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ABSTRACT

Temperature is an important factor for evaluating the
seismic response of deep reservoirs. We have developed an
amplitude-variation-with-offset approximation based on the
Lord-Shulman thermoelasticity theory. The model predicts
two compressional (P and T) waves (the second is a thermal
mode) and a shear (S) wave. The T mode is due to the cou-
pling between the elastic and heat equations. In the thermo-
elastic case, the approximation is more accurate than in the
elastic case. Its accuracy is verified by comparison with the
exact equations calculated in terms of potential functions. We
examine two reservoir models with high temperatures and
compute synthetic seismograms that illustrate the reliability
of the approximation. Moreover, we consider real data to
build a model and find that the approximate equation not only
simplifies the calculations but also is accurate enough and can
be used to evaluate the temperature-dependent elastic proper-
ties, providing a basis for further application of the thermo-
elasticity theory, such as geothermal exploration, thermal-
enhanced oil recovery, and ultradeep oil and gas resources
subject to high temperatures.

INTRODUCTION

Amplitude-variation-with-offset (AVO) analysis is an important
method in seismic exploration, extensively used to estimate the
properties of reservoirs. As petroleum exploration of deep resources
develops, the emphasis is increasingly on high-pressure high-tem-
perature reservoirs. Thermoelasticity, which couples the elastic and
heat equations, can be applied in this situation; specifically, the
theory couples the fields of deformation and temperature. We inves-

tigate the application of AVO including the thermal effects —
absent in the classical theory of elasticity — to the seismic re-
sponse of reservoirs. The effects of the thermal properties on wave
velocity and attenuation characteristics have been investigated by
Hou et al. (2021a).
The conventional coupled theory of thermoelasticity is estab-

lished based on the Fourier law of heat conduction (Biot, 1956a;
Deresiewicz, 1957), leading to discontinuities and infinite velocities
due to a parabolic-type heat equation. Lord and Shulman (1967)
introduce a relaxation term in this equation to overcome this prob-
lem. It can be seen as an analogy to Maxwell’s model of viscoe-
lasticity (Maxwell, 1867; Carcione et al., 2019). Furthermore,
besides the fast P and S waves, the theory predicts an additional
one called the thermal wave (or T wave), whose behavior is similar
to the slow P wave of poroelasticity (Biot, 1956b). The existence of
this wave has been proven by experimental measurements in solid
helium (Ackerman et al., 1966) and sodium fluoride (NaF) crystals
(Jackson et al., 1970; McNelly et al., 1970) and has been simulated
by analytical (Wang et al., 2020b; Wei et al., 2020) and numerical
methods (Carcione et al., 2019; Hou et al., 2021b).
Abbas and Othman (2012) consider a thermoelastic solid half-

space to study the behavior of wave propagation based on the
Lord-Shulman (LS) theory. A generalization of the LS theory with
more relaxation times has been proposed by Green and Lindsay
(1972) (Green-Lindsay [GL] theory). Sinha and Elsibai (1996) and
Zenkour et al. (2013) study the reflection of thermoelastic waves at
a free surface by using the GL theory. Research on reflection and
refraction phenomena at a liquid-solid interface has been performed
by Singh (2000), who compares the LS, GL, and isothermal cases.
The results show that the thermal effects are nonnegligible. More
recently, Sarkar and Mondal (2020) consider a stress-free and
thermally insulated surface analyzed with a modified GL theory.
However, these authors ignore the presence of inhomogeneous
(body) plane waves, thus violating the Snell law. On the other hand,
Sharma (2018) and Wang et al. (2021), by using the theory of
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thermo-poroelasticity, consider the inhomogeneous waves to study
the scattering (reflection and transmission [R/T]) coefficients.
The R/T coefficients provide a basis for AVO in reflection seis-

mology. Their variations with the incidence and azimuth angles
contain valuable information of the subsurface, such as wave veloc-
ities, elastic stiffness, and fluid content. Zoeppritz (1919) derives
analytical expressions for the plane-wave scattering coefficients us-
ing welded boundary conditions at an interface between two elastic
half-spaces. Because the expressions are cumbersome to implement
in AVO, many geophysicists have developed approximations,
namely, Koefoed (1955) and Shuey (1985) propose expressions
in terms of the Poisson ratio and S-wave velocity, respectively
(Bortfeld, 1961; Aki and Richards, 2002).
Viscoelasticity has been introduced in the AVO theory with the

