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a b s t r a c t

Inmany cases, geological formations are composed of layers of dissimilar properties whose
thicknesses are small compared to the wavelength of the seismic signal, as for instance,
a sandstone formation that has intra-reservoir thin mudstone layers. A proper model
is represented by an anisotropic (transversely isotropic) and viscoelastic stress–strain
relation. In this work, we consider a sandstone reservoir, such as the Utsira formation,
saturated with CO2 and use White’s mesoscopic model to describe the energy loss of the
seismic waves. The mudstone layers are assumed to be isotropic, poroelastic and lossless.
Then, Backus averaging provides the complex and frequency-dependent stiffnesses of the
transversely isotropic (TI) long-wavelength equivalent medium. We obtain the associated
wave velocities and quality factors as a function of frequency and propagation direction,
while the synthetic seismograms are computed with a finite-element (FE) method in the
space-frequency domain. In this way, the frequency-dependent properties of the medium
are modeled exactly, without the need of approximations with viscoelastic mechanical
models. Numerical simulations of synthetic seismograms show results in agreement
with the predictions of the theories and significant differences due to attenuation and
anisotropic effects compared to the ideal isotropic and lossless rheology.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

There is evidence that the concentration of CO2 is one of the principal causes of the global warming and concurred
to increase the atmospheric temperature by 0.3–0.6 °C during the last 150 years [1]. To solve this problem, geological
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sequestration is an immediate option. The possibilities are injection into hydrocarbon reservoirs, methane-bearing coal beds
and saline aquifers. An example of the latter is the Sleipner field in the North Sea [2,3], where CO2 is stored in the Utsira
formation, a highly permeable porous sandstone 800 m below the sea bottom. The formation contains mudstone layers in
the order of 0.5 m thick, which act as permeability barriers to the upward migration of the CO2.

Since the layer thicknesses of suchmudstone layers are much below the limit of seismic resolution, the long-wavelength
approximation can be used, by which fine layering is equivalent to a homogeneous TI medium [4]. Carcione [5] generalized
Backus averaging to the anelastic case by considering thin viscoelastic and isotropic layers, obtaining the first model for Q -
anisotropy. Other alternative models of Q -anisotropy can be found in Carcione [6] (see also [7]). Backus’s approach used by
Carcione [5] is applied here, but the sandstone properties are obtained by usingWhite’s poroelastic model, which considers
partial gas saturation [8] and yields a complex and frequency-dependent bulk modulus. It assumes that the medium has
patches of gas in a brine saturated background and allows us to describe wave velocity and attenuation as a function
of frequency, patch size, permeability and fluid viscosity. The associated relaxation mechanism has a peak at the seismic
frequency range. On the other hand, the properties of the mudstone are described by a stress–strain relation based on the
Gassmann equation [9,6]. Backus averaging gives the five complex stiffnesses of the TImedium.We obtain the quality factors
and velocities as a function of frequency and propagation angle from these stiffnesses and the composite density. The theory
for anisotropic and anelastic media is illustrated in [6].

Synthetic seismograms are computed by a domain decomposition method combined with a frequency domain FE
method. This numerical procedure has already been applied to wave propagation in 2D and 3D media and to different
rheological equations [10–13].

2. Properties of the equivalent TI medium

The sandstone complex and frequency-dependent Lamé constants are determined from a mesoscopic rock-physics
theory [8], which provides realistic values as a function of porosity, gas saturation, clay content, fluid viscosity, permeability
and patch size, r1 (Appendix A).White assumed spherical gas pocketsmuch larger than the grains butmuch smaller than the
wavelength. He developed the theory for a gas-filled sphere of porousmedium of radius r0 located inside a water-filled cube
of porous medium. For simplicity in the calculations, White [8] considered an outer sphere of radius r1 (r1 > r0), instead of
a cube, where Sg = r30/r

3
1 . More details can be found in White [8,9,14,6].

