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Elastic waves can, in principle, be classified according to their propagation velocity, e.g., through the
values of the slowness or the group velocity surfaces along a given direction. We show that there are
media with the same velocity distribution but drastically different polarization behaviour. Such media
are kinematically identical but dynamically different. Therefore, classification according to wave velocity
alone is not sufficient, and the identification of the wave type should be based on both velocity and the
polarization distribution.
For transversely isotropic symmetry there are at most two and for orthorhombic symmetry at most
four media that have the same velocity distribution. There is always one medium with a polarization
distribution topologically similar to that of isotropy, which is called “normal polarization”. All the other
media are said to possess “anomalous polarization”.
In orthorhombic media there is a different set of four media closely related to the above mentioned set.
The two sets share all velocities in the symmetry planes, but the velocity distribution off the planes is
different in the two sets. All members of this set possess anomalous polarization.
It is shown that anomalous companions also exist in media of monoclinic symmetry, and we find the
corresponding conditions on the elastic constants. The stiffness matrix is that of an orthorhombic “root”
medium with an anomalous companion, but with the symmetry broken through the addition of either
c14 or c25 or c36 (two of the three stiffnesses must vanish, with one of the three stiffnesses c14, c25 or
c36 added).
Note that this analysis does not imply that anomalous media could be found in nature, but only that
they are not forbidden by the laws of physics.

 2009 Elsevier Masson SAS. All rights reserved.

1. Introduction

Slowness (and velocity) and polarization are together closely
related to the “eigensystem” of the Kelvin–Christoffel matrix in
a given direction (Helbig, 1994; Carcione, 2007); thus, they are
closely related. The question arises whether this makes the polar-
ization a simple consequence of the slowness in the sense that the
polarization behavior could be derived uniquely from the slowness
surface alone. In other words, are there distinct stiffness matrices
that give rise to different polarization behavior, but identical prop-
agation behavior from the kinematic point of view?

We show here that there are media with the same phase veloc-
ity or slowness surface that exhibit drastically different polariza-
tion behaviors. Such media are kinematically identical but dynam-
ically different. Therefore, classification of the media according to
velocity (or slowness) alone is not sufficient, and the identification
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of the wave type should be based on both velocity and polariza-
tion.

The slowness and wave surfaces of two members of an anoma-
lous companion pair are identical, but the polarization differs.
Examples of anomalous polarization have been discussed for trans-
verse isotropy by Helbig and Schoenberg (1987), and for or-
thorhombic and monoclinic symmetries by Carcione and Helbig
(2000) and/or Carcione (2007). We extend the latter work by
studying in detail the stability constraints and providing a num-
ber of examples to show the physics in the different cases. We
determine without prior restriction of the symmetry class un-
der what conditions the phenomenon can occur. Since the three
slownesses in a given direction are the square roots of the eigen-
values of the Kelvin–Christoffel matrix, while the polarizations are
the corresponding eigenvectors, the condition for the existence of
anomalous polarization can be formulated as:

Two media with different stiffness matrices are “anoma-
lous companions” if the characteristic equations of their respec-
tive Kelvin–Christoffel matrices Γ and Γ ∗ are identical, i.e., if
det(Γ − λI) =det(Γ ∗ − λI), λ = ρv2p , where vp is the phase ve-
locity, ρ is the density, and I is the 3 × 3 identity matrix.
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The discussion is restricted to media with a distinct qP sheet,
e.g., to media with {c11, c22, c33} > {c44, c55, c66}. A medium with a
distinct qP sheet is called “normally polarized” if – with the con-
tinuous directional sense of the qP polarization vector u – the sign
of the scalar product n̂ · u, where n̂ is the unit propagation vector,
is the same for all n̂. This allows deviations of the polarization be-
tween zero and π/2, but not ! π/2. The anomalous medium has
not restrictions on the polarizations.

We take the discussion beyond the realm of ray geometry by
calculating finite-band wave fields (displayed as snapshots). This is
important since it is not immediately obvious how kinematic and
dynamic features that are derived under the ray-geometric approx-
imation show up in observational data.

