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A matrix-fracture-fluid decoupled PP reflection coefficient approximation
for seismic inversion in tilted transversely isotropic media

Guangtan Huang', Jing Ba?, Davide Gei®

ABSTRACT

Fracture-induced azimuthal anisotropy of seismic waves
has useful applications in the characterization of hydrocar-
bon reservoirs as well as the overburden. Existing theories
face problems estimating the fracture-weakness parameters,
identifying the saturating fluid, and constraining the depth
model building. To overcome these problems, we have
adopted an azimuthal amplitude variation with angle/offset
inversion for the estimation of these parameters and identi-
fication of the fluid. First, we define more intuitive fracture
and fluid indicators based on rock physics, identifying the
fluid by decoupling the fracture weakness parameters. Then,
we derive a “rock matrix-fracture-fluid” decoupled PP-wave
reflection coefficient approximation of a weakly tilted trans-
versely isotropic medium by using a perturbation matrix and
scattering theory. Compared with the conventional fracture
weakness-based approximation, our method incorporates
the fracture density and the fluid indicator. The inversion test
finds that our approximation is effective.

INTRODUCTION

Fractures play an important role in hydrocarbon storage and fluid
migration (seepage channels in carbonate or shale reservoirs)
(Crampin, 1984; Hsu and Schoenberg, 1993; Bakulin et al.,
2000a, 2000b; Carcione et al., 2012b, 2013; Carcione and Picotti,
2012a; Oh and Alkhalifah, 2016). Moreover, their distribution is
closely related to the underground stress, which affects the later
stage of fracturing development (Hornby et al., 1994; Chen et al.,
2017). A reliable prediction of the area of this development and
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accurate identification of the saturating fluid are important in the
petroleum exploration industry.

Propagation of seismic waves in fractured reservoirs usually
shows significant anisotropy, so the conventional isotropy theory
is no longer satisfied (Riiger, 1997, 1998). Henneke (1972) and
Keith and Crampin (1977) first discuss reflection and transmission
in anisotropic media. Then, Daley and Hron (1977) derive an ana-
lytical solution for the reflection and transmission coefficients of
transverse isotropy media with a vertical axis of symmetry
(VTI). Based on anisotropy parameters, Schoenberg and Protazio
(1990) derive a reflection coefficient for anisotropic media by ex-
tending the Zoeppritz equation, but the corresponding expression is
nonlinear and not easily amenable for seismic inversion. Graebner
(1992) shows that reflectivity methods are difficult to linearize and
obtains reflection and transmission coefficients for two transversely
isotropic (TI) solids in welded contact. Riiger (1997) derives a
weak-anisotropy approximation of the PP reflection coefficient
for the medium containing vertical fractures (transverse isotropy
with a horizontal axis of symmetry [HTI]), which has been used
for fracture prediction. Jilek (2002) obtains the PS-wave reflection
coefficient for a TI medium.

Unlike in isotropic or VTI media, wave amplitude in HTI or tilted
transverse isotropy (TTI) media depends not only on the incidence
angle but also on the azimuth angle. Therefore, the concept of azi-
muthal anisotropy is essential to characterize fractured reservoirs.
Bachrach et al. (2009) propose an amplitude variation with angle
and azimuth (AVAZ) attribute extraction method to obtain frac-
ture-related information. Chen et al. (2015) obtain the azimuthal
variation of elastic impedance for vertical fractures and establish
an inversion method for predicting fracture areas and identifying
fluids based on prestack gathers. Furthermore, to improve the ac-
curacy of this method, Chen et al. (2017, 2018) implement subtrac-
tions of seismic-data responses from different azimuths and
combine them with rock-physics simulations. Using the linear-slip
model (Schoenberg and Sayers, 1995), Pan et al. (2018) propose
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linearized reflection coefficients for orthorhombic media and show
that the fracture weaknesses are appropriate to characterize fracture-
induced anisotropy.

However, the aforementioned studies are based on the horizontal
layers, but this is not a common situation (Liang et al., 2011; Ivanov
and Stovas, 2017), because due to tectonic stresses, particularly in
deep reservoirs, the strata often present a large dip. Then, the for-
mations cannot be described as VTI or HTI medium but as TTL
Behura and Tsvankin (2006) provide a small-angle reflection coef-
ficient approximation for TTI media based on the weak-contrast and
weak-anisotropy hypothesis. Wang et al. (2017) obtain a P- and S-
wave AVAZ approximation for TTI media and analyze the ampli-
tude variation with offset (AVO). Jin and Stovas (2020) derive an S-
wave traveltime approximation for a 2D TTI medium. Chen et al.
(2020) and Pan et al. (2021) propose a linearized TTI approximation
and exploit it as a forward operator to extract fracture weaknesses in
tight sandstone reservoirs. For the purpose of fracture and fluid
identification, Chen et al. (2014) and Pan et al. (2019a, 2019b) pro-
pose the Russell fluid approximation (Russell et al., 2011) and use
the isotropic part of the reflection coefficient. However, the aniso-
tropic part of this coefficient is mainly relevant for his purpose.

The aforementioned work mainly focuses on the inversion of the
anisotropy parameters or fracture weaknesses. Here, we establish
a mapping between fracture parameters and seismic data, and we
propose to extract these parameters from the seismic data directly.

Table 1. List of symbols.

A Perturbation ®  Angular frequency
Ap Lamé parameters C Stiffness matrix
K Bulk modulus M  P-wave modulus
E Young’s modulus v Poisson’s ratio
c Stiffness component p Density
cb Stiffness component of the p” Density of the
background medium background medium
b Background wavefield v’ Scattering wavefield
X Source location x’  Observation point
70 Stationary point B Bond matrix
a P-wave velocity p S-wave velocity
Rpp P-P-wave reflection R}Sl‘)’ Isotropic part of Rpp
coefficient
R Anisotropic part of Rpp 6y  Tilt angle of TTI
medium
0 Incidence angle ¢ Azimuthal angle
¢ wM Y MM
Fracture density X Aspect ratio of
fracture
Zn,Zr Fracture compliance ~ Jy,0r Fracture weakness
0y, 0,0 Stress component p Slowness vector
T Wave vector ¢ Seismic dip
w Wavelet w Wavelet matrix
S Seismic data AS Azimuth difference
data
F, Russell fluid indicator F. Fluid indicator of the
cracks

To improve the seismic inversion, we decouple the effects of the
fracture parameters and fluid on the reflection coefficient. We
use the thin coin-shaped fracture and linear-slip models (Hudson,
1981; Schoenberg and Sayers, 1995), by which more intuitive frac-
ture and fluid indicators are established, and based on the Russell
fluid approximation and scattering theory, we propose a “matrix-
fracture-fluid” decoupled reflection coefficient approximation for
TTI media to perform the seismic inversion.