The mudstone layers are fully saturated with water and their properties are frequency independent. The acoustic
properties are given by the Gassmann model [8,6], and the Lamé constants are

λ =
Ks − Km + φKm


Ks/Kf − 1


1 − φ − Km/Ks + φKs/Kf

−
2
3
µm and µ = µm (1)

where φ is the porosity, Ks and Kf are the bulk moduli of the grains and water, and Km and µm are the dry-rock bulk and
shear moduli, respectively. The P-wave modulus is

E = λ+ 2µ. (2)

The density of the sandstone and mudstone is the arithmetic average of the density of the single constituents. Let ρs and
ρf denote the mass densities of the solid grains and fluid, respectively. Then,

ρ = (1 − φ)ρs + φρf (3)

denotes the bulk density of the single layers.
Fine layering on a scale much finer than the dominant wavelength of the signal yields effective anisotropy, whose

elasticity constants are given by Backus averaging [4]. Carcione [5] uses this approach and the correspondence principle to
study the anisotropic characteristics of attenuation in viscoelastic finely layered media (e.g., [6]). According to Carcione [5],
the equivalent viscoelastic transversely isotropic medium is defined by the following complex stiffnesses and average
density:

p11 = ⟨E − λ2E−1
⟩ + ⟨E−1

⟩
−1

⟨E−1λ⟩2

p33 = ⟨E−1
⟩
−1

p13 = ⟨E−1
⟩
−1

⟨E−1λ⟩

p55 = ⟨µ−1
⟩
−1

p66 = ⟨µ⟩,

ρ̄ = ⟨ρ⟩,

(4)

where ⟨·⟩ denotes the thickness weighted average. The phase (energy) velocities and quality factors of the effective
anisotropic and anelastic medium, which depend on frequency and propagation direction, are given in Appendix B. Let
us define the wave properties associated with the symmetry axis perpendicular to the layering plane (θ = 0) and with the
direction along the layering plane (θ = π/2). Components 33 and 11 correspond to the P wave, 55 to the SV wave and 55
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and 66 to the SHwave for 0 and π/2, respectively (see Appendix B and [6]). Phase and energy velocities coincide along these
directions. We have the following wave velocities and quality factors:

vII =


Re


ρ̄

pII

−1

, I = 1, 3, 5, 6

QII =
Re(pII)
Im(pII)

.

(5)

3. The seismic modeling method

The algorithm used to simulate the wavefields is the FE method in the space-frequency domain, where the frequency-
dependent anelastic effects can be described exactly without approximations [3,6]. Let us consider a 2D volume of an
anisotropic and viscoelastic medium,Ω = [0, 1]2, with boundary Γ = ∂Ω . Let u(x, ω) denote the displacement vector at
the angular frequency ω. We consider the (x, z)-plane and the stress–strain relation describing a mediumwhose symmetry
axis makes an angle ψ with the z-axis. This is obtained by a clockwise rotation of the vertical symmetry axis through an
angleψ about the y-axis, as indicated in Appendix C. Then, it can be shown that we have to consider the following stiffness
matrix

p11 p12 p13 0 p15 0
p12 p22 p23 0 p25 0
p13 p23 p33 0 p35 0
0 0 0 p44 0 0
p15 p25 p35 0 p55 0
0 0 0 0 0 p66

 (6)

(see [6]).
The equation governing the motion is

− ρ(x)ω2u(x, ω)− ∇ · σ [u(x, ω)] = f (x, ω), x ∈ Ω, (7)

with absorbing boundary conditions

− σ [u(x, ω)] · ν = iω
√
ρD1/2u(x, ω), x ∈ Γ , (8)

where

D =
1
2

 2p11ν21 + p55ν23 3(p15ν21 + p35ν23 )

3(p15ν21 + p35ν23 ) p55ν21 + 2p33ν23

 . (9)

In Eq. (7), σ and f represent the stress tensor and the external-source vector, respectively. The boundary Γ is transparent
for normally incident waves and ν denotes the unit outward vector normal on Γ . The derivation can be found in [15] and
Lovera and Santos [16].

We proceed to formulate the variational form of (7)–(8): find u(x, ω) ∈ [H1(Ω)]2 such that

− (ρω2u, ϕ)+ (σ (u), ε(ϕ))+ iω
√
ρD1/2u, ϕ


Γ

= (f , ϕ), ϕ ∈ [H1(Ω)]2, (10)

where ε is the strain tensor. Here (f , g) =

Ω
fg∗dx and ⟨f , g∗⟩ =


Γ
fg∗dΓ indicate the complex [L2(Ω)]2 and [L2(Γ )]2

inner products, where ‘‘∗’’ denotes the complex conjugate.H1(Ω) denotes the usual Sobolev space of function in L2(Ω)with
first derivatives in L2(Ω). The arguments given in Ha et al. [17] and Douglas et al. [10] can be used to show that the existence
and uniqueness holds for the solution of (10).