2. Conditions for the existence of anomalous polarization

Without loss of generality we assume that the elastic 4th-rank
stiffness tensors (and the corresponding 6 × 6 stiffness matri-
ces) are referred to a natural coordinate system of the media. The
Kelvin–Christoffel dispersion relation is

det(Γ − λI) = λ3 − I1λ2 + I2λ − I3 = 0, (1)

where

I1 = Γ11 + Γ22 + Γ33,

I2 = Γ22Γ33 − Γ 2
23 + Γ11Γ33 − Γ 2

13 + Γ11Γ22 − Γ 2
12,

I3 = Γ11Γ22Γ33 + 2Γ23Γ13Γ12 − Γ11Γ
2
23 − Γ22Γ

2
13 − Γ33Γ

2
12 (2)

are the principal invariants of the Kelvin–Christoffel matrix (Helbig,
1994). Two elastic media with different elasticity tensors are said
to be “anomalous companions” if for each propagation direction
their Kelvin–Christoffel tensors have the same principal invariants.
As we shall see below, one particular class of companions which
restricts the symmetry to monoclinic media is given by the follow-
ing three conditions:

1. The diagonal terms of the Kelvin–Christoffel matrices Γ and
Γ ∗ are identical.

2. The squares of their off-diagonal terms are identical.
3. The products of their three off-diagonal terms are identical.

The second and third conditions can be satisfied simultaneously
if all corresponding off-diagonal terms have the same magnitude,
and precisely two corresponding terms have opposite sign. The
conditions are sufficient but do not exclude that anomalous com-
panions can exist for media of lower symmetry than monoclinic,
such as triclinic media. In fact, the equality of the invariants of two
companions do not necessarily imply the three conditions, which
restrict the media to monoclinic symmetry.

In explicit form, the components of the Kelvin–Christoffel ma-
trix are

Γ11 = c11l21 + c66l22 + c55l23 + 2c56l2l3 + 2c15l3l1 + 2c16l1l2,

Γ22 = c66l21 + c22l22 + c44l23 + 2c24l2l3 + 2c46l3l1 + 2c26l1l2,

Γ33 = c55l21 + c44l22 + c33l23 + 2c34l2l3 + 2c35l3l1 + 2c45l1l2,

Γ12 = c16l21 + c26l22 + c45l23 + (c46 + c25)l2l3

+ (c14 + c56)l3l1 + (c12 + c66)l1l2,

Γ13 = c15l21 + c46l22 + c35l23 + (c45 + c36)l2l3

+ (c13 + c55)l3l1 + (c14 + c56)l1l2,

Γ23 = c56l21 + c24l22 + c34l23 + (c44 + c23)l2l3

+ (c36 + c45)l3l1 + (c25 + c46)l1l2, (3)

where cI J are the elements of the stiffness matrix, and (l1, l2, l3)
are the direction cosines defining the wavevector direction.

Let us consider the three conditions.
1. The diagonal terms of the Kelvin–Christoffel matrices of an

anomalous companion pair are equal for all propagation directions
if they share the following 15 stiffnesses:

c11, c22, c33, c44, c55, c66, c15, c16, c56,

c24, c26, c46, c34, c35 and c45. (4)

Two anomalous companion matrices can thus differ only in

c23, c13, c12, c14, c25 and c36. (5)

The position of these stiffnesses in the stiffness matrix relating the
stress and strain vectors is

c12 c13 c14
c12 c23 c25
c13 c23 c36
c14

c25
c36

2. Two of the three off-diagonal terms of the Kelvin–Christoffel
matrices for an anomalous companion pair must be of equal mag-
nitude but opposite sign for all propagation directions, thus for
these terms all coefficients of the product of direction cosines
must change sign. The off-diagonal terms of the Kelvin–Christoffel
matrix are given by Eqs. (3)4, (3)5 and (3)6. The nine stiffnesses
c15, c16, c24, c26, c34, c35, c45, c46 and c56 are listed in Eq. (4),
as being equal in both terms, thus they can change sign only if
they vanish. The off-diagonal terms of the Kelvin–Christoffel ma-
trix in a pair of companion matrices thus must have the form