METHODOLOGY
Linearized reflection coefficient

In the presence of weak anisotropy, the stiffness components ;i
and density p on a weak-contrast interface can be perturbed with
respect to a reference (or background) medium. Table 1 compiles
the list of symbols to be used throughout this paper. According
to a Taylor expansion, when the perturbations are small,
ie., |Ac;ju/cijul <1 and |Ap/p| < 1, the stiffness components
and density can be expressed as (Chapman and Coates, 1994)

(i,j, k,1=1,2,3),
)

p=p"+A0p. ciju= cibjkl + Aciju,

where ¢? and p? denote the stiffness components and density of
the background medium, respectively, and A small perturbation
from background values. Therefore, based on the scattering theory
(Cerveny, 2001), the total wavefield can be decomposed into two
parts, namely, the background wavefield u” and the scattering
wavefield u’. This can be expressed in the frequency domain as

b
—uj = Apw*u] + Ac; ‘kl&’ (2)
! ! % ox jox,

where o is the angular frequency and u? and u$ denote the ith com-
ponents of the background and scattering displacements, respec-
tively. Because the field is generated at x;, we have the Green
function G at an observation point x’ (Eaton and Stewart, 1994;
Burridge et al., 1998):

1

iwr/ah. 3
47rp”(a”)2re )

w(x', w;x,) = G(x', w;x,) =

To linearize the PP reflection coefficients, Shaw and Sen (2004,
2006) use asymptotic ray theory and the method of stationary phase
to describe the scattered wavefield:

1
4pb cos? @

S (! e _ 1 iwr/a®

v (x', w;x,) = dnp ()r S(ro), 4
where r is the source-receiver distance; r, represents the stationary
point; a® is the P-wave velocity of the isotropic background
medium; € denotes the incidence angle of the P wave; and i = \/—_1
and w are the imaginary number and frequency, respectively. By
considering the symmetry of the stress/strain matrix, stress and
strain can be expressed as vectors of six components, and the
fourth-order tensor C can be simplified as a 6 X 6 matrix. Thus,

S(rg) = Apé + Acymyy, (i, j=1,2,---,6).  (5)
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The slowness- and wave-vector-dependent quantities £ and # are
given in Appendix A. Equation 4 can then be written as (Cerveny,
2001)

—u'(x’, w;X,) = G(x', w;X,)Rpp(0), (6)
where Rpp is the PP reflection coefficient at an interface, whose

upper medium is isotropic or weakly anisotropic and the lower
medium is weakly anisotropic. The linearized expression is

Rpp = Ri + Ry @)

Here, R5S is the isotropic part of the reflectivity, which results from
the linear approximation of the Zoeppritz equation (Aki and
Richards, 1980; Smith and Gidlow, 1987). The anisotropic part
is (Shaw and Sen, 2004)

R%p ZW(APEJFACMIU)» (i,j=12,---,6). (8)

Stiffness matrix of TI media

The stiffness matrix of the isotropic background can be expressed
in terms of the bulk modulus M” and Lamé constants A* and u” as

MPo2b 22 0 0 0

oMb 0 0 0
o oMb 0 0 0
b __
=10 0o 0o w 0o o0 ©)
0 0 0 0 u o0
0 0 0 0 0 u

and the stiffness matrix of the VTI medium is (Carcione, 2014)
cf; ¢, ¢z 0 0 O
¢l ¢}y ¢z 0 0 O
c{3 ¢i3 ¢33 0 0 O

VTI _ Vo .U v
C7=10 0 0 ey 0 o[ TN
0 0 0 0 ¢ O
0 0 0 0 0 cg
(10)
where ¢;; are the stiffness components of the VTI medium. The

elasticity matrix (equation 10) can be written in terms of the normal
and tangential fracture weakness dy and 67 as (Schoenberg and
Sayers, 1995; Carcione et al., 2012¢; Carcione, 2014)

MP(1-(¢")%6y)  A°(1=¢P6y)  2°(1-6y) 0 0 0
A(1=¢Psy)  MP(1=(¢")?8y) AP(1-6y) 0 0 0
VT A(1=6y) A(1=6y)  MP(1=6y) 0 0 0
- 0 0 0 ub(1-67) 0 0
0 0 0 0 ub(1=6;) 0
0 0 0 0 0 ub

(11

where the P- and S-wave moduli M? and u” and the first Lamé con-
stant A* can be expressed as

MP = pP(a”)?, Wb =pP ("), A =MP-2ub, (12)

where a?, °, and p? denote the P- and S-wave velocities and
density, respectively, and ¢* = ub /M.

Then, we can derive the stiffness matrix of the TTI medium by
tilting the symmetry axis with a coordinate transformation. Let us
denote with 6, the angle between the symmetry axis and the vertical
direction (the tilt angle), as shown in Figure 1. The gray platelet
indicates the set of parallel fractures with a tilt angle, the red platelet
denotes the symmetry axis plane of the fractures, and the green re-
flector plane indicates the seismic wave reflection interface, which
cut the fractures. Axis a is the fracture strike, and axes x, y, and z
compose the spatial coordinate system. The ¢, corresponds to the
angle between the observation line and the x-axis and ¢, repre-
sents the angle between the symmetry and the x-axis. Let us define
the Bond matrix (Bond, 1943; Carcione, 2014):

cos’f, 0 sin%6, 0 —sin26, O
0 1 0 0 0 0
B, — sin?@, 0 cos?6, 0 sin26, 0
% — 0 0 0 cos 6, 0 sin 6
1sin26, 0 —1sin26, 0 cos20, O
0 0 0 —sin#, 0 cos 6,

13)

The stiffness matrix of a TTI medium can be obtained by the
transformation (Bond, 1943) as

cii ¢ i3 0 ¢5 0
Clp € €3 0 5 O
CTTI:BQO.CVTI.B;) _ C(1)3 0(2)3 683 0 ¢35 O ’
cu 0 ¢y
€15 €5 ¢35 0 ¢55 O
0 0 0 Cyq6 0 Ce6

(14)
where we have used the same symbols for simplicity, and
cij= (b~ ciy) - b

jl» (ivjskvlzlszs”'s6)s (15)

A\

Reﬂecm,p

o\

Symmetry axis plane

Zy

<

V

Figure 1. Relationship among the incidence angle 6, tilt angle 6,
and azimuth angle ¢. Axis a is the fracture strike, and axes x, y, and
z compose the spatial coordinate system. The ¢, corresponds to
the angle between the observation line and the x-axis and ¢y, rep-
resents the angle between the symmetry and the x-axis.
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where b;; is the component of the Bond matrix, and its specific
expression can be seen in equation 13.

