that the dry-rock moduli
are sensitive functions of the effective pressure. (At very low
effective pressures, the rock becomes unconsolidated.)

Figure 11 shows the same properties as in Fig. 10, but

versus water saturation and frequency. In this case, the
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Figure 14 Three-dimensional plots of the dissipation factors versus water saturation Sy, and gas-hydrate fraction ¢, for 10 kHz (a and b),
100 kHz (c and d) and 1 MHz (e and f). The differential pressure is 0.6 MPa.
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differential pressure is 0.6 MPa and the effective pressure is
3.2MPa (p.= 8.9 MPa and p = 8.3 MPa). Figure 11(b) agrees
qualitatively with a similar plot — based on experimental data
of Massilon sandstone — published by Murphy (1982). The
dissipation factor has a maximum value at the Biot relax-
ation peak, ranging from sonic frequencies for gas (S,, =0) to
ultrasonic frequencies for water-saturated rock with a peak
value around S,,=0.4. The latter behaviour agrees qualita-
tively with experimental data published by Yin, Batzle and
Smith (1992).

The S-wave velocity and S-wave dissipation factor as func-
tions of saturation and frequency are shown in Figs 12(a) and
12(b), respectively. The S-wave velocity increases with fre-
quency and, generally, with decreasing water saturation. At-
tenuation has a maximum at approximately the location of
the Biot peak (at constant water saturation) and 100% water
saturation.

Figure 13 shows the wave velocities (a and b) and dissipa-
tion factors (c and d) versus water saturation and different
values of the gas-hydrate fraction at 30 Hz. In general, vel-
ocity increases and attenuation decreases with increasing gas-
hydrate concentration. Finally, the three-dimensional plots
shown in Fig. 14 display more clearly the effect of gas hy-
drate and saturation on the dissipation factors for frequencies
of 10 kHz (a and b), 100 kHz (c and d) and 1 MHz (e and f).
Attenuation decreases with increasing gas-hydrate concentra-
tion, and for low concentrations the P-wave attenuation has

a peak at nearly S,, =0.25.

9 CONCLUSIONS

We have developed a model of the acoustic properties — wave
velocity and attenuation — of sediments containing gas hy-
drate, free gas and water as a function of gas-hydrate concen-
tration, pore pressure, temperature, frequency and partial
saturation. The theory includes poro-viscoelasticity and
viscodynamic effects to model the realistic attenuation values
observed in rocks from low to high frequencies. The dry-rock
moduli as a function of effective pressure are obtained from
data of the Cascadia margin. The model predicts the behav-
iour of real sediments in many respects. For instance: (i) wave
velocity increases considerably at high frequencies compared
with low frequencies (at low frequencies, the fluid has enough
time to achieve pressure equilibration, while at high frequen-
cies, the fluid cannot relax and the bulk and shear moduli are
stiffer than at low frequencies); (ii) there is a strong decrease in
the velocity and Q-factor with decreasing effective pressure

(this effect is due mainly to the fact that the dry-rock moduli
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are sensitive functions of the effective pressure); (iii) the dissi-
pation factor has a maximum value at the Biot relaxation
peak, ranging from sonic frequencies for gas to ultrasonic
frequencies with a peak value around 40% water saturation;
and (iv) in general, velocity increases and attenuation de-
creases with increasing gas-hydrate concentration.

Moreover, we have obtained the depth of the BSR as a
function of the thermal conditions and sea-floor depth, by
using Peltzer and Brewer’s (2000) fit of Dickens and Quinby-
Hunt’s (1994) data. The depth of the BSR is lower for lower
geothermal gradients, and increases with increasing depth
and decreasing temperature of the sea floor.
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