Γ23 = (c23 + c44)l2l3 + c36l1l3 + c25l1l2,

Γ13 = c36l2l3 + (c13 + c55)l1l3 + c14l1l2,

Γ12 = c25l2l3 + c14l1l3 + (c12 + c66)l1l2, (6)

and

Γ ∗
23 =

(
c∗
23 + c44

)
l2l3 + c∗

36l1l3 + c∗
25l1l2,

Γ ∗
13 = c∗

36l2l3 +
(
c∗
13 + c55

)
l1l3 + c∗

14l1l2,

Γ ∗
12 = c∗

25l2l3 + c∗
14l1l3 +

(
c∗
12 + c66

)
l1l2, (7)

with

Γ ∗
23 = ±Γ23, Γ ∗

13 = ±Γ13, Γ ∗
12 = ±Γ12. (8)

3. There are eight sign combinations of off-diagonal terms of
the Kelvin–Christoffel matrix, each corresponding to a character-
istic equation (1) with identical coefficients for the terms with
λm , m = 1, . . . ,3. The condition Γ ∗

23Γ
∗
13Γ

∗
12 = Γ23Γ13Γ12 divides

the corresponding eight slowness surfaces into two classes con-
taining each four elements with the same product Γ23Γ13Γ12. The
members of the two classes are identical in the coordinate planes,
but differ outside these planes. Slowness surfaces corresponding to
an odd number of “+” signs in Table 1 are called “normal”. This
table shows the sign combinations for the two sets of four slow-
nesses each. Any two anomalous companion media differ in the
algebraic signs of precisely two off-diagonal terms of the Kelvin–
Christoffel matrix. Inspection of Eqs. (6)–(8) shows that this is
possible only if either all three or precisely two of the three stiff-
nesses {c14, c25, c36} vanish: if two of these stiffnesses would not
vanish, all three off-diagonal terms would be affected and would
have to change sign. The two slowness surfaces would share the
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Table 1
Sign combinations for two sets of four slownesses.

Γ23 + + − − − − + +
Γ13 + − + − − + − +
Γ12 + − − + − + + −

Γ23 Γ13 Γ12 + + + + − − − −

intersections with the coordinate planes, but would not be iden-
tical outside these planes. It follows that anomalous polarization
is possible for any stiffness matrix that can be brought – through
rotation of the coordinate system and/or exchange of subscripts –
into the following form (indicating the symmetry plane in each
case):




c11 c12 c13 c14 0 0
c12 c22 c23 0 c25 0
c13 c23 c33 0 0 c36
c14 0 0 c44 0 0
0 c25 0 0 c55 0
0 0 c36 0 0 c66




, (9)

(i) (x, y)-symmetry plane if c36 $= 0, c14 = c25 = 0.
(ii) (x, z)-symmetry plane if c25 $= 0, c14 = c36 = 0.
(iii) (y, z)-symmetry plane if c14 $= 0, c25 = c36 = 0.

The media defined by these matrices have normal polarization
in the symmetry plane and anomalous polarization in the other
orthogonal planes. Anomalous companion media can have at most
ten non-vanishing elements of the elastic matrix.

The formal conditions for the existence of anomalous compan-
ion pairs were derived without regard to the stability of the cor-
responding media. Only stable media can exist under the laws of
physics. An elastic medium is stable if and only if the strain energy
is positive for each deformation field. This means that all principal
minors of the stiffness matrix must be positive (in this terminol-
ogy, a “minor” is the determinant of the corresponding sub-matrix;
the main diagonal of the sub-matrix corresponding to a “principal
minor” is a non-empty subset of the main diagonal of the matrix)
(Helbig, 1994). This is equivalent with the requirement that the
stiffness matrix must be positive definite (see Carcione, 2007).

3. Orthorhombic media

For orthorhombic media, we obtain the elasticity constants of
the anomalous companions as:

(x, y)-plane

c∗
13 = −(c13 + 2c55),

c∗
23 = −(c23 + 2c44), (10)

(x, z)-plane

c∗
12 = −(c12 + 2c66),

c∗
23 = −(c23 + 2c44), (11)

(y, z)-plane

c∗
12 = −(c12 + 2c66),

c∗
13 = −(c13 + 2c55) (12)

(Carcione, 2007), where we have indicated the symmetry plane
where the polarization is normal.