Based on a weak-anisotropy hypothesis, subtracting C? from the
C™!, we can obtain the perturbations AC. The specific expression
of AC can be found in Appendix B. Then, substituting AC into
equation 8, we obtain the anisotropic part of the PP-wave reflection
coefficient:

RE3(0, ¢:0,) = ks, (0, :00)8x + ks, (0. 3600)57.  (16)

where ¢ is the azimuth angle (the difference between the azimuth of
the source-receiver line ¢, and the horizontal projection of the
symmetry axis ¢ [Pan etal., 2021]); 5 and &7 are given in equa-
tions 18 and 19, respectively; and

+7" sin* @sin” ¢(2y" cos? G cos® ¢+ 2sin® G cos® ¢+ " sin? )

1 cos* 0[P cos? 0 (sin* 6+ 2sin® ) + (sin® O sin* @+ cos* Gy + (y*)*sin* 6 )]
ks, (0.4:0,) = —Zscc2 0
+[27" (v sin® 6 — 1)sin 0 + (y” — sin? 26,)]sin? O cos® O cos? ¢

kﬁ, (044);90) :C” |:

(cos? 26, +cos® 001— sin 0 tan Osin® p — %sinZ 26 )sin> @cos’ ¢
—4sin? 26, (sin? Otan® O cos* ¢+ cos? 6) ’

a7
where y? = A2 /MP.

Decoupling

The fracture weaknesses related to the infilling medium proper-
ties based on the coin-shaped fracture model (Hudson, 1981)
and the linear-slip model (Schoenberg and Sayers, 1995) are given
by

4
O = b b : 1 K'+4/3 ] (18)
S
|
oy = be : (19)
b 4 u'
33 - 20) [ 1+

where K’ and u’ denote the bulk and shear moduli of the material
filling the fracture, respectively; e is the fracture density; and y is
the aspect ratio of the cracks. Here, the fracture density indicates
the average number of fracture intersections per unit length (Narr,
1991) and assumes that the fractures are saturated with a fluid;
thus, ' = 0 and

5 de 4de 1
N = T3 T b L K
(- [V tesy] 3 -0
(20)
16e
Sp = 21
T 3(3_24,;,) ( )

Thus, Sy can be split into the e- and K’ — y-related parts. We
assume that the fracture aspect ratio is constant, and ¢?, related
to the background matrix, can be obtained by a conventional

amplitude variation with angle (AVA) inversion (Luo et al., 2021)
with iterations. We define F. as the fluid indicator of the cracks,

K/
Fo=1-00+—5, (22)
w4

which is proportional to the bulk modulus of the fluid filling the

fractures. Then,

4e 1

== —=. 23
N 3 Cb Fc (23)

For a poroelastic isotropic background where fractures are
embedded, equation 16 can be rewritten as

REE(0.¢:600) = ks, (0. 4:600) 35 - - + ks, (0. ¢:6) 73(31_622;;) :
(24)

For an interface separating two media, the upper and lower layers
are parameterized by Jy and d7 parameters, respectively, wherein
6y = 0 and 67 = 0 for isotropic media. One can regard the upper
medium as the background of the lower medium. Thus, equation 16
can be expressed as

RE (0, $3600) = ks, (6, 3 00)Ady + ks, (6, §; 60) Adr,
(25)
where Ady and Ady denote the difference of the fracture weak-

nesses oy and 67 between the upper and lower layers, respectively.
The total reflection coefficient is

R (0, ¢3.00) = RER(0) + ks, (0. 3 00) Ady
+ ks, (0, ¢ 6) Aby. (26)

The perturbations of these parameters can be expressed in differ-
ential form, i.e., taking the differential on both sides of equations 20
and 21 as

Ady = gl — 6™ ~ d(8y) = d(? ' —)
4 elower 1 4 gupper 1
= 3Cb ’ Flower - 3Cb ’ ngper
= 8NTr, — SN T (27)

Adr = 5lrower - 5;pper ~d(67) = d(3(31-62ecj”)>

B ]6elower 16¢upper
S 3(3-2%) 3(3-2¢)

= spverr, 28)

where r, = (Ae/e'™), rp = (AF,/F*), and A denotes the
perturbation between the upper and lower layers. To prevent
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instability, we assume that the fracture density e > 0; otherwise,
Oy — oo. Thus, the PP reflection coefficient of the anisotropic part
can be written as

R0, §;60) = k,(0.;00)r, + kp (0.0:600)rr..  (29)

where
ke (0.4:6,)
cos*O[y? cos? 0 (sin* 0+ 2sin® 6) + (sin? O, sin* &+ cos* Gy + (y*)?sin* 6;)]
= —%seczﬂ " sin* @sin? ¢p(2y” cos? G cos® ¢ + 2sin® O cos? ¢+ y” sin® ) Sy

+[2¢ (y* sin® 0y — 1)sin? 6 + (v — 3sin® 26)]sin* Ocos? O cos? b
(c0s? 26, + cos? f, — sin® G tan? @sin’ ¢p — Lsin? 26, )sin® Ocos? ¢
. 2
+¢ b7,
—4sin? 26, (sin” Otan® cos” ¢ + cos )
kr, (0.¢:6,)
cos* 0[P cos? 0y (sin* 0 + 2sin® 6 + (sin? O, sin* @ + cos* O, + (y*)?sin* 6;)]
1 2 . .
= Zsecz [4 +7b sin* @sin? ¢ (2y" cos® O cos? ¢+ 2sin? O cos® ¢ +y” sin® ) Sn-
+[2¢ (y" sin® 0, — 1)sin? 0 + (v —1sin 26)]sin* @ cos® O cos? b

(30)

Then, the isotropic part of the PP-wave reflection coefficient is
derived as

, AMP Aub A
REH6) = ko (0) S+ ko (0) -+, (0) 7. (D)

where (Pan et al., 2021)

29 1 sec?d
ka(e):SCZ . kp(0) = =20y sin?0, and k,,(e)zz—sez
(32)

The total reflection coefficient is

AM? N Ap
Ri;)};a] (0, ¢, 60) ~ ka (9) W + kﬂb (9) /,LT + k/,(e) 7
+ ke(0.9:00)r. + kp, (0,43 60)rF,. (33)

Moreover, here the isotropic part can be further “matrix-fluid”
decoupled. According to Russell et al. (2011), the isotropic part
of the PP-wave reflection coefficient is

, AF AuP A
RER(0) = kr, (0) 2 + ko 0) 2+ 1,0 =L 39
P F, 2 P
where
Har
FP - Msat L (35)
dry

is the Russell fluid indicator, and

20 .. 20
kma):(l‘?—“‘)SGC k() =220 _or sino,

w) 4 P Ly 4
and k,(0) :%— sezzﬁ’ (36)
where
Cary = Hary/Marys  Csa = Hsar/ Msai- 37

Here, pgrys psa and Mgry, Mg, are the S- and P-wave moduli of the
dry- and wet-rock, respectively. These parameters can be obtained
from core and well-log data by using the Gassmann equation (Gass-
mann, 1951). According to this equation, pgr, = pig- Note that F,
is related to the pore fluid in the isotropic background and F. rep-
resents the fracture-fluid indicator. Thus, the total PP-wave reflec-
tion coefficient becomes

R (0. ¢:00) ~ kp (0)rF, + kyp (0)r,0 + ky(O)r,

+k,(6,0:00)r, + kp (6,0:00)7F,, (38)
where
AF b b
er =—" ’ rﬂh - b and rP = L; (39)
F,

We have obtained the reflection coefficient in terms of the
parameters of the rock matrix r,, the pore-fluid indicator rE,
and fracture-fluid indicator r¢_, and the fracture parameter r, thus
achieving a matrix-fracture-fluid decoupling. Here, “matrix” indi-
cates the reflectivity ratio of the shear modulus of the rock matrix
r,p, “fracture” corresponds to the reflectivity ratio of the fracture
density r,, and “fluid” corresponds to the reflectivity ratios of the

pore-fluid indicator rF, and fracture-fluid indicator rp .