Numerical dispersion is an important aspect to be taken into account when using wave propagation algorithms. It is
shown in Zyserman et al. [18] that using the nonconforming FE space N Ch described in [19] allows to use about half
the number of points per wavelength to achieve a desired tolerance in numerical dispersion as compared with standard
conforming bilinear elements. Thus, wewill employ the FE spaceN Ch described below to compute an approximate solution
of (10).

Let τ h be a quasi-regular partition of Ω̄ such that Ω̄ = ∪
J
j=1Ωj withΩj being rectangles of diameter bounded by h. Set

Γj = ∂Ω ∩ ∂Ωj and Γjk = Γkj = ∂Ωj ∩ ∂Ωk; we denote by ξj and ξjk the centroids of Γj and Γjk, respectively. Consider the
reference rectangular element

R = [−1, 1]2, S(R) = Span

1, x, z,


x2 −

5
3
x4


−


z2 −

5
3
z4


.
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The degrees of freedom associatedwith S are the values at themid points of the faces of R. For example, if a1 = (−1, 0), a2 =

(0,−1), a3 = (1, 0) and a4 = (0, 1), the basis function ψ1(x, z) =
1
4 −

1
2x −

3
8


(x2 −

5
3x

4)− (z2 −
5
3 z

4)

is such that

ψ1(a1) = 1 and ψ1(aj) = 0, j = 2, 3, 4. Then,

N Ch
= {ϕ ∈ [L2(Ω)]2 : ϕj ∈ [S(Ωj)]

2, ϕj(ξjk) = ϕk(ξjk) ∀j, k},

where ϕj denotes the restriction of ϕ as seen fromΩj.
Now the global nonconforming approximation uh to the solution u of (10) can be stated as follows: find uh

∈ N Ch such
that

− (ρω2uh, ϕ)+


j

(σ (uh), ε(ϕ))Ωj + iω
√
ρD1/2uh, ϕ


Γ

= (f , ϕ), ϕ ∈ N Ch. (11)

It can be shown (see [17] for the isotropic case) that for h sufficiently small the error associated with the global procedure
(11) is of order h2 in the L2-norm and of order h in the broken H1-energy norm.

Note that (11) is a noncoercive ellipticHelmholtz-type problem, so that the usual iterative procedures like preconditioned
conjugate gradient iterative algorithms cannot be used. Consequently, to solve the algebraic problem associated with the
global nonconforming procedure (11), we will employ the iterative domain decomposition procedure described below.

Remark. In addition to the low numerical dispersion properties of the space N Ch, one of the main advantages of using
nonconforming elements to solve wave propagation phenomena in parallel architectures is that the amount of information
exchanged in a domain decomposition iterative procedure is reduced by half as compared to the case when conforming
elements are employed.

Consider the decomposed problem overΩj satisfying Eq. (7) inΩj, the boundary condition

−σ [uj(x, ω)] · ν = iω
√
ρD1/2uj(x, ω), x ∈ Γj,

and the interface consistency conditions

σjkνjk + iβjkuj = −σkjνkj + iβjkuk, x ∈ Γjk ⊂ ∂Ωj,

σkjνkj + iβjkuk = −σjkνjk + iβjkuj, x ∈ Γkj ⊂ ∂Ωk,

where βjk are the components of a positive definite matrix function defined on the interior boundaries Γjk. The iteration
matrix βjk, defined on the interior interfaces Γjk can be taken to be of the same form as the matrix D in (9) using averaged
properties of the coefficients defining D on the adjacent elementsΩj andΩk.

Since the objective of the domain decomposition technique is to localize the calculations, we define the iterative
procedure at the differential level in the following manner: find un

j ∈ [H1(Ωj)]
2 such that

(−ρω2un
j , ϕ)j +


j


pq

(σpq(un
j ), εpq(ϕ))j +


iω

√
ρD1/2un

j , ϕ

Γj

+


k

⟨[σ(un−1
k )νjk + iβjk(un

j − un−1
k )], ϕ⟩Γjk = (f , ϕ)j, ϕ ∈ [H1(Ωjk)]

2. (12)

To define a discrete iterative procedure we introduce a set Λh of Lagrange multipliers λhjk associated with the stress values
−σ(uj)νjk(ξjk):

Λh
= {λh : λh|Γjk = λhjk ∈ [P0(Γjk)]

2
= [Λh

jk]
2
};

here, P0(Γjk) are constant functions on Γjk.
Motivated by (12), we define the following discrete domain decomposition (hybridized) iterative algorithm:

(1) Choose an initial guess

uh,0
j , λ

h,0
jk , λ

h,0
kj


∈ NCh

j × [Λh
jk]

2
× [Λh

kj]
2.