Only companion pairs where {c23, c13, c12} and {c∗
23, c

∗
13, c

∗
12}

satisfy the stability conditions are meaningful. As mentioned be-
fore, stability imposes that all principal minors of the stiffness
matrix must be positive The leading principal third-order minor

D3 = c11c22c33 + 2c12c23c13 − c11c223 − c22c213 − c33c212 (13)

Fig. 1. An orthorhombic medium is stable if the “diagonal” stiffness components are
positive and if the variables ξ = c23/

√
c22c33, η = c13/

√
c11c33 and ζ = c12/

√
c11c22

satisfy the four inequalities ξ2 < 1, η2 < 1, ζ 2 < 1, and 2ξηζ − ξ2 −η2 − ζ 2 +1 > 0,
i.e., if the point (ξ,η, ζ ) lies inside the stability volume (the “tetrahedral cushion”).

is positive if c23, c13 and c12 satisfy

1+ 2
c23c13c12
c11c22c33

− c223
c22c33

− c213
c11c33

− c212
c11c22

> 0. (14)

On the other hand, the second-order principal minors are positive
if

−√
c22c33 < c23 <

√
c22c33, −√

c11c33 < c13 <
√
c11c33,

−√
c11c22 < c12 <

√
c11c22, −√

c11c44 < c14 <
√
c11c44 (15)

(case (iii) in the discussion of Eq. (9)).
The equality corresponding to the inequality (14) can be re-

garded as a cubic equation in the three variables

ξ = c23√
c22c33

, η = c13√
c11c33

, ζ = c12√
c11c22

;

2ξηζ − ξ2 − η2 − ζ 2 + 1 = 0. (16)

In a ξηζ -system Eq. (16) describes a third-order surface with
four singular points at, respectively, (1,−1,−1), (−1,1,−1),
(−1,−1,1) and (1,1,1). From each of the singular points extends
a “flare” to infinity. The inner part of the cubic surface lies com-
pletely inside the cube defined by the singularities, which is also
the range of validity prescribed by the inequalities (15). An or-
thorhombic medium is stable if the point {ξ,η, ζ } lies inside this
“stability volume”. The stability volume is shown in Fig. 1.

Since c12 (and thus ζ ) remains unchanged, we can restrict the
investigation to the intersection of the stability volume with the
plane ζ = c12/

√
c11c22, e.g., for ζc = 0.7 with the ellipse shown in

Fig. 2. The shear-stiffnesses c44, c55 and c66 are only constrained to
be positive, but since – according to Eq. (10) – they interact with
the off-diagonal stiffnesses, they are normalized in the same way:

Ξ = c44√
c22c33

, H = c55√
c11c33

, Z = c66√
c11c22

. (17)

A sub-region of the stability ellipse containing the points {ξ,η}
that allow the existence of anomalous companion pairs is easily
established: For ξ = ξc (with −1 < ξc < 1) the point {ξ,η} corre-
sponds to a stable medium if it satisfies

ξ2 + η2 − 2ζcξη < 1− ζ 2
c , (18)

i.e., if (for ζc = 0.7) it lies inside the light grey ellipse in Fig. 2.
An anomalous companion medium exists if also the point {ξ∗, η∗}
corresponds to a stable medium. For this, {ξ,η} must satisfy in
addition

(ξ − 2Ξ)2 + (η − 2H)2 − 2ζc(ξ − 2Ξ)(η − 2H) < 1− ζ 2
c , (19)
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Fig. 2. Intersection of the stability volume of the original medium with that of the
anomalous companion medium is shown for the plane ζ = 0.7. The intersection is
non-empty if – and only if – the point (Ξ, H, ζ ) lies within the original stability
volume.

i.e. it must lie in a shifted but similar ellipse. A point that satisfies
both the inequalities (18) and (19) lies in the intersection of the
two ellipses. In the example of Fig. 2, this “anomalous compan-
ion range” is indicated by a darker gray. Anomalous polarization is
possible unless the intersection is empty.

It follows from Fig. 2 that a non-empty intersection of the two
ellipses exists if the point Ξ = {Ξ, H} lies in the “open” ellipse: if
the point would lie on the boundary, the “shifted” ellipse would
move by a diameter in the opposite direction; the two ellipses
would touch, and the intersection would be empty.

