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Abstract

filerical solutions of partial differential equations with the temporal evolution

by an integro-differential Volterra, operator with a weakly singular kernel are
ered. Such equations appear in the theory of gas saturated porous media. The
matical model of the medium is taken from a paper of Wilson but the method
Ho many alternative acoustic models of porous media involving singular memory

mtegro-differential equations with singular time convolution operators fre-
ar in problems of wave propagation in porous and viscoacoustic media. Such
blidve some smoothness properties that set them apart. Most often the convolu-
fishave an algebraic singularity for the delay time tending to 0 and the solutions
smooth at the wavefront [15, 16, 18, 12, 13, 17]. From a practical point of
lies that signals propagate with a delay with respect to the wavefront and the
ascerfained by comparing the real travel time of a pulse with its travel time
m high frequency propagation speed.
jimptotic solutions of such equations have been derived elsewhere (8, 11, 9].
tlasses of equations and kernel singularities asymptotic solutions yield explicit
it the delay of the signal generated by a discontinuous signal or by a delta
ied by the source [9, 11]. Besides, the signal shape can be calculated explicitly.
_'" methods based on real rays run into some difficulties at caustics [I_[J]. This can
by a recourse to complex ray tracing [6], which, at least in practical applications,
it the model admits an analytic continuation.
i reason, and for comparison with ray asymptotic solutions, development of
icthods of the finite-difference type for this class of problems is highly desirable.
ieanalysis of the solutions [9, 8, 11] shows the primary importance of the singular
¢ convolution kernels for the build-up of the signal after the passage of the
pwhile the regular part affects the tail and the rate of decay of the signal

fited out in [7], both wavefront and tail aspects of the wavefield can be fairly
jitpresented in terms of generalized fractional derivative and fractional integral
the form A (D + ), with 7> 0and -1 < & < 1. The order of the fractional
fitegral and the coefficient A controls the initial build-up of the signal after the
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passage of the wavefront while the parameter v introduces attenuation of Ig
and controls the tail and the amplitude decay in the course of the propagation
hand it is fairly easy to construct finite-difference operators for the generals
integrals and derivatives.

Mathematical models of wave propagation in poroelastic media consider
enough flexibility to account for the most important observable effects in waves
pulse spreading, its delay with respect to the wavefront, the decay rate of the
decay of the signal at the source. Moreover, various specific equations of i
been derived from physical models of porous media with idealized, complex o
geometries [14, 2, 21, 4, 19]. It is therefore possible to study acoustic wave i
in realistic models of visco-porous media by numerical integration, combiniy
correct attenuation models with complicated geometry and inhomogeneity of

For this presentation we have chosen a purely visco-acoustic model as well &
model of a porous medium suggested by Wilson [20]. Virtually identical mefl
applied to alternative but mathematically similar models of acoustic waves in pa
e.g. [1].

2 Equations of motion
The generalized fractional integral (D + y)™* is defined by the equation [7):

(1) (D +y) R u=e"" 0% [e7* 4]
where
(2) Full] = /Olfr“—l u(t — 7)/T'(a)dr

The Laplace transform of the generalized fractional integral operator (D +v) %4l
is given by the formula

(3) (s +7)"*u(s),

where i(s) denote the Laplace transform of u(t).

Using eq. (3), Wilson’s frequency-domain equations [20] are equivalent to thel
system of fractional PDEs

[ —a
(4) 1+T, (D + i) } divv = pooD?,
Tp
= 1 5
(5) 14Tk (D + —) } v = Kgrad ¢
TK

where ¢ denotes the dilatation.
The two different relaxation mechanisms appearing in the above equations are
viscous relaxation (relaxation time 7 ) and thermal relaxation (relaxation time )

The condition of non-negative dissipation in the high-frequency limit impli

g —Tp > 0. It is however clear that positive values of T', correspond to a nong

relaxation which partly offsets the dissipative effect of I'x > 0. We shall therefores
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iderations to the case 'y > 0,T', < 0. Eqgs (4-5) will be solved for the initial data
i)=0for t <0, 8(0) = 6y, DO(0) = 6.
liilon’s model [20] the values of T', < 0 and 7, are such that in the limit of w — 0
f(w) tends to zero. This feature has little effect on the propagation of a signal
jpical seismic frequency as considered below.
dllovn in [8, 9] for a problem with identical asymptotic properties, the pulse spreads
farrives with a delay with respect to the wavefront. The delay is proportional to ¢2.
int source in a homogeneous medium the speed of the wavefront is constant and
= (Kx/poo)'/2. Consequently, the rate of growth of the diameter of the circle
i the pulse is located varies in time even though the medium is homogeneous.

retized equations

ntegrals can be approximated by a formula which is a direct extension of
Id-Letnikow [5]. From (1) the following FD approximation of the generalized
il integral operator is immediately derived

i ”
(D+ 71_') flnk)=h* ) (-1 ( g ) f"77 exp(=jh/T).

i=1 4

fillie upper limit J = [t/h| (the entire part of ¢/h) because of the assumed initial

[1+T,D9] (e*»’% div v) — pos et/ 7 D20
[1+ Tk D™ (e"'”" v) = Ko e'/™% grad 0
fiting the backward Euler derivatives for D? and eq. (6) for D™* and solving for the

@il nh we have For eqs (4-5) we get

T; J

_r J _
:(1 S b))t | K (g—!?—> —~I'yh® Z(—l)“’. ( —Y ) -zr?'_"r exp(—jh/7K)

j=1

- 2, and

hg i ) B . r
= — wn—] + Fp h& Z( L 1)} ( j)‘ ) wn—l—_? exp(hjh/rp) =1 ggn—l _ 91@—2T
Poo J

J=0
= div v. The last equation must be solved before equations (9). Fourier domain
ifation is applied to the spatial derivatives.

gsults of numerical simulation and discussion

del parameters are chosen as follows: a = 0.5; po, = 2600 kg/m?; phase velocity
fiavefront ¢, = +/ K:)o/,’)gc: = 2000 m/s. The frequency of the transition zone
#li; 7 = 1/vg; Tk = 2,/v. For the visco-acoustic model we assumed I', = 0.
fjoro-acoustic model we additionally set 7, = 7x; T', = —0.28,/7p.
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