(2) For all {jk}, compute

uh,n
j , λ

h,n
jk ∈ NCh

j ×Λh
jk


as the solution of the equations

− (ρω2uh,n
j , ϕ)jk +


pq

(σpq(u
h,n
j ), εpq(ϕ))jk + iω


√
ρD1/2uh,n

j , ϕ

Γj

+


k


λ
h,n
jk , ϕ


Γjk

= (f , ϕ)j, ϕ ∈ NCh
j (13)

and

λ
h,n
jk = −λ

h,n−1
kj + iβjk[u

h,n
j (ξjk)− uh,n−1

k (ξjk)], on Γjk. (14)
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Table 1
Properties of the Utsira formation.

Sandstone Mudstone

Grain bulk modulus, Ks (GPa) 40 20
Density, ρs (kg/m3) 2600 2600

Frame bulk modulus, Km (GPa) 1.37 7
Shear modulus, µm (GPa) 0.82 6
Porosity, φ 0.36 0.2
Permeability, κ (D) 1.6 –

Brine density, ρw (kg/m3) 1030 1030
Viscosity, ηw (Pa s) 0.0012 –
Bulk modulus, Kw (GPa) 2.6 2.6

CO2 density, ρg (kg/m3) 505 –
Viscosity, ηg (Pa s) 0.00015 –
Bulk modulus, Kg (MPa) 25 –

In (13) ⟨⟨·, ·⟩⟩Γjk denote the approximation to the (complex) inner product ⟨·, ·⟩Γjk in L2(Γjk) computed using the mid-point
quadrature rule. More precisely,

⟨⟨u, v⟩⟩Γjk = (uv∗)(ξjk)|Γjk|, (15)

where |Γjk| is the surface measure of Γjk. A similar definition holds for ⟨⟨·, ·⟩⟩Γj , changing in (15) ξjk and Γjk by ξj and Γj,
respectively.

The argument given in [17] for isotropic viscoelastic solids can be applied here with minor modifications to show that

[uh,n
− uh

] → 0 in [L2(Ω)]2 if → ∞,

so that in the limit the global nonconforming Galerkin approximation uh of (11) is obtained.

3.1. Computational implementation

The size of the subdomains of the decomposition, and therefore the number of elements considered within each of them
can be varied. If the smallest subdomain coincides with the individual elements of the finite element partition, the number
of degrees of freedom and the order of the linear system originated by Eq. (13) is eight.

But, in according to the analyses carried out by Gauzellino et al. [20], in this implementationwe consider each subdomain
as a row or ‘‘stripe’’ of Nx elements, Nx being the number of elements fitting in the x-coordinate direction of Ω . In this
case the order of the linear system associated with each ‘‘stripe’’ is 6Nx + 2 and a standard LU method is used to solve it,
i.e., essentially we solve a collection of 1D problems. In order to improve the convergence rate, an under relaxed ‘‘red–black’’
scheme is employed. We divide the ‘‘stripes’’ into two sets, called ‘‘red’’ and ‘‘black’’ ones, where each red subdomain has
only as neighbors black subdomains. The linear system obtained using Eq. (13) is solved first for the red stripes and the black
stripe neighbors contribute to form its corresponding right hand side. Then, red Lagrange multipliers are updated using Eq.
(14) and all the variables, uh,n

j and λh,njk are under relaxed by the expressions

un
j = γ un

j + (1 − γ )un−1
j , λnjk = γ λnjk + (1 − γ )λn−1

jk , (16)

respectively. The relaxation factor, γ , has an optimal value that is determined through numerical experiments. The same
technique is employed to solve the black stripes; once the red and black stripes are fulfilled convergence is checked.
The convergence of this domain decomposition iterative procedure was demonstrated in [17] for the isotropic case; the
arguments can be extended here without changes. Also, the performance of the algorithm was studied in [20].