From this one can establish a simple rule over which range
of off-diagonal stiffnesses of an orthorhombic medium with given
diagonal stiffnesses anomalous polarization exists. As before we re-
strict the investigation to anomalous polarization in the (x, z)- and
(y, z)-planes. The line {ξ,η} = {Ξ, H} is parallel to the z-axis and
lies completely in the quadrant enclosed by the positive (x, z)- and
(y, z)-planes. If {0,0} < {Ξ, H} < {1,1}, the line intersects the sta-
bility volume. The segment of the line inside the stability volume
corresponds to off-diagonal stiffnesses for which anomalous polar-
ization is possible. By substituting Ξ and H for ξ and η in Eq. (16),
one gets the quadratic equation

ζ 2 − 2ΞHζ − 1+ Ξ2 + H2 = 0, with the solutions

ζ1,2 = ΞH ∓
√
1− Ξ2 − H2 + Ξ2H2. (20)

For any ξc satisfying ξ1 < ξc < ξ2 the anomalous companion range
is non-empty, i.e., a range of companion pairs {ξ,η}, {ξ∗, η∗} exists.

4. Monoclinic media

For monoclinic media, we obtain the elasticity constants of the
anomalous companions as:

(x, y)-symmetry plane:

c∗
36 = −c36,

c∗
13 = −(c13 + 2c55),

c∗
23 = −(c23 + 2c44), (21)

(x, z)-symmetry plane:

c∗
25 = −c25,

c∗
12 = −(c12 + 2c66),

c∗
23 = −(c23 + 2c44), (22)

(y, z)-symmetry plane:

c∗
14 = −c14,

c∗
12 = −(c12 + 2c66),

c∗
13 = −(c13 + 2c55) (23)

(Carcione, 2007).
It is shown in Carcione (2007) that, in the case of an (x, y)-

symmetry plane, the relation between the anomalous and normal
polarizations is simply

u∗ =
(−1 0 0

0 −1 0
0 0 1

)

u. (24)

This means that the polarization direction of two companion me-
dia are everywhere symmetric to a line parallel to – in this case –
the z-axis.

5. Examples

In this section, the theoretical results are further verified by
means of full wave numerical modeling. Firstly, we consider the
examples given by Helbig and Schoenberg (1987) in a plane con-
taining the symmetry axis of a transversely isotropic medium.
Since this is an axis of rotational invariance, a 2-D simulation is
enough to analyze the polarization behavior. On the other hand,
for monoclinic media we use a 3-D modeling technique in order
to analyze the polarization features out of the symmetry planes.

The forward modeling codes are based on the Fourier pseu-
dospectral method for computing the spatial derivatives and
Chebyshev expansions of the evolution operator as the time-
integration technique. The details about the 2-D and 3-D algo-
rithms can be found in Carcione et al. (1992, 1988), respectively.
These algorithms possess spectral accuracy for band-limited signals
and are not affected by temporal or spatial numerical dispersion.

5.1. Transversely isotropic media

In order to simulate a case illustrated by Helbig and Schoen-
berg (1987) in their Figs. 2 and 3 (case 1, transversely isotropic
media with vertical symmetry axis), we adopt their convention for
defining the material properties:

A = c13
c55

+ 1, B = c11
c55

− 1, and C = c33
c55

− 1,

with A = 1.2, B = 2.24 and C = 2.61. The parameters of the
medium with anomalous polarization are the same except for a
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Fig. 3. Normalized ray velocity sections and snapshots for a transversely isotropic medium. Figures (b) and (d) correspond to the anomalous medium.

change of sign for A. The size of the numerical mesh is 225 × 225
grid points, and the motion is initiated by a directional force mak-
ing an angle π/4 with the symmetry axis.

The snapshots are shown in Fig. 3, where only one quadrant
of the 2-D model is represented. Figures (a) and (b) represent the
ray (group) velocity section for normal and anomalous polariza-
tion, respectively, with the “tadpoles” indicating the polarization
directions. Figures (c) and (d) are the respective snaphots with
the segments representing the displacement vector every third grid
point of the mesh. The ray velocities are normalized with respect
to the shear velocity

√
c55/ρ . As predicted by the theory, the z-

axis (the vertical axis in the figure) bisects the angle between the
normal and the anomalous polarizations. In general, the anomaly
is more pronounced around π /4, where the faster wave is trans-
versely polarized and the slower wave is longitudinally polarized.
Moreover, note that the fastest branch of the triplication event has
longitudinal polarization.

