
4Seismic Rock Physics of Gas-Hydrate Bearing
Sediments

Davide Gei, José M. Carcione, and Stefano Picotti

Abstract

We describe a methodology to estimate the seismic
velocities and attenuation of gas-hydrate bearing sedi-
ments as a function of the differential pressure and partial
saturation. The model is based on a generalization of the
Biot theory of poroelasticity, considering two solids
(sediment grains and clathrate hydrate) and two immis-
cible fluids (water and gas). The rock frames depend on
the effective pressure and stiffening for increased hydrate
concentration and is accounted for with a percolation
model. The fluid effects are modeled with empirical
mixing laws characterizing the effective viscosity and
fluid bulk modulus as a function of saturation and
frequency. Attenuation is described with a constant-Q
model and high frequency viscodynamic effects. The
model predicts the behavior of real sediments in many
respects: (1) velocity increases considerably at high
frequencies due to an empirical mixing law of the fluid
moduli, taking into account patchy saturation, (2) there is
a strong decrease in the wet-rock velocity and Q-factor
with decreasing effective pressure, as the dry-rock moduli
are highly affected, (3) the dissipation factor has a
maximum value at the Biot relaxation peak, ranging from
sonic frequencies for full gas saturation to ultrasonic
frequencies with a peak value around 40% water satura-
tion, (4) in general, velocity increases and attenuation
decreases with increasing gas-hydrate concentration,
(5) the S-wave velocity increases with frequency and
gas saturation as a consequence of the decreasing bulk
density, while S-wave attenuation shows a maximum at
full water saturation, at the approximate location of the
Biot peak and (6) both velocity and attenuation increase

and decrease for increasing effective pressure. We apply
this theory to sediments from the ODP Leg 146 site 892,
Oregon accretionary prism.

4.1 Introduction

Reflection seismic is one of the most efficient geophysical
methods for investigating subsoil structures and the acous-
tical properties of sediments, which depend on the compo-
sition of solid particles, fluid saturation (water and gas) and
on the mechanisms of interaction of the different
components.

In this article, we describe a three-phase Biot (TPB) the-
ory to model wave propagation in gas-hydrate bearing sed-
iments. Leclaire et al. (1994) generalized the Biot theory
(Biot 1956, 1962) to partially frozen sediments. The model
considers two solid frames and one fluid and can be applied
to both unconsolidated and consolidated media. Carcione
and Tinivella (2000) generalized Leclaire’s theory by
introducing contact between the grains and the hydrate in the
computation of potential and kinetic energies. Moreover,
they included the contribution of grain cementation as it
affects the elastic properties of the rock matrix. Gei and
Carcione (2003) considered the effects of pore pressure and
partial saturation (gas and water), incorporating attenuation
at all frequencies from the seismic to the ultrasonic band.
Therefore, the TPB theory allows for the coexistence of
water and free gas in the porous space, which has been
reported in several studies (e.g. Milkov et al. 2004; Qian
et al. 2018; Sahoo et al. 2018).

This theory is quite general in the sense that there are no
assumptions about the shape of the pores and grains, and the
limitations are those of the Biot theory (see Carcione 2014;
Chap. 7). The description of anelasticity can be improved by
incorporating the mesoscopic patchy-saturation effects based
on the White model (or similar) and the squirt-flow
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mechanism (Carcione and Gurevich 2011; Sects. 7.12 and
7.13 in Carcione 2014; Carcione et al. 2018).

This article is divided into three main parts. First, we
describe the theoretical approach in determining the different
parameters involved in the theory, such as the dry-rock
moduli, the properties of the fluid mixture, the permeabilities
and the quality factors. Then, we provide the equations to
compute the P- and S-wave velocities and attenuation.
Finally, we present an example illustrating the application of
the model to a real case study.

4.2 Dry-Rock Moduli

The elastic properties of the rock and hydrate frames can be
computed with theoretical or empirical relationships. How-
ever, calibration with experimental data is necessary to
evaluate the influence of pore pressure on the properties of
the frames to estimate the seismic velocities and attenuation.