4. Results

We consider the properties of the Utsira formation shown in Table 1, alternating layers of mudstone and sandstone of
equal thickness, r1 = 20 cm and f0 = 30 Hz. The energy velocity (a) and dissipation factor (b) of the different wave modes
as a function of frequency are shown in Figs. 1 and 2.

On the other hand, Figs. 3 and 4 display the polar representation of the energy velocity (a) and quality factor (b)
corresponding to a frequency of 30 Hz and 50% and 10% CO2 saturation, respectively. The P wave shows high attenuation at
θ = 0 compared to θ = π/2, while maximum attenuation occurs at low gas saturations.

Since geological formations have a structural dip angle due to tectonic stresses, we need to obtain the values of the
stiffness components at different orientations of the symmetry axis of the TI medium. This process is shown in Appendix C.
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a

b

Fig. 1. Energy velocity (a) and dissipation factor (b) versus frequency, perpendicular and parallel to the layering plane. The CO2 saturation is 0.5.

Then, the modeling can describe a different layer orientation at each grid cell. Let us consider the case of 50% saturation and
a frequency of 30 Hz. The stiffness tensor is

P =


(8.81, 0.084) (2.69, 0.025) (1.26, 0.038) 0 0 0
(2.69, 0.025) (8.81, 0.084) (1.26, 0.038) 0 0 0
(1.26, 0.038) (1.26, 0.038) (4.56, 0.23) 0 0 0

0 0 0 (1.54, 0.10) 0 0
0 0 0 0 (1.54, 0.10) 0
0 0 0 0 0 (3.44, 0.0034)

 (17)

(in GPa). For instance, a rotation of the symmetry axis by 20° gives

P′
=


(7.83, 0.12) (2.52, 0.027) (1.74, 0.020) 0 (−1.26, 0.045) 0
(2.52, 0.027) (8.81, 0.084) (1.43, 0.037) 0 (−0.46, 0.0041) 0
(1.74, 0.020) (1.43, 0.037) (4.56, 0.23) 0 (−0.11, 0.0022) 0

0 0 0 (1.76, 0.10) 0 (−0.61, 0.022)
(−1.26, 0045) (−0.46, 0.0041) (−0.11, 0.0022) 0 (2.02, 0.085) 0

0 0 0 (−0.61, 0.022) 0 (3.21, 0.042)

 (18)

(in GPa).
To compute the transient responses, we use as a source a Ricker time history of the form:

f (t) =


a −

1
2


exp(−a), a =


π(t − ts)

t0

2
, (19)
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a

b

Fig. 2. Energy velocity (a) and dissipation factor (b) versus CO2 saturation perpendicular and parallel to the layering plane. The frequency is 30 Hz.

where t0 is the period of the wave (the distance between the side peaks is
√
6t0/π ) and we take ts = 1.4t0. Its frequency

spectrum is

F(ω) =


t0

√
π


ā exp(−ā − iωts), ā =


ω

ω0

2

, ωp =
2π
t0
. (20)

The peak frequency is f0 = 1/t0.
First,we consider a homogeneous viscoelasticmediumand compute snapshots of thewavefield. The simulations consider

a square computational domain of 1 km side and a partition of the domain into square cells.
In the first example, the square cells have side length 2 m and the source is a directional force, located at the center of

the mesh, with components fx = sinϕ and fz = cosϕ, where ϕ is the angle with respect to the z-axis. The source central
frequency is f0 = 30 Hz. The solution was computed for 160 frequencies in the range 0–80 Hz, with a frequency sampling
of 0.5 Hz. The time domain solution was obtained using a discrete inverse Fourier transform.

Fig. 5 shows snapshots of the horizontal and vertical displacements at 250 ms, where the qP and qSV waves can be
observed (outer and inner fronts, respectively). The medium has been rotated by ψ = 20° and the source has ϕ = 20°. The
saturation of CO2 is 10% ((a) and (b)) and 50% ((c) and (d)). It can be seen that the features of the snapshots agree with the
predictions of the plane-wave analysis represented by Figs. 3 and 4. In fact, a lower frequency content can be appreciated in
Fig. 5(a)–(b), where the CO2 saturation is 10% and the attenuation is high, compared to Fig. 5(c)–(d), where the saturation is
50% and the attenuation is low.