concept of quality factor (e.g., Carcione, 1995, 1997). Shen and
Wang (2013) derive an approximation for viscoelastic media in
which the quality factor and inhomogeneity angle are regarded as
perturbations. For poroelasticity, Chapman et al. (2006) consider
the fluid sensitivity of AVO analysis based on the squirt-flow model,
and the effect of mobility has been further studied (Zhao et al., 2017).
Zong et al. (2012) obtain approximate expressions of the coefficients
focusing on the extraction of the fluid term in porous media. Velocity
dispersion and attenuation are highly sensitive to pressure and tem-
perature (Batzle et al., 2006). In this work, we propose a novel AVO
equation based on the thermoelasticity theory and the linearized Aki-
Richards approximation (Aki and Richards, 2002) as in Zong et al.
(2012). The exact R/T coefficients based on the LS theory are calcu-
lated by considering the generalized Snell law and verified by con-
servation of energy, in which wave inhomogeneity is honored. Then,
we obtain an AVO approximation, including the thermal properties,
verified by the exact coefficients and compute synthetic seismograms
that illustrate the reliability of the approximation. Finally, we consider
a real-data example.

THERMOELASTICITY

LS theory

Lord and Shulman (1967) obtain a hyperbolic heat equation with
a relaxation time τ generalizing Biot (1956a):

βT0 _uj;j þ c _T þ τðcT̈ þ βT0üj;jÞ ¼ γ̄T;jj; (1)

where uj (j ¼ x; y; z) is the components of the displacement field; T
is the increment of temperature above a reference absolute temper-
ature T0 for the state of zero stress and strain; c and γ̄ are the specific
heat of the unit volume in the absence of deformation and the co-
efficient of heat conduction, respectively; the Einstein implicit sum-
mation is used; and a dot above a variable represents time (t)
differentiation. The compressional stiffness per unit temperature
or elastic/heat coupling coefficient is

β ¼ ð3λþ 2μÞᾱ; (2)

where λ and μ are the Lamé constants and ᾱ is the linear coefficient
of thermal expansion.
In isotropic media, the elastic equation with the thermal coupling

term is

ðλþ μÞuj;ji þ μui;jj − βT;i − ρüi ¼ 0; (3)

where ρ is the material density. See Carcione et al. (2019).

Plane-wave analysis

Introducing the Helmholtz decomposition of the scalar potential
ϕ and vector potential ψ n̂ (or ψ), the displacement vector is

u ¼ ∇ϕþ ∇ × ψ n̂: (4)

Following Carcione (2014) and the notations of Wang et al.
(2021), we consider the plane-wave solution:

U ¼ A exp½iðωt − k · xÞ�; (5)

where U ¼ ½T;ϕ;ψ �, A ¼ ½AT; Aϕ; Aψ � is the amplitude vector, x ¼
½x; y; z� is the position vector, k is the complex wavenumber vector,
ω is the angular frequency, and i ¼ ffiffiffiffiffiffi

−1
p

. We have

k ¼ κκ̂ − iαα̂; (6)

where the real and imaginary parts correspond to the real wavenum-
ber and attenuation vectors, respectively, whose directions for the
inhomogeneity angle γ. When κ̂ and α̂ coincide (γ ¼ 0), the waves
are homogeneous. We consider the general inhomogeneous case
and obtain from Appendix A (equation A-2)

�
a0V2

0;−
�
a0 þ V2

0 þ
β2

ρc
T0

�
ω2;ω4

�
·

2
4 k4

k2

1

3
5 ¼ 0; (7)

where

a0 ¼
iωγ̄

cð1þ iτωÞ ; V2
0 ¼

λþ 2μ

ρ
: (8)

This equation can be solved for the square of the wavenumber (k2)
giving two solutions related to the P and T waves. Note that k2 is
independent of γ because it is a material property, but according to
Borcherdt (2009, equations 3.1.20 and 3.1.21) and Carcione (2014,
equation 3.34), κ and α depend on γ.
The phase velocities (V) and attenuation factors (A) of homo-

geneous (subscript H) and inhomogeneous (subscript In) waves
are defined, respectively, as (Borcherdt, 2009; Carcione 2014)

VH ¼
�
Re

�
1

Vc

��
−1
; AH ¼ −ωIm

�
1

Vc

�
; Vc ¼

ω

k
;

VIn ¼
ω

κ
; AIn ¼ α: (9)

Similarly, the phase velocity of the S wave is (Hou et al., 2022)

VS ¼
ffiffiffi
μ

ρ

r
: (10)

Deresiewicz (1957) proposes an alternative attenuation coefficient
L:
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L ¼ 4π
A · V
ω