4.2.1 Elastic Moduli from Theoretical Models

We denote the sediment grain, hydrate, water, gas and fluid
mixture with the subscripts “s”, “h”, “w”, “g” and “f”,
respectively. In a partially saturated, gas-hydrate bearing
rock, the following relationship holds
/s þ/h þ/w þ/g ¼ 1, where the terms of the sum are the
volume fractions of the different components and the rock
porosity is / ¼ /w þ/g þ/h. The hydrate concentration is
given by Ch ¼ /h=/, while the saturation refers to the pore
space not occupied by the solid phases, i.e. the water and gas
saturations are Sw ¼ /w= /� /hð Þ and Sg ¼ /g= /� /hð Þ,
respectively, with Sw þ Sg ¼ 1. The proportion of the fluid
phase in the rock is /f ¼ /w þ/g.

The bulk and shear moduli of the rock frame (Ksm, lsm)
are obtained with the model proposed by Krief et al. (1990)

Ksm ¼ Ks 1� /ð ÞA=ð1�/Þ; lsm ¼ Ksmls=Ks; ð4:1Þ
where Ks and ls are the elastic moduli of the particles
forming the sediment and A is an empirical coefficient. Krief
et al. (1990) considered a value of A = 3, regardless the
lithological composition of the sediments. In the case of a
multi-mineral rock, the effective Ks and ls are obtained with
the average Hashin-Strikman bounds (Hashin and Shtrikman
1963; Carcione et al. 2005; Mavko et al. 2009) and the
density of the effective solid is qs ¼

P
iSiqi, where Si ¼

/i=ð1� /Þ is the volume fraction of the ith mineral phase
and qi is its density. On the other hand, the elastic moduli of
the hydrate frame are obtained as (Leclaire et al. 1994).

Khm ¼ KhmKT /h=/ð Þ3:8; and lhm ¼ lhmKT /h=/ð Þ3:8; ð4:2Þ

where /h is the volumetric gas-hydrate fraction and KhmKT

and lhmKT are elastic moduli obtained with the Kuster and
Toksöz theory (Kuster and Toksöz 1974; Mavko et al.
2009), considering a solid made of hydrate with air in

spherical pores and porosity /
0 ¼ 1� /.

We assume that gas hydrate crystallization in the porous
space causes stiffening of the skeleton, described by (Car-
cione and Tinivella 2000)

lsmh ¼ lsm þ lsmKT � lsmð Þ /h=/ð Þp; ð4:3Þ

where p is the percolation coefficient and lsmKT is the
rigidity of the sediment in the absence of a hydrate. The
shear modulus lsmKT is obtained with the Kuster and Toksöz
theory considering air in the pores. Arbabi and Sahimi
(1988) found that p ¼ 3:8 with an error of 3%, when com-
puting the elastic properties of three-dimensional percolation
networks with the Monte-Carlo technique and finite-size
scaling analysis.

4.2.2 Dry-Rock Elastic Moduli from Calibration

The elastic moduli of the rock frame Ksm zð Þ and lsm zð Þ can
be computed with Eq. (4.1) if the porosity / zð Þ from log
data, not affected by the presence of hydrate, is available.
The mineralogical composition of the rock must also be
available, and the empirical coefficient A can be estimated
from regional data of the study area. Alternatively, if log
data of velocity, porosity, rock composition, bulk density
and saturation are available, Ksm zð Þ and lsm zð Þ can be
obtained with the inverse Gassmann equation (e.g. Carcione
2014; Mavko et al. 2009), considering log sections without
gas hydrate.

The acoustic and transport properties of a rock depend on
the effective pressure as

pe ¼ pc � np; ð4:4Þ

where pc is the confining pressure, p is the pore pressure and
n is the effective-stress coefficient. This coefficient differs for
different rocks and can also be a function of the confining
and pore pressures, and it is generally n� 1. Some authors
assume n ¼ 1 (e.g. Zimmermann 1991), meaning that the
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effective pressure equals the differential pressure (Terzaghi
1943). The effective-stress coefficient can also be estimated
by fitting experimental velocities measured on core samples
or from well logs.