In the second example, we present a simplified model composed of an anisotropic layer between two half-spaces.
The upper half space is an isotropic and elastic medium with P- and S-wave velocities equal to 1890 m/s and 592 m/s,
respectively, and a density of 2100 kg/m3. The layer, with a thickness of 300 m, is the anisotropic and anelastic medium
whose single components are given in Table 1. The medium is rotated by 20°, i.e., the angle between the symmetry axis
and the vertical direction. The lower half-space has P- and S-wave velocities of 2320 m/s and 730 m/s, respectively, and a
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a

b

Fig. 3. Polar representation of the energy velocity (a) and quality factor (b) corresponding to a frequency of 30 Hz and 50% CO2 saturation. The quality
factor is shown as a function of the phase angle.

a

b

Fig. 4. Polar representation of the energy velocity (a) and quality factor (b) corresponding to a frequency of 30 Hz and 10% CO2 saturation. The quality
factor is shown as a function of the phase angle.
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a b

c d

Fig. 5. Snapshots of the horizontal ((a) and (c)) and vertical ((b) and (d)) displacements corresponding to a central source frequency of 30 Hz. The medium
is rotated byψ = 20° and the source is a directional forcemaking an angle of 20°with respect to the z-axis, located at the center of themesh. The saturation
of CO2 is 10% ((a) and (b)) and 50% ((c) and (d)).

density of 2300 kg/m3. The square cells have side length 3.7 m and the source is a dilatational perturbation indicated with
an asterisk in the snapshots shown in Fig. 6, where the interfaces are indicated. Its central frequency is 30 Hz and it is located
150 m below the first interface. The vertical line, labeled A, represents a well at 400 m from the source location. The first
receiver is located at 500 m above the first interface and the distance between adjacent receivers is 21.3 m. The solution
was computed for 900 frequencies in the range 0–80 Hz, with a frequency sampling of 0.088 Hz. Absorbing boundaries are
implemented at the four sides of the mesh. The snapshots in Fig. 6 represent the vertical component of the displacement
vector at 200 ms ((a) and (c)) and 500 ms ((b) and (d)) propagation time with an isotropic–elastic (lossless) stress–strain
relation ((a) and (b)) and the more realistic anisotropic–viscoelastic relation developed in this work ((c) and (d)).

The seismograms recorded at the well are displayed in Figs. 7 (isotropic–elastic media) and 8 (anisotropic–viscoelastic
media). The ideal seismograms correspond to an elastic and isotropic stress–strain relation, taking the elastic case at the
high frequency limit. The labels indicate:

P: Direct P waves through the layer.
S: Direct S waves through the layer.
PR: Reflected P wave.
SR: Reflected S wave.
PT : Transmitted P.
ST : Transmitted S.
PST : Transmitted P to S wave conversion.
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Fig. 6. Snapshots of the vertical displacement at 200 ms ((a) and (c)) and 500 ms ((b) and (d)) propagation time, corresponding to the ideal case ((a) and
(b)) and real case ((c) and (d)). Most of the labels are explained in the main text; SR and ST in (a) indicate a mode conversion.

SPT : Transmitted S to P wave conversion.
PSR: Reflected P to S wave conversion.
PRPT : Reflected P wave through the layer to transmitted P wave.
PR2PT : Reflected P wave twice through the layer to transmitted P wave.

The reflected P waves in the second layer are better observed in the vertical displacement while converted waves are
more evident in the horizontal displacement. In Fig. 8, it can be observed a significant loss of energy due to the attenuation.
As can be seen, the differences are substantial, indicating that a real rheological equation is required to interpret data related
to this specific problem.

5. Conclusions

The anisotropic and anelastic properties of the reservoir rocks, aquifers and other porous formations are described by
using poroelasticity theory (White’s mesoscopic model) and Backus averaging, in order to model the anisotropic behavior
of finely-layered media at long wavelengths. A typical case is the Utsira formation in the North Sea area, consisting of a
sequence of sandstone layers partially saturated with CO2 and brine-saturated mudstone layers. Here, we have obtained
the complex and frequency-dependent stiffnesses and density, which allow us to compute the wave velocities and quality
factors as a function of frequency and propagation angle.

Moreover, we compare snapshots and synthetic seismograms for varying saturations and ideal and real rheological
equations, i.e., isotropic–elastic and anisotropic–anelastic, respectively. The modeling methodology is based on a finite-
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Fig. 7. Seismograms of the horizontal (a) and vertical (b) displacements, corresponding to the ideal (isotropic–elastic) case. The labels are explained in the
main text.

element solution of the equations ofmotion in the space-frequency domain. Hence, the frequency dependence of the seismic
properties ismodeled exactly,without approximations used in the timedomain (e.g.,memory variables based onmechanical
models).