For media of at least orthorhombic symmetry and {c11, c22, c33}
> {c44, c55, c66} in their natural coordinate system, the polarization
of the qP wave is parallel or antiparallel to the propagation direc-
tion for propagation along the coordinate axes. The polarization in
a coordinate plane is called normal if the angle δ between propa-

gation direction and the polarization direction is acute everywhere,
i.e., −π/2 < δ < π/2, else it is called anomalous. If under normal
polarization, δ = 0 is chosen at one of the two axes of the coordi-
nate plane, then one has δ = 0 at the other axis. Under anomalous
polarization, one has δ = ±π at the other axis.

In normal polarization media, the scalar product of the prop-
agation vector and the longitudinal polarization vector is always
positive, but for anomalous polarization may range from −1 to 1
for every anomalous quadrant.

5.2. Monoclinic media

We first consider a monoclinic medium having the (y, z)-plane
as symmetry plane. Two of the four polarization distributions cor-
responding to the “normal” slowness surface – with sign combi-
nations on the left-hand side of Table 1 – are shown in Fig. 4.
This figure shows the intersections of the slowness surface with
the three planes of symmetry, and the polarization vector for the
fastest (innermost) sheet. The “zones” of anomalous polarization
are clearly visible in the figure.

The stiffness matrix of the monoclinic medium with normal po-
larization is
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Fig. 4. Intersection of the slowness surfaces of the normally polarized medium (a)
and anomalously polarized medium (b) with the coordinates planes. The normally
polarized medium corresponds to the stiffness matrix (25). The polarization vectors
are indicated. Anomalous polarization occurs in the (x, y)- and (x, z)-planes. The
angle between the qP polarization and the propagation direction goes beyond π/2
in the midrange of the two planes (close to the letter “P”).

C =





c11 c12 c13 c14 0 0
c12 c22 c23 0 0 0
c13 c23 c33 0 0 0
c14 0 0 c44 0 0
0 0 0 0 c55 0
0 0 0 0 0 c66





=





10 2 1.5 0.8 0 0
2 9 1 0 0 0
1.5 1 8 0 0 0
0.8 0 0 3 0 0
0 0 0 0 2 0
0 0 0 0 0 1




(25)

(normalized by ρ× MPa, where ρ is the density in kg/m3). Then,
according to Eq. (23), the companion medium has c∗

12 = −4 GPa,
c∗
13 = −5.5 GPa and c∗

14 = −0.8 GPa. The size of the numerical
mesh is 165 × 165 × 165 grid points, and the motion is initiated
by a directional force making an angle π/4 with the z-axis (the
vertical axis in the plots).

Fig. 5. Intersection of the wave (ray) surfaces of the normally polarized medium (a)
and anomalously polarized medium (b) with the coordinates planes. The normally
polarized medium corresponds to the stiffness matrix (25). The polarization vectors
are indicated. Anomalous polarization occurs in the (x, y)- and (x, z)-planes. The
angle between the qP polarization and the propagation direction goes beyond π/2
in the midrange of the two planes (close to the letter “P”).

Fig. 5 shows the group velocities in three perpendicular Carte-
sian planes, where one of them (i.e., the (y, z)-plane) is the sym-
metry plane. The polarization is indicated on the curves; when it
is not plotted, the particle motion is perpendicular to the respec-
tive plane (cross-plane shear waves). The snapshots corresponding
the numerical simulation are shown in Fig. 6. As can be seen, the
companion medium has anomalous polarization in the (x, y)- and
(x, z)-planes, while the polarizations in the (y, z)-plane are un-
altered. The anomaly is more pronounced about 45◦ where the
polarization of the fastest wave is quasi-transverse and the cusp
lid is essentially longitudinal. Moreover, the cross-plane shear wave
with polarization perpendicular to the symmetry plane can clearly
be seen.

The last example considers a monoclinic medium having the
(x, y)-plane as symmetry plane. The stiffness matrix of the mono-
clinic medium is
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Fig. 6. Snapshots of the displacement vector corresponding to the case shown in
Fig. 5.