: (11)

R/T COEFFICIENTS

Zoeppritz equations

We consider a 2D plane interface (z ¼ 0). The boundary condi-
tions at the interface between two thermoelastic media ΩI (z > 0)
and ΩII (z < 0) are the continuity of the normal and tangential dis-
placements and stresses, temperature, and heat flux (e.g., Ignaczak
and Ostoja-Starzewski, 2010):

uIz ¼ uIIz ; uIx ¼ uIIx ; σIzz ¼ σIIzz; σIxz ¼ σIIxz;

TI ¼ TII; γ̄I
∂TI

∂z
¼ γ̄II

∂TII

∂z
; (12)

where the superscripts I and II refer to the incidence and transmis-
sion media, respectively. An inhomogeneous plane wave incident
obliquely in ΩI generates three reflected waves in ΩI (P, T, and
S waves) and three transmitted waves in ΩII.
For an incident P wave, the potential functions are

ϕI ¼ A0 exp½iðωt − p0xþ q0zÞ�

þ
X2
m¼1

ðAm exp½iðωt − pmx − qmzÞ�Þ;

ψ I ¼ A3 exp½iðωt − p3x − q3zÞ�;

ϕII ¼
X5
m¼4

ðAm exp½iðωt − pmxþ qmzÞ�Þ;

ψ II ¼ A6 exp½iðωt − p6xþ q6zÞ�; (13)

where the subscript 0 refers to the incident wave; the reflected P, T,
and S waves have subscripts 1, 2, and 3, respectively; and the trans-
mitted P, T, and S waves have subscripts 4, 5, and 6, respectively,
which also identify other properties, e.g., wavenumbers, R/T coef-
ficients, and phase angles.
For an incident S wave, we have

ϕI¼
X2
m¼1

ðAm exp½iðωt−pmx−qmzÞ�Þ;

ψ I¼A0 exp½iðωt−p0xþq0zÞ�þA3 exp½iðωt−p3x−q3zÞ�;
(14)

(the potential functions of the transmitted waves inΩII are similar to
those of the incident P wave). In these equations, pm are the hori-
zontal wavenumbers given by Wang et al. (2020a, 2021):

p0 ¼ pm ¼ jκ0j sin θ0 − ijα0j sinðθ0 − γ0Þ; m ¼ 1; 2 : : : 6;

(15)

where jκ0j and jα0j are the magnitudes of the incident wave propa-
gation and attenuation vectors in equation 6, respectively; θ is the an-
gle between the interface normal and the direction of propagation; and
γ is the angle between the directions of propagation (κ̂) and attenu-
ation (α̂) shown in Figure 1. The vertical wavenumbers qm can be
obtained as

qm¼dRmþ idIm; dm¼PV

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2m−p2

m

q
; m¼0;1:::6; (16)

where PV takes the principal value of the complex quantity dm,
whose real and imaginary parts are denoted by dRm and dIm, respec-
tively.
Substituting the potential functions 13 or 14 into equations 1 and

3 and considering the boundary conditions (equation 12), we obtain
the Zoeppritz equations of the thermoelasticity theory:

B · R ¼ D; (17)

where matrices B and D are given in Appendix B for an incident P
wave and the components of the amplitude ratio R (a 6 × 1 matrix)
are

Rm1 ¼ RR
m ¼ Am

A0

;

Cm1 ¼ CR
m ¼ RR

m
km
k0

¼ jCR
mj expðiϑmÞ; m ¼ 1; 2; 3;

Rn1 ¼ RT
n ¼ An

A0

;

Cn1 ¼ CT
n ¼ RT

n
kn
k0

¼ jCT
n j expðiϑnÞ; n ¼ 4; 5; 6; (18)

where the meaning of subscriptsm and n is similar to those of equa-
tion 13; C represents the 6 × 1 matrix of R/T coefficients defined by
R; the superscripts R and T refer to reflection and transmission,
respectively; jCR

mjðjCT
n jÞ represents the magnitude of the complex

quantity CR
mðCT

nÞ; and ϑmðϑnÞ represents the corresponding phase
angles.