The theory and numerical solver proposed in this work can be applied to more complex geological situations (lower
symmetries, stochastic heterogeneities, fractures, etc.) and implemented in the processing and interpretation of real seismic
data for characterization purposes.
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Appendix A. White’s mesoscopic model including S-wave dissipation

White [8] assumed spherical patches much larger than the grains but much smaller than the wavelength. He developed
the theory for a gas-filled sphere of porous medium of radius r0 located inside a water-filled sphere (brine here) of porous
medium of outer radius r1 (r0 < r1). The saturation of gas is

Sg =
r30
r31
, Sb = 1 − Sg . (A.1)

For simplicity, let us redefine the saturation and density of gas and brine by S1 and S2 and ρf 1 and ρf 2, respectively.
Assuming that the dry-rock and grainmoduli and permeability, κ , of the different regions are the same, the complex bulk

modulus as a function of frequency is given by [9,14],

K =
K∞

1 − K∞W
, (A.2)
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in the main text.

where

W =
3ir0κ(R1 − R2)

r31ω(η1Z1 − η2Z2)


KA1

K1
−

KA2

K2


,

R1 =
(K1 − Km)(3K2 + 4µm)

K2(3K1 + 4µm)+ 4µm(K1 − K2)S1
,

R2 =
(K2 − Km)(3K1 + 4µm)

K2(3K1 + 4µm)+ 4µm(K1 − K2)S1
,

Z1 =
1 − exp(−2γ1r0)

(γ1r0 − 1)+ (γ1r0 + 1) exp(−2γ1r0)
,

Z2 =
(γ2r1 + 1)+ (γ2r1 − 1) exp[2γ2(r1 − r0)]

(γ2r1 + 1)(γ2r0 − 1)− (γ2r1 − 1)(γ2r0 + 1) exp[2γ2(r1 − r0)]
,

γj =

iωηj/(κKEj),

KEj =


1 −

αKfj(1 − Kj/Ks)

φKj(1 − Kfj/Ks)


KAj,

KAj =


φ

Kfj
+

1
Ks
(α − φ)

−1

, j = 1, 2,

α = 1 −
Km

Ks
,

(A.3)

Ks is the bulk modulus of the grains (see below), Kfj are the bulk moduli of the fluids, ηj are the fluid viscosities, Km and µm
are the dry-rock bulk and shear moduli, respectively and

K∞ =
K2(3K1 + 4µm)+ 4µm(K1 − K2)S1
(3K1 + 4µm)− 3(K1 − K2)S1

(A.4)
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is the – high frequency – bulk modulus when there is no fluid flow between the patches. K1 and K2 are the – low frequency
– Gassmann moduli, which are obtained as

Kj =
Ks − Km + φKm


Ks/Kfj − 1


1 − φ − Km/Ks + φKs/Kfj

, j = 1, 2. (A.5)

For values of the gas saturation higher than 52%, or values of the water saturation between 0% and 48%, the theory is not
rigorously valid. Another limitation to consider is that the size of gas pockets should be much smaller than the wavelength.

Since White’s theory does not predict any shear dissipation, we assume that the complex modulus µ is described by a
Zener element having a peak frequency f0 (the source central frequency) and a minimum quality factor given by

Q (2)
0 =

µm

Km
Q0, (A.6)

where Q0 is the quality factor associated with K at f0, i.e.,

Q0 = Q (f0) =
Re[K(f0)]
Im[K(f0)]

. (A.7)

Relation (A.6) assumes that the stiffest medium has the highest quality factor.
Then, the Zener complex modulus is

M =
1 + iωτϵ
1 + iωτσ

, (A.8)

where ω is the angular frequency and i =
√

−1.
The relaxation times can be expressed as

τϵ =
τ0

Q (2)
0


(Q (2)

0 )2 + 1 + 1

, τσ = τϵ −

2τ0
Q (2)
0

, (A.9)

where τ0 is a relaxation time such that 1/τ0 is the center frequency of the relaxation peak and Q0 is the minimum quality
factor. The frequency f0 is taken in the seismic frequency range in this work, particularly, equal to the source dominant
frequency.