Inversion theory

According to the convolutional model, seismic data can be
expressed as reflectivity convolved with a seismic wavelet:

spp(1:6, . 00) = wW(1:0, ) * 1pp(1;6, . 6y), (40)

where w is the incidence- and azimuth-angle-dependent seismic
wavelet vector and spp and rpp denote the P-P-wave reflectivity
and the seismic data vectors. This equation can be rewritten in a
matrix form:

S(0, #;60) = W(0, 9)Rpp(0, ¢ 6,), 41)

where
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[spp(1.0,0,6p) T
spp(2,6,¢.6,)

[ Rpp(1,6,¢.6)) ]
Rpp(2,0.9,6))

Spp(0,¢.0,) = , Rpp(0,0,0y) =
pp(0.,6)) sooi-6..60) pp(0.¢,6)) Ren(i.0.4.60)
Lspp(N,6,¢.,6,) ] LRpp(N,0,¢,6)
rw(l,0,¢) w(2,0,¢) w(N,0,¢) T
w(2,0,¢)  w(3,0,¢) w(1,0,¢)
W(0.9) = . (42)

w(i,0.p) w(i+1.0.¢) - w(N—i+1,0.)

Lw(N,6,¢)

w(1,0,¢) w(N-1,0,¢) |

where i denotes the temporal sample.

As shown in equation 7, the reflection coefficient can be divided
into two parts, i.e., an azimuth-dependent anisotropic part R4 and
an azimuth-independent reflection coefficient related to the iso-
tropic part RisS. Thus, based on equation 29, the amplitude differ-
ence of seismic data from different azimuths AS(6, ¢;,¢;;6,) can
be expressed as

AS(0.41.01:00)

S(0.¢::00) —S(6.4,:6)
W(0.0i,¢;)[Rep(0.6i;00) —Rep (0, ¢;300)]

W0, ¢, ) [RES () + REF (6. ¢01360) — R (60) — REE (6.6

(43)

where ¢; and ¢; denote the ith and jth azimuth angles, respectively;
and W(6, ¢;, ¢;) is the average of W(6, ;) and W(6,¢;), i.e.,

WO, 00 b)) =5 (W(0.0) + W(0.9)): (44

and r, and ry_denote the reflection ratio vectors of the fracture
density and the proposed fluid indicator, respectively, which are

Table 2. Material properties (Wright, 1987).

W<9~ ¢,,¢/){[kf (0,¢i3600) — ke (0v¢j;60)]re + [kF‘ (0,¢i360) — kp, (0, 45/190)]"&.}'

r, = [re(l)»re(z)’ ""re(i)’
rp, = [re, (1), 1p,(2), -+ 1 (i), -

SENSITIVITY ANALYSIS
Two-layer model analysis

To verify the effectiveness of the proposed approximation, we
compare it with the exact solution (Graebner, 1992; Carcione,
2014; Luo et al., 2020), where we use the material properties given
in Wright (1987) (see Table 2, V;; = 4/c;;/p). The model is com-
posed of an anisotropic shale (VTI medium with different c,3) over-
lying isotropic chalk.

Figure 2 shows the PP reflection coefficients. Figure 2a, 2c,
and 2e corresponds to the reflection coefficients by using
shales 1, 2, and 3 as upper layers, and chalk as a lower layer.
The solid red lines denote the exact solution, the dotted-dashed
blue lines are calculated by the Graebner equation (see equation
22 in Graebner, 1992), and the dashed red lines correspond to the
proposed approximations (see equation 33). The Graebner
solution is consistent with the exact solution when the phase
angle does not exceed the critical angle. It is clear that the approxi-
mation does not hold for strong anisotropy at far offsets (greater
than 30°).

For weak anisotropy, we consider the example given in Table 3.
Wood’s equation is exploited to mix the fluids (Domenico, 1976)
with 90% brine and 10% gas. The properties of the upper and lower
layers for the reflectivity simulation are given in Table 3 as well as
the fluid modulus. To simplify, we assume that the tilt and azimuth
angles are 0°. Then, the exact solution, the Graebner equation
(Graebner, 1992; Luo et al., 2020), the Riiger approximation
(Riiger, 2002), the fracture weakness-related approximation (equa-
tion 16), and the proposed method (equation 33) are used as forward
operators to compute the reflection coefficients, as shown in
Figure 3. The dotted-dashed red and green lines correspond to
the reflection coefficients computed with equations 26 and 33, re-
spectively. The exact and Graebner curves coincide and the other
approximations agree fairly well with the exact one, although at
large angles there are some discrepancies. The proposed method
uses equation 33, but at near-medium angles (less than 30°), the
solution is satisfactory.

Then, by perturbing the fracture properties, we analyze the influ-
ence of e and fluid type on the fracture weakness based on equa-
tions 20 and 21 (see Figures 4 and 5). The matrix properties
correspond to the parameters of the upper layer in Table 3. The frac-
tures are saturated with brine (Figure 4a and 4d), oil (Figure 4b and
4e), and gas (Figure 4c and 4f). The fluid modulus significantly
affects oy but not 67. Therefore, the ratio
On/6r can be considered as a fluid indicator.
Moreover, the increase in fracture density in-
creases the fracture weakness and enhances the

Vi (km/s) Vi3 (km/s) Vs (kmis) Vi3 (kmis) p (g/cm?)

anisotropy.
Figure 5 shows the influence of y and saturat-

Upper layer Shale 1 3.810 3048 1.219 0.609
Shale 2 3.810 3.048 1.219 1.828
Shale 3 3.810 3.048 1.219 3.048
Lower layer Chalk 5.029 5.029 2.621 3.414

ing fluid. Similar to the fracture density e, y sig-

23 nificantly affects the fracture weaknesses.
2.3 Moreover, Figure 5 also shows that the fluid
2.3 modulus affects the anisotropy, in particular, that
27 corresponding to gas-water. Gas-water (or oil-

water) indicates that gas (or oil) and brine are
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mixed in the fractures. The water saturation ranges from 0.1 to 0.9,
as shown in Figure 5. Such features provide us a basis for sub-
sequent fluid indications, especially for fractured gas reservoirs.