AVO approximation

Under the assumption that only small relative changes in elastic
properties occur across the interface of two welded solid half-
spaces, the P- and S-wave R/T coefficients in terms of the pertur-
bations of the velocities and density (ΔVS and Δρ) are

Figure 1. Inhomogeneous thermoelastic plane wave. The propaga-
tion angle θ and inhomogeneity angle γ.
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ðRPPÞH ¼
�
1

2
− 2 sin2 θ

�
VS

VH

�
2
�
Δρ
ρ

þ 1

cos2 θ

ReðkIÞ − ReðkIIÞ
ReðkIÞ þ ReðkIIÞ − 4 sin2 θ

�
VS

VH

�
2 ΔVS

VS

;

ðRPPÞIn ¼
�
1

2
− 2 sin2 θ

�
VS

VIn

�
2
�
Δρ
ρ

þ 1

cos2 θ

κI − κII

κI þ κII
− 4 sin2 θ

�
VS

VIn

�
2 ΔVS

VS

;

ðTPPÞH ¼ 1 −
1

2

Δρ
ρ

þ
�

1

2 cos2 θ
− 1

�
ReðkIÞ − ReðkIIÞ
ReðkIÞ þ ReðkIIÞ ;

ðTPPÞIn ¼ 1 −
1

2

Δρ
ρ

þ
�

1

2 cos2 θ
− 1

�
κI − κII

κI þ κII
;

ðRPSÞH ¼ sin θ

2 cos jH

�
ð1 − VrsHÞ

Δρ
ρ

− 2VrsH

ΔVS

VS

�
;

ðRPSÞIn ¼
sin θ

2 cos jIn

�
ð1 − VrsInÞ

Δρ
ρ

− 2VrsIn

ΔVS

VS

�
;

ðTPSÞH ¼ sin θ

2 cos jH

�
ð1 − V tsHÞ

Δρ
ρ

− 2V tsH

ΔVS

VS

�
;

ðTPSÞIn ¼
sin θ

2 cos jIn

�
ð1 − V tsInÞ

Δρ
ρ

− 2V tsIn

ΔVS

VS

�
: (19)

The perturbations using equations 9, 10, and 19 can be written as

Δρ
ρ

¼ 2ðρII − ρIÞ
ðρI þ ρIIÞ ;

ΔVS

VS

¼ 2ðVII
S − VI

SÞ
ðVI

S þ VII
S Þ

;

cos jH ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

�
VS

VH

�
2

sin2 θ

s
;

cos jIn ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

�
VS

VIn

�
2

sin2 θ

s
;

VrsH ¼ 2 sin2 θ

�
VS

VH

�
2

− 2 cos θ cos jH
VS

VH

;

VrsIn ¼ 2sin2θ

�
VS

VIn

�
2

− 2 cos θ cos jIn
VS

VIn

;

V tsH ¼ 2sin2θ

�
VS

VH

�
2

þ 2 cos θ cos jH
VS

VH

;

V tsIn ¼ 2sin2θ

�
VS

VIn

�
2

þ 2 cos θ cos jIn
VS

VIn

: (20)

Energy-flow balance

Across a welded interface, the normal component of the time-aver-
aged energy flux is continuous. It is the consequence of imposing the
continuity of normal stress and displacement (velocity). Following
Carcione (2014) and Wang et al. (2020a, 2021), we obtain the aver-
aged energy intensity:

hEi ¼ 1

2
Reðσzz · V�

z þ σxz · V�
xÞ; (21)

where Vx and Vz are particle-velocity components and the super-
script “*” denotes complex conjugate. The energy partition in the
incidence medium associated with the four waves is

hEIi ¼ 1

2
Ref½χ�I · ½ι��Ig; (22)

where

½χm1�I ¼ σmzz; ½χm2�I ¼ σmxz;

½ι2m�I ¼ Vm
x ; m ¼ ð0; 1; 2; 3Þ; (23)

where the square matrix of order four (Emn, m; n ¼ 0; 1; 2; 3) is in-
troduced to describe the energy fluxes and the diagonal entries cor-
responding to the incident (EI

00), reflected P (EI
11), T (EI

22), and S
(EI

33) waves, respectively, whose interactions are represented by
the off-diagonal elements.
Moreover, it can be shown that the energy flux in the transmis-

sion medium is

hEIIi ¼ 1

2
Ref½χ�II · ½ι��IIg: (24)

The expressions of ½χ�II and ½ι�II are analogous to those of equa-
tion 23, where herem ¼ 4; 5; 6. Matrix hEIIi is of third order related
to the three waves in medium ΩII: EII

44, E
II
55, and E

II
66 associated with

the transmitted P, T, and S waves, respectively.
Energy ratios (ERs) can be obtained as the energy flux divided by

EI
00:

ERsum ¼
�X3
m¼1

�hEI
m0i

hEI
00i

þ hEI
0mi

hEI
00i

þ
X3
n¼1

hEI
mni

hEI
00i

��

−
�X6
m¼4

X6
n¼4

hEII
mni

hEI
00i

�
¼ −1; (25)

and the interference energy ratio ðERinÞ is the sum of the interactions
between the incident wave and the reflected waves (ERI

r) and the inter-
actions among the transmitted waves (ERII

t ):

ERin ¼ ERI
r þ ERII

t ; (26)

where

ERI
r ¼

X3
m¼0

�X3
n¼0

hEI
mni

hEI
00i

−
hEI

mmi
hEI

00i
�
;

ERII
t ¼

X6
m¼4

�X6
n¼4

hEII
mni

hEI
00i

−
hEII

mmi
hEI

00i
�
: (27)

EXAMPLES

We consider the thermoelastic material properties given in Ta-
ble 1, which are taken from Schon (2011). These values yield
the relaxation time (τ), according to Carcione et al. (2019):

τI ¼ γ̄I

cIðVI
0Þ2

¼ 0.23 ns;

τII ¼ γ̄II

cIIðVII
0 Þ2

¼ 0.21 ns: (28)
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Attenuation is caused by the thermal effects, implying complex
wavenumbers, which depend on the inhomogeneity angle γ. Figure 2
shows the phase velocities and attenuation coefficients of the P and T
waves as a function of frequency in the incidence (I) and transmission
(II) media where γ0 ¼ 0°, 40°, and 80° are assumed. As can be seen,
increasing γ0 the dispersion increases at high frequencies because
the imaginary part of k in equation 7 is significant, also increasing
the attenuation of the P wave (Figure 2b), according to the Kramers-
Kronig relations (e.g., Carcione, 2014). The P-wave attenuation peak
is approximately located at the relaxation frequency (1=ð2πτÞ). At
low frequencies, the phase velocity of the T wave is almost zero
and the attenuation is high, indicating a diffusive behavior (Figure 2c
and 2d). The effect of γ0 can be ignored at seismic frequencies. On
the other hand, the velocity and attenuation of the S waves are not
affected by the thermal effects (equation 10). These consequences
are true for homogeneous media, whereas in inhomogeneous media,
the thermal effects may have an effect at seismic frequencies on all of
the waves (e.g., Carcione et al., 2020, 2021), as shown next when we
analyze the S-wave scattering coefficients.
To verify the accuracy of our approximation to the Zoeppritz equa-

tions, we compute the conservation of energy from equation 25, as in
Wang et al. (2020a, Figure 7) and Wang et al. (2021, Figure 8). Next,
we compare the theories of elasticity and thermoelasticity to illustrate
the effects induced by the thermal properties and test the approxima-
tion. Figure 3a and 3b shows the P-wave R/T coefficients for an in-
cident P wave with a frequency of 75 Hz, respectively. The P-wave
phase velocities in the upper and lower media are 4219 m/s and
4263 m/s, respectively, according to equation 9 and Figure 2a. We ob-
serve that the elastic approximation is close to the exact solution until
70°. A Brewster angle (θB) is defined as the incidence angle for which
RPP ¼ 0 can be seen (Pujol, 2003; Carcione, 2014) (see Figure 3a).
Using the first equation of equation 19, we obtain the approximations:

ξsin4θB−
�
ξþΔρ

ρ

�
sin2θBþ

Δρ
ρ
þΔVP

VP

¼0;

(29)

where�
ΔVP

VP

�
H

¼ 2ðVII
H − VI

HÞ
ðVI

H þ VII
HÞ

;

�
ΔVP

VP

�
In

¼ 2ðκI − κIIÞ
ðκI þ κIIÞ ;

ξ ¼ 4

�
VS

VP

�
2 Δρ
ρ

þ 8

�
VS

VP

�
2 ΔVS

VS

; (30)

and the Brewster angle is

sin2 θB ¼ 1

2ξ

��
ξþ Δρ

ρ

�

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
ξþ Δρ

ρ

�
2

− 4ξ

�
Δρ
ρ

þ ΔVP

VP

�s �
:

(31)

Angle θB is 23.06° and 71.14° in the elastic case
and 17.90° and 79.33° in the thermoelastic case.