The complex Lamé constants are given by

λ = K − (2/3)µ,
µ = µmM,

(A.10)

and

E = λ+ 2µ (A.11)

is the P-wave modulus.

Appendix B. Wave velocities and quality factors

We consider homogeneous viscoelastic waves [6]. The complex velocities are the key quantity to obtain the wave
velocities and the quality factor of the equivalent anisotropic medium. They are given by [6]

vqP = (2ρ̄)−1/2

p11l21 + p33l23 + p55 + A

vqSV = (2ρ̄)−1/2

p11l21 + p33l23 + p55 − A

vSH = ρ̄−1/2

p66l21 + p55l23

A =


[(p11 − p55)l21 + (p55 − p33)l23]2 + 4[(p13 + p55)l1l3]2,

(B.1)

where l1 = sin θ and l3 = cos θ are the direction cosines, θ is the propagation angle between the wavenumber vector and
the symmetry axis, and the three velocities correspond to the qP, qS and SH waves, respectively. The phase velocity is given
by

vp =


Re

1
v

−1

, (B.2)
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where v represents either vqP, vqSV or vSH. The energy-velocity vector of the qP and qSV waves is given by

ve
vp

= (l1 + l3 cotψ)−1ê1 + (l1 tanψ + l3)−1ê3, (B.3)

[6, Eq. 6.158], where

tanψ =
Re(β∗X + ξ ∗W )
Re(β∗W + ξ ∗Z)

, (B.4)

defines the angle between the energy-velocity vector and the z-axis,

β =
√
A ± B,

ξ = ±pv
√
A ∓ B,

B = p11l21 − p33l23 + p55 cos 2θ,

(B.5)

where the upper and lower signs correspond to the qP and qS waves, respectively. Moreover,

W = p55(ξ s1 + βs3),
X = βp11s1 + ξp13s3,
Z = βp13s1 + ξp33s3

(B.6)

[6, Eqs. 6.121–6.123], where s1 = sl1 and s3 = sl3, with s = 1/v, are the slowness components and ‘‘pv’’ denotes the
principal value, which has to be chosen according to established criteria.

On the other hand, the energy velocity of the SH wave is

ve =
vp

ρRe(v)


l1Re

p66
v


ê1 + l3Re

p55
v


ê3


(B.7)

and

tanψ =
Re(p66/v)
Re(p55/v)

tan θ (B.8)

[6, Eq. 4.115].
In general, we have the property

vp = ve cos(ψ − θ), (B.9)

where ve = |ve|. The quality factor is given by

Q =
Re(v2)
Im(v2)

. (B.10)

The values of the qP quality factor along the layering plane and symmetry axis are

QP(θ = π/2) =
Re(p11)
Im(p11)

and QP(θ = 0) =
Re(p33)
Im(p33)

, (B.11)

respectively, while those of the shear waves are

QSV (θ = π/2) = QSV (θ = 0) = QSH(θ = 0) =
Re(p55)
Im(p55)

, and QSH(θ = π/2) =
Re(p66)
Im(p66)

. (B.12)

Appendix C. Rotation of the stiffness tensor

In geological media, the symmetry axis of the TI medium is usually not vertical due to local tectonic stresses. In this case,
a rotation of the stiffness tensor is required. For a vertical symmetry axis along the z-axis, this is given by

P =


p11 p12 p13 0 0 0
p12 p11 p13 0 0 0
p13 p13 p33 0 0 0
0 0 0 p55 0 0
0 0 0 0 p55 0
0 0 0 0 0 p66

 , 2p66 = p11 − p12. (C.1)
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A clockwise rotation of the vertical symmetry axis through an angleψ about the y-axis has the orthogonal transformation
matrix

A =

 cosψ 0 sinψ
0 1 0

− sinψ 0 cosψ


. (C.2)

The corresponding Bond transformation matrix is [6],

M =



cos2 ψ 0 sin2 ψ 0 sin(2ψ) 0
0 1 0 0 0 0

sin2 ψ 0 cos2 ψ 0 − sin(2ψ) 0
0 0 0 cosψ 0 − sinψ

−
1
2
sin(2ψ) 0

1
2
sin(2ψ) 0 cos(2ψ) 0

0 0 0 sinψ 0 cosψ


. (C.3)

Then, the stiffness matrix with the rotated symmetry axis is given by [6],

P′
= M · P · M⊤. (C.4)
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