Well-log data test

We consider well-log data and the corresponding fracture param-
eters are obtained by using the linear-slip model. The data are from
southwest China and have been converted to the time domain by
using a seismic-well tie. Figure 6 shows the profiles, including
the P- and S-wave moduli M? and u?, density p, fracture weakness
Oy and o7, fracture density e, and fluid indicator. The solid black
curves are calculated by using the well-log profiles based on

c33=pV3or Css=pV30: €11 =PVpoo Caa =pV500:
(46)

where Vp, Vpgp and Vg, Vg g9 are the vertical (0°) and horizontal
(90°) P- and S-wave velocities, respectively. Then, according to the
well logs, especially the resistivity log, we can estimate the tilt angle
of the fractures (Liu et al., 2020). The fracture weakness 6y and 61
can be obtained from equation B-2 in Appendix B. To simplify, here
the fracture density e and aspect ratio y are obtained based on the
Hudson model by assuming the properties of brine given in Table 3
in the inversion test. The P- and S-wave moduli M? and y" are esti-
mated from P- and S-wave velocity, respectively. One can use core
data to obtain the dry-rock moduli, porosity, etc., and then compute
the pore-fluid indicator F, based on the Gassmann equation. To

M281
Table 3. Material properties.
Property Value
Upper layer P-wave velocity agyy 3.048 km/s
S-wave velocity By 1.490 km/s
Bulk density p? 2.420 g/cm’®
Porosity ¢ 0.05
Fracture density e 0.1
Aspect ratio y 0.09
Lower layer P-wave velocity agyy 3.483 km/s
S-wave velocity By 2.338 km/s
Bulk density p” 2.300 g/cm’
Porosity ¢ 0.05
Fracture density e 0.05
Aspect ratio y 0.05
Fluid P-wave velocity aiine 1.47 km/s
Bulk density ppine 1.04 g/cm?
P-wave velocity a,; 0.750 km/s
Bulk density p; 0.70 g/cm’
P-wave velocity g, 0.603 km/s

Bulk density pg, 0.0011 g/cm?
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Figure 2. Comparison of the proposed method with (a, c, and e) the exact solution and Graebner equation by using the material properties
given in Table 1 and (b, d, and f) the respective magnified results of the comparison in the black boxes.
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Figure 3. PP reflection coefficients obtained with the exact
solution, Graebner equation, Riiger approximation, fracture-weak-
ness-related approximation (equation 26), and proposed method
(equation 33).

Water
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perform the seismic inversion, we need the tilt angle and initial
models as input data and extract the properties of the fractures
(e and F,) and moduli and density of the host rock (M”, u?,
and p?) from seismic data. Moreover, we have introduced an indi-
cator factor, which is an important parameter in the shale fracturing
process, i.e., the differential horizontal stress ratio (DHSR) (Gray
et al., 2012):

- EbZ
DHSR =2 "% _ 22N 47)
Oy 1 + E ZN 4+ v
where
Oy
Iy =— DN 48
N Mb(l _51\/) ( )

is the normal-fracture compliance. Here, E* and 1’ denote the
Young’s modulus and Poisson’s ratio of the rock matrix, respectively,
ie.,

200 — 1

206" -1)°
49)

Eb — p(28 = 1) b

-1

In general, a high DHSR value indicates that a
high number of fractures parallel to the maximum
horizontal principal stress are developed in the
formation. Referring to the fracture density infor-

djos " e=001|

0.25 e=0.03|
——e=0.05
02 —¢=0.07]
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5015 / 1 '}50.15;//‘ 5015 /
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Figure 4. Fracture weaknesses as a function of the fracture density e and fracture-filling

property.

Gas-water

0.05'1 ——+

0.5 0.6 0.7

Oil-water

mation and DHSR parameters, the fractures that
are not parallel to the horizontal stress direction
can be somewhat characterized.
As shown in Figure 6, the fractured formation,
shale formation, and the fractured shale gas res-
ervoir and limestone formation are sequentially
i deposited. The two dashed boxes in Figure 6 cor-
— respond to the two different fracture systems. It is
| shown from the fracture density curve (the sixth
panel) that there is considerable crack develop-
ment in both areas. However, the fluid indicator
in the cracks F,. (the seventh panel) and the
DHSR curves (the eighth panel) show that the
two regions have opposite behaviors. The area
highlighted in the black box corresponds to a

a) 0.61 b) 0.25

Aspect ratio x

0.2

high fracture density, and the high 1/F, value
indicates that the fracture is saturated with a
low bulk modulus fluid (shale gas). In contrast,
the area highlighted in the red box corresponds to
a high density but low 1/F . value. The formation
is water-saturated, heavily fractured, with a low
gas content. Then, the seismic response differ-
ence between the two formations should be taken
T into consideration.

We apply equation 16 to simulate the azimu-
thal amplitude variation with azimuth by using
the well-log data. We have obtained the azi-

Aspect ratio x

0.2 0.4 0.6 0.8 0.2 0.4
Sw

Figure 5. Fracture weaknesses as a function of the fracture aspect ratio y and fluid

modulus.

0.6 0.8 muth-dependent reflection coefficients corre-

sponding to the two formations (see Figures 7
and 8). The parameters to obtain the reflection
coefficients are the average of the values within
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the red and black boxes in Figure 6 (see Table 4). The well-log data
are used for sensitivity analysis. When we adjust the tilt angle, we
only change the dip angle of the fractures. Comparing Figures 7 and
8 shows that, when the tilt angle of the fractures is 0°, which cor-
responds to a VTI medium, the reflection coefficient is azimuth in-
dependent. Increasing this angle, the azimuth effects anisotropy
increase; for 90°, we have an HTI medium.

It is necessary to quantitatively extract the fracture and fluid infor-
mation (Ba et al., 2017; Zhang et al., 2021, 2022). Thus, to extract
such information, it is important that the contribution of each param-
eter to the reflection coefficient (or seismic data) should be similar. A
similar sensitivity or contribution of the parameters to the seismic
data indicates that the condition number of the forward operator is
small. It means that it is less likely to induce ill-posedness. Otherwise,
it is easy to induce an ill-posed problem due to the large condition
number of the forward operator. As shown in equations 25 and 29,
the reflection coefficient is a weighted summation of the parameters
to be calculated, and the contribution mainly results from the weights
and the parameters. The parameters of the AVAZ inversion are Ady
and Ady for equation 25 and r, and rp for equation 29. The balance
of weights is an important factor in the stability of the inversion.
Therefore, we mainly focus on the contribution of the weights.

We consider the properties in the black box as an example.
Figure 9a shows the weights ks, and ks, appearing in equation 25
as a function of €, azimuth angle ¢, and tilt angle, which is set to
60°. It can be seen that these two weights depend on the background
properties and also are controlled by the incidence angle and azi-

M283

Such difference can easily yield an ill-posed problem in the seismic
inversion process (equation 25), i.e., a small perturbation of Ady
causes a large change in Ady. In particular, the anisotropic part
of the reflection coefficient is very small, easily affected by noise
and more likely to cause ill-posed problems. Figure 9b shows the
weights k, and kj;_appearing in equation 29, where we can see that
their behavior is similar, indicating that the two parameters r, and
rp, have a contribution similar to the seismic data. There are no high
variations of one parameter due to the small perturbation of the
other parameter and this reduces the ill-posedness in solving the

inverse problem.