From equations 17 and 18, the exact θB is 23.61° and 68.65° in the
elastic case (Aki and Richards, 2002, equation 5.401) and 18.47° in the
thermoelastic case, as shown in Figure 3a. Compared with gradient,
due to the existence of thermal waves, the influences of thermoelastic
theory on fast P wave intercept are more significant. Figure 4 com-
pares the elastic and thermoelastic S-wave R/T coefficients with the
new approximation. The P-wave coefficients are shown in Figure 5, in
which the velocities and densities are those of Pilant (1979, Figure 12-
3) (the critical angle is 39.70°), whose exact and approximate coeffi-
cients further illustrate the applicability of equation 19.
Figure 6 shows synthetic common-shot gathers (Figure 6a and 6b),

and the respective traveltimes (Figure 6c) based on the elastic (the
solid line) and thermoelastic (the dashed line) approximate equations.
The synthetic seismogram is computed in the time-angle domain as a
convolution between the approximate equation and a Ricker wavelet
(Bourbie and Gonzalez-Serrano, 1983), whose main frequencies are
75 Hz (Figure 6a) and 25 Hz (Figure 6b). The distance between the
interface and the receivers is 100 m. The amplitude variations and
arrival times of the reflection events are useful to provide information
about the in-situ rock properties. The amplitudes corresponding to the

Table 1. Medium properties.

Absolute temperature (K) TI
0 ¼ 330 TII

0 ¼ 350

Density (kg/m3) ρI ¼ 2425 ρII ¼ 2475

Velocity ð ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðλþ 2μÞ=ρp Þ ðm=sÞ VI
0 ¼ 3757 VII

0 ¼ 3898

Velocity ð ffiffiffiffiffiffiffiffi
μ=ρ

p Þ ðm=sÞ VI
S ¼ 2390 VII

S ¼ 2666

Specific heat (kJ/(kg · K)) cI ¼ 0.9 cII ¼ 0.92

Thermal conductivity (W/(m · K)) γ̄I ¼ 2.9 γ̄II ¼ 3.0

Coefficient of thermal
expansion (×10−6 K−1)

ᾱI ¼ 3.3 ᾱII ¼ 3.28

a) b)

c) d)

Figure 2. Phase velocities of the fast (a) P and (c) Twaves as a function of frequency for
the homogeneous (γ0 ¼ 0°) and inhomogeneous (γ0 ¼ 40° and 80°) cases and (b and
d) corresponding attenuation coefficients. The superscripts I and II of γ0 correspond
to the upper and lower media, respectively (ΩI and ΩII).
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elastic model are higher at small angles, but there
is a phase change beyond θB. Deeper reservoirs
correspond to lower frequencies. As the angle in-
creases, the amplitudes first increase and then de-
crease, but due to the low attenuation of the
seismic frequencies (Figure 2), the change is
not significant. Frequency is more sensitive to
pores and their filling material (Wu et al., 2015;
Zhao et al., 2015), but the theory is based on elas-
tic solids without pores, so it has little effect on the
attenuation of fast longitudinal waves. The travel-
times corresponding to the thermoelastic model
are smaller due to the thermal effects. Comparing
Figure 6a and 6b, it can be seen that the low-fre-
quency wave packet is significantly wider than the
high-frequency counterpart, whereas frequency
has little effect on the arrival times in the thermo-
elastic case. Therefore, the arrival time related to
the phase velocity indicates that the thermal ef-
fects play a significant role, as shown in Figure 6c.
To analyze how temperature affects the ampli-

tudes, let us consider two other models in which
the transmission medium has a higher temperature
(400 K and 450 K) and the thermal properties are
given in Table 2 (Schon, 2011). Figure 7 compares
the coefficients, showing that the magnitude ofRPP

decreases with T0, whereas that of TPP increases,
taking the reflected and transmitted P waves as a
reference. Higher T0 implies lower velocity, thus
reducing the impedance contrast. This implies that
more energy is transmitted and less is reflected.
For small angles, a better accuracy of the approxi-
mate equation can be obtained with a higher T0.
However, there are differences at larger angles.
The corresponding synthetic seismogram shown
in Figure 8 is consistent with the preceding de-
scriptions. We apply the proposed thermoelastic
AVO modeling to field data from the Shuntuo-
guole uplift of the Tarim Basin (S area) in North-
west China (Wei et al., 2021). Figure 9a shows a
seismic imaging profile in which the target reser-
voir with the temperature more than 410 K is
marked by a dashed red line at common-depth
point (CDP) 1020. The corresponding prestack

a) b)

Figure 3. Comparison between the (a) reflection and (b) transmission coefficients of the
P wave obtained with the exact and approximate solutions at 75 Hz.

a) b)

Figure 4. Comparison between the (a) reflection and (b) transmission coefficients of the
S wave obtained with the exact and approximate solutions at 75 Hz.

a) b)

Figure 5. The exact and approximate results of the (a) reflection and (b) transmission
coefficients with an incident P wave based on Pilant (1979, Figure 12-3) parameters.