We compute the dry-rock moduli as a function of the pore
pressure by using the following functional forms (Carcione
et al. 2003)

Ksmðz; pÞ ¼ wK ½1� expð�peðpÞ=p�KÞ�; lsm z; pð Þ
¼ Wl 1� exp �pe pð Þ=p�l

� �h i
; ð4:5Þ

where WK ¼ bKsmHS, Wl ¼ blsmHS, b is an empirical
coefficient, p�K and p�l are obtained from calibration, and
KsmHS and lsmHS are the Hashin–Shtrikman upper bounds.

4.3 Effective-Fluid Model for Partial
Saturation

The properties of a fluid mixture can be computed from the
properties of the single constituents, their relative concen-
trations and spatial distribution within the rock. Batzle and
Wang (1992) provide equations to compute the compress-
ibility, density and viscosity of water, brine and methane.
Alternatively, the compressibility and density of gaseous
phases at in-situ conditions can be estimated with equations
of state (EOS), such as the van der Waals and
Peng-Robinson equations (e.g. Carcione et al. 2006; Peng
and Robinson 1976). The gas viscosity can be obtained with
a formulation proposed by Luo and Vasseur (1996) or with
the Lohrentz-Bray-Clark method (e.g. Danesh 1998).

At the pore scale, with a homogeneous distribution of
fluids in a partially saturated medium (e.g. water and gas),
the effective bulk modulus Kf is given by the isostress Wood
averaging (Wood 1941). However, when partial patchy
saturation occurs, fluids are generally distributed in the
sediment volume involving many pores. In this case, an
upper limit of Kf is the isostrain Voigt averaging (Voigt
1928). The Wood and Voigt models are the lower and upper
bounds for multiphase mixtures; a more realistic equation
has been provided by Brie et al. (1995):

Kf ¼ Kg þ Kw � Kg

� �
Sew; ð4:6Þ

where e is an empirical constant. If e = 1, the Brie formula is
equivalent to the Voigt averaging, while it predicts values
close to the Wood average for e = 40. We consider

e ¼ ðf 0=f Þ0:36, where f 0 is a reference frequency. Data from

the seismic to ultrasonic band can be fitted with an exponent
of 0.36.

The density of the fluid mixture is

qf ¼ Sgqg þ Swqw; ð4:7Þ

where qg and qw are the gas and water densities,
respectively.

Moreover, the viscosity of the fluid mixture can be
obtained as (Teja and Rice 1981a, b)

gf ¼ gg
gw
gg

 !Sw

; ð4:8Þ

where gg and gw are the gas and water viscosities,
respectively.

Panel (a) of Fig. 4.1 shows an example of the
fluid-mixture viscosity as a function of water saturation
obtained with Eq. (4.8), where we consider gw ¼ 1:798 cP
and gg ¼ 0:021 cP. For comparison, we also plot the vis-
cosity computed with the linear law gf ¼ Swgw þ Sggg,

which overestimates the effective viscosity. Panel (b) shows
the bulk modulus of the fluid mixture as a function of water
saturation and frequency, based on Eq. (4.6), assuming
Kw ¼ 2:4 GPa, Kg ¼ 7:0 MPa, and f 0 ¼ 5 MHz. At low
frequencies, Brie’s model (Brie et al. 1995) is in good
agreement with Wood model (black dashed line).