The proposed approximation has a balanced parameter contribu-
tion. However, k, and kj;_ contain the fracture parameters 6y and 67,
which means that those coefficients become model-dependent var-
iables, and the problem becomes a nonlinear iterative inversion. An
initial model is required to simulate the initial wavefield, but the
weight of the coefficients k, and kj;_ should not be highly dependent
on this initial model. Otherwise, it can be difficult to obtain reason-
able inversion results.

Next, we verify the dependency of the reflection coefficient on
the initial model, which is used to calculate the weights k, and kp,
and obtain the anisotropic part of the reflection coefficient, as
shown in Figure 10, using the exact and smoothed values, respec-
tively. The tilt angle is set to 60°. We use a moving average filtering
method to find the smooth values. The moving average filter of vec-
tor x with N = 20 points filter is given by

2.32r

muth anglés: ks, is small .and sligI}tly varies with tbese ang.les; in- X (i, N,) = i ofiz Ny fi- Ny 1), (i), e
stead, ks, is large and varies drastically. As shown in equation 25, N, 2 2
the reflection coefficient is equal to the weighted value of Ay and N N\
Ad&7. When kg is large and has a wide range, whereas ks is small x (i 45 1) X ( i+ _V> . (50)
and varies smoothly, the weighting result is highly affected by Ady. 2 2)]
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The smoothed models include the moduli of the rock matrix M?, yi?,
and p? and initial values of the fracture properties e and F,. It is
shown that there is basically no difference between the two sets of
results. To further verify the effect of the simulation, we extract the
AVAZ at 20° incidence angle and the AVO effect at 90° azimuth
angle (see Figure 11). The results show that the approximation does
not greatly depend on the initial model.

Figure 7 Azimuth-dependent reflection coeffi-
cients with tilt angles (a) 8, = 0°, (b) 8, = 30°,
(c) 6y = 60°, and (d) 8, = 90°, corresponding to
the formation of the red box in Figure 6.

Figure 8. Azimuth-angle-dependent reflection co-
efficients with tilt angles (a) 8, = 0°, (b) 8, = 30°,
(c) 6, = 60°, and (d) 8, = 90°, corresponding to
the formation of the black box in Figure 6.

INVERSION TEST

To check the effectiveness of the numerical implementation, the
well-log data in Figure 6 are used for the inversion test, whose work-
flow is given in Table 5. We neglect the dependency of the wavelet on
the incidence and azimuth angles. We use equation 41 to simulate the
azimuthal angle gathers as input data, where the incidence angle
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ranges from 0° to 20°, the azimuth angle ranges from 0° to 180°, the
tilt angle is set to 60°, and the following Ricker wavelet, with a dom-
inant frequency f, = 30 Hz is used for synthesizing seismic data.

w(t) = [1 = 2(zfor)* exp(—(nfor)?). (51)

Figure 12 shows the synthetic azimuthal angle gathers. Then, we ob-
tain the azimuthal-difference data for inverting the target parameters
by using equation 29. Figure 13 shows these data, where the differ-
ence is mainly present at far-angle ranges; we use the azimuthal-dif-
ference data as observed data and provide the smoothed M?, i, p?,
e, and F_ as initial models.

The inversion for a TI medium has several target parameters,
which makes the procedure more difficult than that of an isotropic
medium. Because the anisotropic and isotropic parts are azimuth-
dependent and independent, respectively, the inversion of HTI or
TTI medium can be achieved by a two-step algorithm. Based on
a Cauchy-norm regularized least-squares inversion strategy (Alemie
and Sacchi, 2011), we obtain r, and rp, . Figure 14 shows the com-
parison between the inversion results (the dashed red line) and the
input data (the solid blue line). The dashed black line corresponds to
the initial model, which is obtained by a moving average filtering
with Ng = 20. It is shown that the inversion suitably describes the
fracture parameters and the proposed fluid indicator. Through a
trace-integration algorithm, we can transform the results into model
data. Figure 15 shows the transformed fracture density e and the
proposed fracture-fluid indicator F.. The solid blue lines indicate

Table 4. Properties for azimuth-dependent reflection coefficients
calculation.

Property Upper layer Lower layer

Red box MP? (GPa) 67.0874 41.4517
u® (GPa) 26.1416 21.8647

PP (g/cm?) 2.5453 2.5299

On 0.043 0.0129

or 0.1517 0.0542

Black box M? (GPa) 42.3284 41.4517
u” (GPa) 20.9867 21.8647

P’ (g/cm?) 2.38 2.5299

On 0.0495 0.0129

or 0.1129 0.0542

the well-log profiles and the dotted-dashed red lines denote the
inverted results. Basically, the inversion results agree with the true
values.

x1073
-1.5

Figure 10. The R& for the exact and smoothed values of k, and
kF .

x107>

a) -24
261
ani
PP
-2.8

0 50 100 150 200 250 300 350
Azimuth ¢ (°)

0 5 10 15 20 25 30
Incidence angle 6 (°)

Figure 11. (a) Extracted AVAZ responses (see Figure 9) at 20°
incidence angle and (b) AVO at 90° azimuth angle. The solid black
and dotted-dashed blue lines are the Rpp for the exact and smoothed
values of k, and kp_, respectively.

Figure 9. Weights appearing in equations 25
and 29 as a function of the incidence angle 6
and azimuth ¢.
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Then, by substituting the inverted r, and rg_as known param-
eters into equation 33, the inversion results of the isotropic part of
the reflection coefficient are obtained. The process is similar to the
inversion of isotropic media and does not require updating r, and
rp.- Figure 16 shows the inverted r», s and r, of the background

Huang et al.

Finally, by using a trace integral algorithm, M?, 4”, and p can be
obtained for the reservoir characterization, as shown in Figure 17.
Let us consider how the ratio r,; transforms to M” (Huang et al.,
2019). We have

medium. The results compare well with the input well-log data.
Basically, highly accurate inversions of r, and ry_will lay a solid

foundation for subsequent inversions.

rye () =

Table 5. Workflow of the AVAZ inversion by using the decoupled approximation.

M (t;4,) = M°(1;)

M (tiy) + MP (1)

(52)

Input: initial model and azimuthal prestack angle gather seismic data

Output: fracture density and fluid indicator

1. Execution of the subtraction process and azimuthal difference data.

2. Simulation of the azimuthal difference synthetic data by using equation 29 with initial models.

3. Estimation of r, and rp_of the fracture reservoir by using a Cauchy-norm regularized least-squares algorithm.

4. Substitution of the inversion result r, and rj_into equation 33 and calculation of the isotropic part of the elastic-parameter ratios.