Figure 6. Synthetic seismograms of (a) 75 Hz and (b) 25 Hz and (c) traveltimes corresponding to the elastic (solid black lines) and thermo-
elastic approximations (dotted red lines).
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angular gather (migrated) is shown in Figure 9b, in which the target
reservoir is indicated by a box. We extract the average values of V0,
VS, ρ, λ, and μ from the reservoir interval of logging data, which are
4489 m/s, 2494 m/s, 2510 kg/m3, 12 GPa, and 19 GPa, respectively.
The reservoir rocks are mainly limestones with high calcite contents
and a small amount of dolomite. Based on the corresponding thermal
properties (Schon, 2011) of the rocks at the logging temperature, we
obtain γ̄ = 2.31 W/(m · K), c = 920 J/(kg · K), and ᾱ = 3.3 × 10−6 K
−1. Likewise, we obtain the average values as the upper layer param-
eters, which are 4331 m/s, 2406 m/s, 2467 kg/m3, 11 GPa, 17.7 GPa,
2.3 W/(m · K), 919.8 J/(kg · K), and 3.3 × 10−6 K−1, respectively. It
should be stressed that the thermoelastic AVO theory presented in
this study is limited to solid media, implying that temperature only

Table 2. High-temperature medium properties.

ðTII
0 Þ1 ¼ 400 K ðTII

0 Þ2 ¼ 450 K

ðρIIÞ1 ¼ 2465 kg=m3 ðρIIÞ2 ¼ 2455 kg=m3

ðVII
0 Þ1 ¼ 3858 m=s ðVII

0 Þ2 ¼ 3800 m=s

ðVII
S Þ1 ¼ 2600 m=s ðVII

S Þ2 ¼ 2530 m=s

ðcIIÞ1 ¼ 0.96 kJ=ðkg · KÞ ðcIIÞ2 ¼ 0.98 kJ=ðkg · KÞ
ðγ̄IIÞ1 ¼ 3.2W=ðm · KÞ ðγ̄IIÞ2 ¼ 3.3 W=ðm · KÞ
ðᾱIIÞ1 ¼ 3.25 × 10−6 K−1 ðᾱIIÞ2 ¼ 3.23 × 10−6 K−1

Figure 9. (a) A seismic imaging profile from the S
area in Northwest China, where the target reservoir
with the temperature more than 410 K is marked
by a dashed red line at CDP 1020. (b) The corre-
sponding prestack angular gather (migrated) with
the target reservoir is indicated by a box.

Figure 8. Synthetic seismograms for different abso-
lute temperatures of the lower (transmission)
medium.

a) b) Figure 7. (a) Reflection and (b) transmission co-
efficients of the P wave obtained with the AVO
approximation at 75 Hz with different absolute
temperatures of the lower (transmission) medium.
The medium properties are shown in Table 2.
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affects velocity instead of attenuation. Therefore, we focus on the
comparison in traveltime between the realistic and synthetic gath-
ers. Figure 10a shows the synthetic angular gather (unmigrated)
based on the traditional elastic AVO (black wiggles) and thermo-
elastic AVO (red wiggles), respectively. We see that the thermoelas-
tic AVO synthetic gather yields more accurate traveltimes at small
angles in terms of Figure 10a. To further demonstrate the traveltime
difference between elastic and thermoelastic AVO synthetic gathers,
we pick up the angle-dependent traveltimes of these gathers and
compare with the actual traveltime from Figure 9b. As shown in
Figure 10b, the elastic AVO shows a relatively large error from
the actual traveltime, whereas the time difference at large angles
between the thermoelastic AVO synthetic and actual angular gathers
is due to the fact that the latter available to us is migrated, as shown
in Figure 9b. The proposed thermoelastic AVO is confined to solid
media, in which the effect of porosities and associated fluids are not
considered. Considering the sensitivity of pore fluids to tempera-
ture, it is necessary to extend the thermoelastic AVO to poroelastic
media for practical applications.

CONCLUSION

We analyze AVO based on the thermoelastic approximation for an
interface separating two thermoelastic media for an incident P wave,
based on the LS theory. The scattering coefficients are computed by
taking into account the presence of inhomogeneous plane waves and
six boundary conditions (generalized Snell law) and verified with the
conservation of energy. Then, we compute synthetic seismograms and
arrival times corresponding to the thermoelasticity and elasticity mod-
els for a specific case.We observe a phase reversal at a Brewster angle,
stronger in the thermoelastic case. We also consider two models with
higher absolute temperatures at the transmission medium, showing
that the scattering coefficients are affected by this temperature. Data
taken from a real CDP gather serve to build a model and verify the
accuracy of the AVO approximation considering the thermal effects.