4.4 Permeability

The permeabilities of the sediment and gas hydrates frames,
required by the TPB model, can be computed as a function
of the pore and confining pressures and relative permeabil-
ities as (Gangi 1981)

ksm ¼ ks0 1� pd
p1

� �m� 	3
krwSw þ krgSg
� �

;

khm ¼ kh0 1� pd
p1

� �m� 	3
krwSw þ krgSg
� �

;

ð4:9Þ

where, ks0 is the rock-frame permeability in absence of
gas hydrates, kh0 is the permeability of the gas-hydrate
matrix in absence of fluids and pd is the differential pressure,
i.e. the effective pressure (Eq. 4.4). This assumes that the
effective stress coefficient is 1 for the permeabilities, and that
p1 and 0�m� 1 are constants. The relative permeabilities
krw and krg can be obtained as (Van Genuchten 1978)
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krw ¼
ffiffiffiffiffiffiffi
Swe

p
1� 1� S1=0:8we

� �0:8� 	2
; with Swe ¼ Sw � Swg

1� Swg

ð4:10Þ

and

krg ¼
ffiffiffiffiffiffi
Sge

p
1� 1� S1=1:8ge

� �1:8� 	2
; with Sge ¼ Sg � Sgw

1� Sgw
:

ð4:11Þ
Swg and Sgw are the residual saturations of gas in water

and water in gas, respectively.
Figure 4.2a shows an example of normalized relative

permeabilities computed with Eqs. (4.10)and (4.11) as a
function of water saturation, with Swg ¼ 0:2 and Sgw ¼ 0:02;
there is practically no water flow for Sw\0:5. Panel
(b) shows an example of the rock-frame permeability
(Eq. 4.9) as a function of water saturation and differential

pressure, where ks0 ¼ 10�13 m2, p1 ¼ 14MPa and m ¼ 0:26
(Gangi 1981). ksm decreases rapidly with increasing differ-
ential pressure.

4.5 Attenuation

To model attenuation in gas-hydrate and free-gas bearing
sediments we rely on a constant-Q model, a simple but
effective viscoelasticity theory. Attenuation is implemented
by making complex the frame moduli

Ksm ! KsmM x;QKð Þ and lsmh ! lsmhM x;Ql

� �
; ð4:12Þ

where M represents the attenuation kernel given by

M x;Qð Þ ¼ ix
x0

� �2c

; c ¼ 1
p
tan�1 1

Q

� �
; ð4:13Þ

Fig. 4.1 a Viscosity of the fluid mixture computed with Eq. (4.8)
(red) and with a linear law (black) as a function of water saturation;
b Bulk modulus of the fluid mixture computed with Brie model

(Eq. (4.6)) as a function of saturation and frequency (red), compared
with results from the Voigt model (black continuous line) and Wood
model (black dashed line)

Fig. 4.2 a Normalized relative
permeabilities as a function of
water saturation; b and
rock-frame permeability as a
function of water saturation and
differential pressure
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where x is the angular frequency and x0 is a reference
frequency. In Eq. (4.12), QK and Ql are the quality factors
related to the bulk and shear moduli, given by

QK ¼ Ksm z; pð Þ
Ksm zð Þ Q0 and Ql ¼ lsmh z; pð Þ

Ksm z; pð Þ QK ; ð4:14Þ

where Q0 is a loss parameter of the frame, and Ksm zð Þ is the
dry-rock bulk modulus at depth z at hydrostatic pressure.

The model results in a decrease of seismic wave attenu-
ation with increasing gas-hydrate concentration. It follows
that increasing the volume fraction of a stiff material (e.g.
gas hydrate) and reducing the water saturation allows for
grain cementation to increase the sediment cohesion, con-
sequently reducing the attenuation.

4.6 Seismic Velocities

The three-phase Biot theory is described in detail in Car-
cione and Tinivella (2000) and Gei and Carcione (2003). We
outline the formulation here to obtain the seismic velocities.
The theory predicts three compressional waves, one of
which is fast and two of which are slow, and two shear
waves, wherein one is fast and the other is slow. The phase
velocity of the three compressional waves are

VPi ¼ Re
ffiffiffiffiffi
Ki

p� �h i�1
; i ¼ 1; 2; 3; ð4:15Þ

where Re denotes the real part and the Ki are obtained by
solving

AK3

� BþCþD� 2Eþ 2F½ �K2 þ bR11 þ cR22 þ dR33 � 2eþ 2f½ �K
� a
¼ 0:

ð4:16Þ
The two S-wave phase velocities are

VSi ¼ Re
ffiffiffiffiffi
Xi

p� �h i�1
; i ¼ 1; 2; ð4:17Þ

where the Xi are the solution of

X2q22 l11l33 � l213
� �

� X l11b� l33d � 2l13q13q22 þ 2l13q12q23ð Þþ a:

ð4:18Þ
The coefficients in Eqs. (4.16) and (4.18) are

A ¼ R11R22R33 � R2
23R11 � R2

12R33 � R2
13R22 þ 2R12R23R13;

B ¼ q11 R22R33 � R2
23

� �
; C ¼ q22 R11R33 � R2

13

� �
; D ¼ q33 R11R22 � R2

12

� �
;

E ¼ R11R23q23 þR33R12q12 þR22R13q13; ¼ F ¼ R12R13q23 þR23R12q13 þR23R13q12;

a ¼ q11q22q33 � q223q11 � q212q33 � q213q22 þ 2q12q23q13;

b ¼ q22q33 � q223; c ¼ q11q33 � q213; d ¼ q11q22 � q212;

e ¼ q11q23R23 þ q33q12R12 þ q13q22R13; f ¼ q12q13R23 þ q23q12R13 þ q13q23R12;

R11 ¼ K1 þ 4
3
l11; R12 ¼ C12; R22 ¼ K2

R13 ¼ C13 þ 2
3
l13; R23 ¼ C23; R33 ¼ K3 þ 4

3
l33

:

lij are shear coefficients

l11 ¼ 1� g1ð Þ/s½ �2lav þ lsmh;

l13 ¼ 1� g1ð Þ 1� g3ð Þ/s/hlav;

l33 ¼ 1� g3ð Þ/h½ �2lav þ lhm;

ð4:19Þ

with the average shear modulus given by

lav ¼
1� g1ð Þ/s

ls
þ /f

ixgf
þ 1� g3ð Þ/h

lh

" #�1

; ð4:20Þ

where i ¼ ffiffiffiffiffiffiffi�1
p

, gf is the fluid viscosity (4.8) and

g1 ¼ lsmh=/sls; g3 ¼ lhm=/hlh: ð4:21Þ
C12, C13 and C23 are off-diagonal coupling moduli given

by

C12 ¼ 1� c1ð Þ/s/f Kav;

C13 ¼ 1� c1ð Þ 1� c3ð Þ/s/hKav;

C23 ¼ 1� c3ð Þ/h/f Kav;

ð4:22Þ

where c1 and c3 are consolidation coefficients of the rock
and ice frames

c1 ¼ Ksm=/sKs; c3 ¼ Khm=/hKh; ð4:23Þ

and Kav is the average bulk modulus
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Kav ¼ 1� c1ð Þ/s

Ks
þ /f

Kf
þ 1� c3ð Þ/h

Kh

� 	�1

: ð4:24Þ

The diagonal coupling moduli are

K1 ¼ 1� c1ð Þ/s½ �2Kav þKsm;

K2 ¼ /2
f Kav;

K3 ¼ 1� c3ð Þ/h½ �2Kav þKhm:

ð4:25Þ

qij are mass density coefficients given by

q11 ¼ a13/sqs þ a12 � 1ð Þ/fqf þ a31 � 1ð Þ/hqh � ib11=x;

q12 ¼ � a12 � 1ð Þ/f þ ib11=x;

q13 ¼ � a13 � 1ð Þ/sqs � a31 � 1ð Þ/hqh;

q22 ¼ a12 þ a23 � 1ð Þ/fqf � i b11 þ b33ð Þ=x;
q23 ¼ � a23 � 1ð Þ/fqf þ ib33=x;

q33 ¼ a13 � 1ð Þ/sqs þ a23 � 1ð Þ/fqf þ a31/hqh � ib33=x:

ð4:26Þ

where aij are tortuosity coefficients. Assuming spherical
pores, Leclaire et al. (1994) obtain

a12 ¼ 1
2

/s
/f qf þ/hqh
/f þ/h

/fqf

0
@

1
Aþ 1; a13 ¼ 1

2

/h
/f qf þ/sqs
/f þ/s

/sqs

0
@

1
Aþ 1;

a31 ¼ 1
2

/s
/f qf þ/hqh
/f þ/h

/hqh

0
@

1
Aþ 1; a23 ¼ 1

2

/h
/f qf þ/sqs
/f þ/s

/fqf

0
@

1
Aþ 1:

ð4:27Þ

bii are friction matrix coefficients, given by

bii ¼
gf/

2
f

ki

 !
Fi xð Þ; i ¼ 1; 3; ð4:28Þ

where gf is the fluid viscosity; k1 ¼ ksm and k3 ¼ khm are the
permeabilities of the sediment and hydrate frames (Eq. 4.9).
The interaction between the rock matrix and gas-hydrate
frame with the fluids is described by the viscodynamic
functions FiðxÞ (Johnson et al. 1987)

Fi xð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 4is2i ki

xiL2i /f

s
; xi ¼

gf/f

xkiqf
; i ¼ 1; 3; ð4:29Þ

where x is the angular frequency, si are tortuosities of the
sediment (s1 ¼ a12) and hydrate frame (s3 ¼ a23) and Li is a
geometrical parameter. 2=Li is the ratio between the surface
and volume of the pores and nisiki/(/f L

2
i ) = 1, (i ¼ 1; 3),

where ni is related to the shape of the pore network, and
specifically ni ¼ 8 for non-intersecting canted tubes and
ni ¼ 12 for canted slabs of fluid.

4.7 Estimation of the Seismic Velocities
and Attenuation

We estimate the P- and S-wave velocities and attenuation as
a function of the gas-hydrate concentration and effective
pressure. To calibrate the theory, we use measurements of
the P-wave velocities as a function of the pore and confining
pressure performed by Tobin et al. (1995) on shaly sedi-
ments from the ODP Leg 146 at site 892, Oregon accre-
tionary prism, sample 146-892D-18X-2, 0–22 cm. We use
the Hamilton (1979) empirical relationships to estimate the
S-wave velocities from the P-wave velocities and compute
the effective stress coefficient by regression data analysis.
We obtain n ¼ 0:89expð�0:43pdÞ, where the differential
pressure pd is given in MPa. The elastic moduli of the
sediment matrix are

Ksm peð Þ GPa½ � ¼ 1:73þ 0:23pe � 1:7exp �pe=0:17ð Þ;
lsm peð Þ GPa½ � ¼ 0:54þ 0:06pe � 0:54exp �pe=0:12ð Þ;

ð4:30Þ

where pe is the effective pressure provided by Eq. (4.4). The
wet-rock bulk modulus is computed using the inverse
Gassmann equation (e.g. Carcione 2014; Mavko et al. 2009),
with porosity / = 0.45 (Westbrook et al. 1994).

Figure 4.3 shows the comparison between the measure-
ments from Tobin et al. (1995) and the wet-rock P-wave
velocities obtained with the effective pressure law.

After characterizing the sediment matrix, we use the TPB
theory to estimate the seismic velocities and attenuation of
the rock containing gas hydrate, water and free gas. The
properties of the different constituents are given in Table 4.1,
where those of methane are computed with the van der
Waals equation and viscosity is obtained from the formu-
lation proposed by Luo and Vasseur (1996). The density and
incompressibility of the fluid mixture are estimated with Eqs.
(4.7) and (4.6), with f 0 = 5.46 MHz ;which is chosen to fit
the patchy saturation White model velocity (White 1975;
Carcione and Picotti 2006) in the absence of gas hydrate,
with patches of 1 cm in diameter. The properties of the
hydrate frame are obtained from Eq. (4.2) and the stiffening
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of the sediment skeleton due to the presence of gas hydrate
with Eq. (4.3). The permeability of the sediment and hydrate
frames are computed with Eqs. (4.9)–(4.11), assuming the
residual saturations Swg ¼ 0:2 and Sgw ¼ 0:2; ks0 ¼ 10�13

m2 (Moran et al. 1995), kh0 ¼ 5� 10�4 m2 (Leclaire et al.
1994), p1 ¼ 14 MPa and m ¼ 0:26 (Gangi 1981). QK and
Ql are estimated from equations (4.14) assuming Q0 ¼ 60
and x0 ¼ 2p MHz. We assume that the parameter n of the
viscodynamic functions is equal to 8 for both sediment and
hydrate frames.