5. Execution of the trace integral process to transform the reflectivities to elastic parameters.

Figure 12. Simulated azimuthal prestack angle @)

gathers by using equation 16. »

)
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Figure 13. Residual profiles between different )
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Because M? is continuously differentiable along time or depth,

under the weak reflection assumption,

M (ti41) + MP(1;) » 2M"(1;).

dM®(t;)
MO (t30) = M (1) ~ == A,
Then,
amb 1 1dIn M?
1) ~ =— At,
o)~ o) T2 ar
and

(33)

(54)

1 23
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1 24
242 1242

Figure 14. Comparison between the inverted r, and rg_(dashed red
line) and the well-log data (the solid blue hne) The dashed black

lines correspond to the initial model.
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Figure 15. Inverted fracture density e and fracture-fluid indicator
1/F, (the dashed red line) by using a trace integral algorithm on
T, and rr, and the well-log data (the solid blue line). The dashed

black lines correspond to the initial model.

MP(1) = M (0) exp <Z erLt”) : (55)

where N, is the temporal sample.

Noise test

The log profiles of Figure 14 are used to evaluate the inversion
from different methods in the presence of noise. We test the method
with the azimuthal angle-gather data of Figure 12 and different
signal-to-noise ratios (S/Ns).
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Figure 16. Inverted ryp, 1, and r, of the background medium (the
dashed red line) and the real wellﬂlog data (the solid blue line).
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Figure 17. Inverted elastic parameters of the isotropic part of the
reflection coefficient by using a trace integral algorithm on ryp,
1, and r, (the dashed red line) and the real well-log data (the solid
blue hne)
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Figure 18. Inverted r, and rp_(the dashed red line) and well-log data (the solid blue line) from noise-corrupted seismic data; S/N is (a) 5, (b) 3,
and (c) 2.

We assume that the random noise has a zero-mean Gaussian
distribution. Then, we obtain r, and rr, (the dashed red line)
with S/N =5 (Figure 18a), 3 (Figure 18b), and 2 (Figure 18c),
as shown in Figure 18. We observe that the inversion works
even in the case of a relatively strong noise. The target parameters
have a contribution similar to the seismic data. Moreover, the
inversion method is affected by many other factors, such as the
regularization weight, the optimization method, and the objective
function.

REAL-DATA EXAMPLE

The inversion based on the proposed method is performed on
seismic data from southwest China. As shown in Figure 19a, the
blue and green lines correspond to the top and bottom of a shale
formation characterized by a large number of fractures, respectively,
as a result of complex tectonic processes. The bottom of the shale
reservoir corresponds to the solid green line, and the top of the shale
reservoir is located 0.1 s above the solid green line. The shale gas is

300 950 1000 %00 950 1000 stored in the shale reservoirs and is the main target of exploration.
Trace Trace The data consist of 101 azimuthal angle gathers (common-depth
Figure 19. (a) Prestack migrated seismic profile and (b) estimated point from 900 to 1000), prestack time migrated, with 1°-30°

seismic dip attribute by using the PWD algorithm. incidence angles and 0°~150° azimuthal angles.
Sunjay and Kothari (2011) and Chen et al. (2018) neglect the

clay lamination properties of the background and it is assumed that

Well A d 2os
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Figure 20. Inverted fracture weakness 6y and d7 by using fixed tilt Figure 21. Inverted fracture weakness dy and 67 by using the esti-

angle /4. mated tilt angle by using the seismic dip angle in Figure 19b.
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the fractures are perpendicular to the dip of the formation, which
can be retrieved by plane-wave destruction (PWD) (Claerbout and
Abma, 1992; Fomel, 2002). Then, the tilt angle of the TTI media
can be obtained. According to Claerbout and Abma (1992), plane
waves can be expressed by the first-order differential equation as
follows:

¢(x, 1) M =0, (56)

ou(x, 1)
+ ot

ox

where u(x,t) denotes the wavefield and ¢(x,7) corresponds to
the seismic dip. Figure 19b shows the dip attribute by using
this algorithm. The left side of the seismic data is relatively flat, cor-
responding to HTI media, whereas the right side is severely tilted
(TTI media). Thus, we cannot assume a single axis of symmetry.

We first assume that the strata are a set of TTI media with a fixed
tilt angle of 45° and use the fracture-weakness-based approxima-
tion to perform the inversion. The results are shown in Figure 20,
where we can see that a fixed tilt-angle assumption is not appli-
cable to this complex formation. The inversion results exhibit a
poor lateral continuity. The fixed tilt angle may cause anomalies
(“strip-like” artifacts in the inversion profiles), which are related to
the increasing ill-posedness induced by the inaccurate tilt angles.
Moreover, the positions highlighted by the block dashed boxes in
Figures 20 and 21 show that the energy of inversion results on the
right side is stronger than that of the left side. It is not reasonable
for the same strata.

Figure 21 shows 2D inversion profiles of fracture weakness by
using the PWD-estimated tilt angle. We can see that the inversion
has improved considerably, with the left and right sides being rel-
atively even in magnitude. Furthermore, the borehole side inversion
results are extracted from Figures 20 and 21. Then, the comparison
between the borehole-side inversion results d and o7 (the dashed
red lines) and the well-log data (the solid black lines) is performed,
as shown in Figure 22. It is shown that the inversion accuracy with
fixed tilt-angle is inferior to that of the proposed method.

Finally, Figure 23 shows the results by using the proposed
approximation. We directly extract the fracture density e and frac-
ture-fluid indicator factor F,. from the seismic data. As shown in
Figure 23b, the proposed fluid indicator, which is proportional
to the fluid bulk modulus, is well adapted to shale gas reservoirs.
To further verify the effectiveness of the proposed method, Figure 24
compares e (Figure 24a) and F, (Figure 24¢) with permeability and
water saturation well-log profiles. Permeability provides an indica-
tion of the fractures, with a high value corresponding to a high frac-
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ture density, and low water saturation indicates high gas content
(low bulk modulus of the fluid). The comparison between the
synthetic data generated by using the inversion results and the real
data is performed. Figure 25a and 25b shows the real and synthetic
angle gathers at 90° azimuth angle, respectively, and Figure 25¢

900 950 1000 900 950 1000
Trace Trace

Figure 23. Inverted fracture density e and fracture-fluid indicator
F. by using the proposed approximation.
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Figure 24. (a) The inverted fracture density e, (b) permeability
well-log curve, (c) the inverted fluid indicator in cracks F., and
(d) water saturation well-log curve.

Figure 22. Comparison between the borehole-
side inversion results dy and 6 (the dashed red
lines) and smoothed well-log data (the solid black
lines).
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Figure 25. Comparison between (a) the real and ) b) ©)
(b) the synthetic data at 90° azimuth angle by us- 14 14 14
ing the inversion results, and (c) the residual pro-
file between them. 15 15 15
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corresponds to the residual profile of the two angle gathers. This
example demonstrates that the proposed method can be adopted
for fractured reservoir characterization and fluid detection.

DISCUSSION

AVAZ inversion is currently an effective method for quantitative
characterization of anisotropic media, especially fractured media.
However, this method can be conducted only in weak-contrast
and weak-anisotropic media.

The determination of the tilt angle of TTI media is difficult to
estimate. Here, we assume that the fractures are perpendicular to
the dip of the formation, which can be retrieved by PWD.