ACKNOWLEDGMENTS

The research is supported by the National Natural Science Foun-
dation of China (grant no. 41821002), 111 project “Deep-Superdeep
Oil & Gas Geophysical Exploration” (B18055), and Innovation fund
project for a graduate student of China University of Petroleum

(East China), supported by “the Fundamental
Research Funds for the Central Universities”
(22CX04017A).

DATA AND MATERIALS
AVAILABILITY

Data associated with this research are available
and can be obtained by contacting the corre-
sponding author.

APPENDIX A

CALCULATION FOR COMPLEX
WAVENUMBER

Substituting the Helmholtz decomposition
(equation 4) into thermoelasticity equations 1
and 3, we obtain

ðλþ 2μÞ∇2ϕ − βT ¼ ρϕ̈;

βT0ð∇2ϕ̇þ τ∇2ϕ̈Þ ¼ γ̄∇2T − cðṪ þ τT̈Þ;
μ∇2ψ − ρψ̈ ¼ 0; (A-1)

where∇2 is the Laplacian operator. Using the plane waves and com-
plex wavenumber vector (equations 5 and 6), the equation is

M·A¼
�

β k2ðλþ2μÞ−ρω2

γ̄k2þωcði−τωÞ k2βT0ωðτω−iÞ
��

AT

Aϕ

�
¼0; (A-2)

where the determinant of M is zero to obtain the complex wave-
number.

APPENDIX B

EXPRESSIONS FOR MATRICES B AND D

The elements of matrix B are given by

B11¼p0; B12¼p0; B13¼−q3; B14¼−p0; B15¼−p0; B16¼−q6;

B21¼q0; B22¼q2; B23¼p0; B24¼q4; B25¼q5; B26¼−p0;

B31¼ρIω2−2μIp2
0; B32¼ρIω2−2μIp2

0; B33¼2μIp3q3; B34¼−ðρIIω2−2μIIp2
4Þ;

B35¼−ðρIIω2−2μIIp2
5Þ; B36¼2μIIp6q6;

B41¼2p0q0; B42¼2p2q2; B43¼−ðq23−p2
3Þ; B44¼2

μII

μI
p4q4;

B45¼2
μII

μI
p5q5; B46¼

μII

μI
ðq26−p2

6Þ;

B51¼q0½ðλIþ2μIÞðp2
0þq20Þ−ρIω2�; B52¼q2½ðλIþ2μIÞðp2

2þq22Þ−ρIω2�;

B53¼0;B54¼
γ̄IIβI

γ̄IβII
q4½ðλIIþ2μIIÞðp2

4þq24Þ−ρIIω2�;

B55¼
γ̄IIβI

γ̄IβII
q5½ðλIIþ2μIIÞðp2

5þq25Þ−ρIIω2�; B56¼0;

B61¼ðλIþ2μIÞðp2
0þq20Þ−ρIω2; B62¼ðλIþ2μIÞðp2

2þq22Þ−ρIω2;

B63¼0;B64¼−
βI

βII
½ðλIIþ2μIIÞðp2

4þq24Þ−ρIIω2�;

B65¼−
βI

βII
½ðλIIþ2μIIÞðp2

5þq25Þ−ρIIω2�; B66¼0: (B-1)

Figure 10. (a) Synthetic angular gather (unmigrated) based on the traditional elastic AVO
(black wiggles) and thermoelastic AVO (red wiggles), respectively. The synthetic seismo-
grams are drawn together in an angular gather for the sake of comparison. (b) Comparison
of angle-dependent traveltimes among the elastic AVO (the solid black line), thermoelastic
AVO (the dashed red line), and realistic angular gather (the dotted blue line). The reason
for the time difference at large angles between the dotted blue and dashed red lines is that
the realistic angular gather shown in Figure 9b is migrated.
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Matrix D has the components:

D17 ¼ −p0;

D27 ¼ q0;

D37 ¼ −ðρIω2 − 2μIp2
0Þ;

D47 ¼ 2p0q0;

D57 ¼ q0½ðλI þ 2μIÞðp2
0 þ q20Þ − ρIω2�;

D67 ¼ −½ðλI þ 2μIÞðp2
0 þ q20Þ − ρIω2�: (B-2)
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