C =





c11 c12 c13 0 0 0
c12 c22 c23 0 0 0
c13 c23 c33 0 0 c36
0 0 0 c44 0 0
0 0 0 0 c55 0
0 0 c36 0 0 c66





=





10 2.68 3.1 0 0 0
2.68 8 −3.46 0 0 0
3.1 −3.46 6 0 0 1
0 0 0 2.08 0 0
0 0 0 0 1.55 0
0 0 1 0 0 1




. (26)

Then, according to Eq. (21), the companion medium has c∗
13 =

−6.2 GPa, c∗
23 = −0.7 GPa and c∗

36 = −1 GPa. The respective group
velocities and snapshots are shown in Figs. 7 and 8. The compan-
ion medium should have anomalous polarization in the (y, z)- and
(x, z)-planes, while the polarizations in the (x, y)-plane should not
change. However, note that in (a) the polarization is anomalous
in the (y, z)-plane, and has changed to normal in (b). Conversely,
the polarization in the (x, z)-plane has changed from normal to
anomalous.

Fig. 7. Intersection of the wave (ray) surfaces of the medium defined by the stiff-
ness matrix (26) (a) and that of the companion medium (b) with the coordinates
planes. Polarization vectors are indicated. Note that in (a) the polarization is anoma-
lous in the (y, z)-plane. Anomalous polarizations should occur in the (x, z)- and
(y, z)-planes. However, note that in the (y, z)-plane the polarization has changed
to normal, while in the (x, z)-plane it is now anomalous.

6. Conclusions

A pair of “anomalous companion media” shares the character-
istic surfaces slowness- and wave surface, but the nature of the
polarization differs in precisely two coordinate planes. It follows
that at most four media with identical slowness surfaces form a
set (provided all four are stable), from which at most six anoma-
lous companion pairs can be formed. If the number of coordinate
planes with anomalous polarizations is even (i.e., if the medium
with all polarizations normal is a member of the set), the set is
called the “even”. The corresponding “odd” set consists of (at most)
three media with anomalous polarization in a single coordinate
plane and one medium with anomalous polarization in all three
coordinate planes. The slowness- and wave surfaces of the media
of the odd and even sets have the identical intersections with the
coordinate planes, but are different outside the coordinate planes.
Note that the condition {c11, c22, c33} > {c44, c55, c66} is not neces-
sary for a medium to be stable. For media with {c44, c55, c66} >

{c11, c22, c33} the intersection of the two stability volumes (Fig. 2)
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Fig. 8. Snapshots of the displacement vector corresponding to the case shown in
Fig. 7.

would be empty. If the sets of compressional and shear stiffness
are not disjoint (as is, e.g., possible for wood), single anomalous
companion pairs can exist.

The axis common to the two planes in which the polarization
differs in the two media of an anomalous companion pair bisects
the polarization directions for any propagation direction (not only
in the planes of symmetry).

It is known that anomalous companion media exist in trans-
versely isotropic (Helbig and Schoenberg, 1987) and in orthorhom-
bic media (Carcione and Helbig, 2000) for certain ranges of the
components of the stiffness tensor. We show in this paper that
anomalous companion pairs exist for monoclinic media. The nat-
ural coordinate system for a monoclinic medium is that in which
the stiffness component c45(c46, c56) vanishes. This is always pos-
sible through a simple rotation: if the stiffness matrix of a mono-
clinic medium has c45 $= 0, the rotation about the z-axis by

α = 1
2
arctan

(
2c45

c55 − c44

)

makes c45 vanish. In this coordinate system the monoclinic stiff-
ness matrix of a medium that admits anomalous companions dif-
fers from that of an orthorhombic medium that admits anoma-
lous companions by one added matrix element from the set
{c14, c25, c36}. The added stiffness element must come from a range
proscribed by stability. However, for orthorhombic “root” media
that admit anomalous polarization, this set is always non-empty.
Two examples of such pairs are shown, one from an even set, one
from odd set.

This analysis does not exclude that media with a symmetry less
than monoclinic may have anomalous companion pairs. The con-
ditions for the existence of these media will be investigated in a
future work.
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