Figure 4.4 shows the velocity and attenuation of the P
and S waves as a function of frequency and water saturation
at pd ¼ 0:6MPa, pe ¼ 3:2MPa and /h = 0.3 (corresponding
to Ch = 0.67). The P-wave velocity in panel (a) increases

with frequency, following the typical behavior in the tran-
sition from uniform to patchy saturation. The P-wave
attenuation in panel (b) qualitatively agrees with experi-
mental measurements reported in Murphy (1982). The Biot
relaxation peak is located at about Sw ¼ 0:4. The S-wave
velocity shown in panel (c) increases with frequency and gas
saturation Sg ¼ 1� Sw, a consequence of the decreasing
bulk density. The S-wave attenuation shows a maximum at
full water saturation, approximately at the location of the
Biot peak.

Figure 4.5 shows the velocity and attenuation of the P
waves as a function of the effective pressure and water sat-
uration at a frequency of 30 Hz and Ch = 0.67. The velocity
increases with effective pressure and it takes very low values
for pe � 0, corresponding to an unconsolidated sediment.
The attenuation decreases for increasing effective pressure.

To the authors knowledge, estimations of gas hydrate
concentration with chlorinity or other methods are not
available for Site 892. However, Carcione and Gei (2004)
applied the TPB theory to well log data from the Mallik site,
achieving similar results to those obtained from hydrate
dissociation modeling and Archie methods.

4.8 Conclusions

We present a three-phase Biot theory to estimate the P- and
S-wave velocities and attenuation in partially saturated
gas-hydrate bearing sediments at varying pore pressure
conditions, from seismic to ultrasonic frequencies. The
coexistence of gas hydrate, water and methane in the pore
space is admitted and the rock-frame stiffening is accounted
for by a percolation model. To illustrate the methodology,
we consider a specimen of marine sediment from the Cas-
cadia Margin, ODP Leg 146 at site 892. The elastic prop-
erties of the rock frame are obtained with an effective

Fig. 4.3 Phase velocity Vp as a function of the overpressure ratio
computed with the effective pressure law shown as a solid line, as
compared to measurements from Tobin et al. (1995) shown with
asterisks and dashed lines (Gei and Carcione 2003)

Table 4.1 Material properties of
the gas-hydrate bearing sediments
(e.g. Mavko et al. 2009; Helgerud
et al. 1999); the properties of gas
correspond to the depth of the
BSR at ODP Leg 146, site 892 (at
hydrostatic pressure)

Sediment grain Bulk modulus, Ks 35 GPa

Shear modulus, ls 35 GPa

Density, qs 2650 kg/m3

Gas hydrate Bulk modulus, Kh 7.9 GPa

Shear modulus, lh 3.3 GPa

Density, qh 900 kg/m3

Water Bulk modulus, Kw 2.4 GPa

Density, qw 1030 kg/m3

Viscosity, ηw 1.798 cP

Gas Bulk modulus, Kg 7.0 MPa

Density, qg 70 kg/m3

Viscosity, ηg 0.021 cP
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pressure law calibrated with laboratory measurements. The
seismic properties at different gas-hydrate concentrations
and fluid saturations are in agreement with the behavior of
real sediments in many aspects. The seismic velocities
increase with gas-hydrate concentration and seismic fre-
quency. Attenuation decreases with increasing hydrate sat-
uration and the dissipation factor (inverse Q) shows a
maximum at the Biot relaxation peak, located at approxi-
mately 40% water saturation. Decreasing effective pressure
leads to a strong decrease in velocity and Q factor.
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