Thin coin-shaped fracture and linear-slip models are adopted to
decouple the effects of the fractures and saturating fluid. We have
defined an indicator to characterize the fluid and neglect the effect
of the fracture aspect ratio. This drawback needs further investiga-
tion and the indicator can be generalized to retrieve the fracture
properties from azimuthal seismic data. Moreover, the seismic re-
sponse of the fractured medium can be improved by using wave-
induced fluid-flow theories, which describe attenuation and
dispersion (Carcione et al., 2013). AVAZ inversion can be general-
ized to the anelastic case for a better characterization of the seismic
response of the reservoir.

CONCLUSION

We have proposed a rock matrix-fracture-fluid decoupled
PP-wave reflection coefficient approximation of a weakly TTI
medium for AVAZ inversion. Compared with the conventional frac-
ture-weakness-based approximation, the proposed method incorpo-
rates the fracture density and a fluid indicator. Moreover, the
anisotropic part of the approximation yields a more balanced
parameter contribution (or sensitivity) to the seismic data, which
reduces the ill-posedness of the corresponding inverse problem.
In the inversion process, an initial model can be provided and iter-
atively updated, so that the final result is optimal. The inversion test
shows that the method is feasible and can be applied to real data.
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APPENDIX A
SLOWNESS AND WAVE VECTORS
For P waves propagating in a TI medium, the wave vectors of the

incident and reflection waves on an interface are, respectively,

t = [sin O cos ¢, sin € sin ¢, cos 0],

t' = [—sin 0 cos ¢, —sin O sin ¢, cos 6], (A-1)
and the corresponding slowness vectors are
1. . .
p= 7 [sin @ cos ¢, sin € sin ¢, cos 0],
p' = % [—sin @ cos ¢, —sin O sin ¢, cos 6)]. (A-2)
Moreover,
&= t;t]],_,, = cos 20, (A-3)
and
Nij = D jtkDilr—r,s (A-4)

where 7;; are the components of matrix E, which is

2sin 0'sin ghcos’ b
2sin* sin’ ¢ c

cos Osin’  cos
4sin® 0 cos Osin reos?
4sin’ Bsin’ geos®

(A-5)

~4sin? Ocos’ Osinrcosp 4
cosp dsin’ Ocos Osin® eosp 4sin

Then, substituting equations B-3, A-4, and A-5 into equation 8§,
we obtain R&N.
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APPENDIX B

STIFFNESS COEFFICIENTS OF TTI MEDIA AND
PERTURBATION TERMS

The stiffness coefficients for TTI media are

c11 = (¢} cos? Oy + ¢ty sin? Oy )cos? 6
+ (c¥5 cos? By + 4y sin? Oy )sin? 6 + sin? 20,cL,
1y = ¢, cos? Oy + ¢y sin Oy,
c13 = (¥, cos? Oy + ¢ty sin? §y)sin? O,
v 2 v oin2 2 102 v
+ (c}5 cos” 6y + 55 sin” O)cos” O — sin® 20cls,
1 1
— v 2 U oin2 : v 2
cis =5 (¢}, cos* Oy + ¢l sin* Gy) sin 26, — 3 (ciy cos* by
v . 2 . v .
+ 55 sin® 0y) sin 260 — cis sin 26, cos 26,
cn = Ciy,
€3 = ¢y sin® Oy + c¥5 cos? O,
LTI LT,
Cos = Ecl’z sin~ 26, — §C13 sin~ 26y,
c33 = (¢l sin? Oy + cly cos® Oy)sin®
33 = 0t Ci3 0 o
L2 2 2 2
+ (cfysin® By + c45 cos” O)cos” Oy + sin® 20cls,
1 1
— v in2 v 2 : v oin
€35 =5 (¢}, sin® By + c5 cos* ) sin 26, — 3 (¢, sin* G,
+ %5 cos? 0y) sin 26, + cs sin 26, cos 26,

Caq = Cls cos? Oy + cl sin® O,

1 1
Ca6 = _ECgS sin 26, + Ecgﬁ sin 26,

1
Cs5 = ~2 (¢}, sin 26y — ¢y sin 20,) sin 20,

- % (c?y sin 26, — ¢, sin 26,) sin 26, + cls cos® 26,
Cos = CYs sin? Oy + ¢l cos? b. (B-1)
Substituting equation 11 into equation B-1, we obtain
¢y = M? + sin? 20,ub 6

— [MP(sin* 8y + (y?)%cos* 6y) — %ﬁ”sinz 2006w,

c1p = AP[1 = Su(yP cos? Oy + sin” 6,)],
ci3 =2 (1-6y) JF% 2276y — MP Sy (14 (y?)?)sin® 20, + 4u> 7],
c15 = %(/1”6,\, +2ub57) sin 46, + % [MP 5y (sin? 0y — yPcos? 0,)]sin® 26,,
e =MP(1—(y*)%6y).
3 = AP[1 = Sp (yP sin? Oy + cos? 6,)],
€5 = %W(l —7"))éy sin 26y,
c33 = MY —sin? 20,u’ S,

1
- {M”(cos4 0 + (y?)?sin* 6y + E/’Lbsin2 290} Sy

1 1
c3==3 {M”z’)}v((y”)zsin2 0 +cos?6y)] + 7 [2ubsy — ﬂhﬁN} sin* 6y,

1
Cy4 = ﬂh(l - (ST COS2 90), Cy6 = E'uh&T sin 290,

1
css =pul — 1 (228 + MP((y*)? + 1)]sin® 206y — u® cos? 20,57,
(B-2)

ces = pb (1 =57 sin?Gp).

According to equation 1, the components of the perturbation term
AC are

Acyp = ¢y = cf)
= —sin? 20y’ AS; — [MP(sin* 0, + (y*)%cos* 6,) — %l”sin2 20)6y
Aciy = c1p — cby = —(y? cos? 6, + sin® 6,) APy,
Aciz = ¢13 — cby = sin? 20,ub 57
+ [Gsnﬁ 20— 1>,1b - i (1 + (¢*)?)sin? 200} Sys
Acis =5 —cbs = %sin 40’5y
+ B sin 26, (sin? 6y — (y*)?cos? 6)M" + %/Ib sin 490} Sy
Acy = ¢y — Clz’z = —(Vb)sz5Na
Acy; = c93 — cby = —(cos? Oy + y* sin? 05) 1P 5y,
Acys = ¢35 — Clzjs = % [22(1 = y")] sin 26,8y,
Acsz = ¢33 — cby = —sin? 20pu’5;
— [M?(cos*@y + (y)*sin* 6) + %/11’ sin® 26,8y,
Acsys = ¢35 — chs = —%yh sin 46,8 — % (2MP (y")?sin? 6,
+2MP cos? 6y — A° sin 46,)5y,
Acyy = cqq — by = —pb cos? 0,57,
Acys = cyg — b = %sin 20,4457,
Acss = cs5 — c8s = —p® cos? 20,67
- % [22° + MP((y")* + 1)]sin 205,
(B-3)

Acgs = cg5 — by = —p” sin? 0y7.
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