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Abstract
We study the reflection and transmission (R/T) characteristics of inhomogeneous plane 
waves at the interface between two dissimilar fluid-saturated thermoporoelastic media at 
arbitrary incidence angles. The R/T behaviors are formulated based on the classic Lord–
Shulman (LS) and Green–Lindsay (GL) heat-transfer models as well as a generalized LS 
model, respectively. The latter results from different values of the Maxwell-Vernotte-Cat-
taneo relaxation times. These thermoporoelastic models can predict three inhomogeneous 
longitudinal (P1, P2, and T) waves and one shear (S) wave. We first compare the LS and 
GL models for the phase velocities and attenuation coefficients of plane waves, where the 
homogeneous wave has a higher velocity but weaker thermal attenuation than the inhomo-
geneous wave. Considering the oil–water contact, we investigate R/T coefficients associ-
ated with phase angles and energy ratios, which are formulated in terms of incidence and 
inhomogeneity angles, with the latter having a significant effect on the interference energy. 
The proposed thermoporoelastic R/T model predicts different energy partitions between the 
P and S modes, especially at the critical angle and near grazing incidence. We observe the 
anomalous behavior for an incident P wave with the inhomogeneity angle near the graz-
ing incidence. The energy partition at the critical angle is mainly controlled by relaxation 
times and boundary conditions. Beyond the critical angle, the energy flux predicted by the 
Biot poroelastic and LS models vanishes vertically, becoming the opposite for the GL and 
generalized LS models. The resulting energy flux shows a good agreement with the R/T 
coefficients, and they are well proven by the conservation of energy, where the results are 
valuable for the exploration of thermal reservoirs.
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Article Highlights

• We study the characteristics of an inhomogeneous plane wave incident on the interface 
separated by two dissimilar fluid-saturated thermoporoelastic media at arbitrary inci-
dence angle

• We compare the phase velocities and attenuation coefficients of plane waves for the 
Lord-Shulman (LS) and Green-Lindsay (GL) models, which depend on the inhomoge-
neity of the waves

• The influence of theory, inhomogeneity angle and the type of incident wave are consid-
ered in the numerical analysis

  

1 Introduction

The study of reflection and transmission of plane elastic waves at an interface separating 
two thermoelastic fluid-saturated porous media has practical significance in engineer-
ing structures, geothermal, and exploration geophysics (e.g, Deresiewicz 1960; Fu 2012; 
Abouelregal and Marin 2020). In geophysical prospecting, the effect of temperature on the 
petrophysical properties of reservoirs is crucial for hydrocarbon production (Fu 2017). The 
poroelastic R/T theory has been extensively explored (e.g., Santos et  al. 1992; Gurevich 
et al. 2004; Carcione and Tinivella 2000; Sharma and Kumar 2011; Corredor et al. 2014; 
Markov et al. 2019), and extended to double-porosity media (Ba et al. 2011) to account for 
the effect of local fluid flow (Guo and Gurevich 2020). In this study, we further extend the 
poroelastic R/T model to thermoelastic media.

Thermoelasticity extends the classical elastic theory by coupling the deformation and 
temperature. From the mathematical and essential point of view, it is analogous to the mode 
of poroelasticity (Biot 1956; Deresiewicz 1957), but has an unphysical solution with infi-
nite velocities as a function of frequency because of the classical parabolic-type equation 
of heat conduction. The unphysical behavior can be avoided by introducing a relaxation 
time into the heat equation, yielding a hyperbolic-heat-transfer differential equation (Lord 
and Shulman 1967). The Lord–Shulman (LS) thermoelasticity has been applied to numeri-
cal simulations to investigate the effect of thermophysical properties on wave propagation 
in nonporous media (Carcione et al. 2019a; Wang et al. 2020b; Hou et al. 2021), predict-
ing a classical P wave, a slow P diffusive wave (T mode), and an S wave, where the exist-
ence of the T wave has been observed in experimentally in solid helium (Ackerman et al. 
1966), NaF crystals (McNelly et al. 1970; Jackson et al. 1970) and graphite (Humberman 
et al. 2019). Green and Lindsay (1972) (Green–Lindsay or GL theory) propose an alterna-
tive generalization by using two relaxation times, considering the influence of tempera-
ture gradients. A comprehensive review identifies existing mistakes and flaws in previous 
studies about the thermoelastic R/T of plane elastic waves, especially on inhomogeneous 
plane waves in thermoelastic media. Based on the thermoelastic R/T for wave propagation 
in multilayered media (Hou et al. 2022a), Hou et al. (2023) develop a thermoelastic AVO 
method for seismic exploration of superdeep high-temperature oil/gas resources.

The LS thermoelasticity has been extended to porous media by incorporating Biot 
poroelasticity to describe wave dissipation due to fluid and heat flow (e.g., Noda 1990; 
Nield and Bejan 2006; Sharma 2008). The LS thermoporoelasticity theory can predict 
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the presence of both Biot and thermal slow P waves, besides the classical P and S waves. 
Numerical simulations by the Fourier pseudospectral method (Carcione et al. 2019a) show 
that the conversion between the Biot to thermal modes leads to mesoscopic energy attenu-
ation. Wei et al. (2020) develop a frequency-domain Green’s function as a displacement-
temperature solution of LS thermoporoelasticity to investigate the effect of fluid viscos-
ity and thermophysical properties. Based on the Biot-Rayleigh double-porosity theory (Ba 
et al. 2011), Li et al. (2022) extend the LS thermoporoelasticity to the case of double poros-
ity by taking into account both the local heat/fluid flows in two types of pores. The double-
porosity thermoporoelasticity theory can be used to develop a coupled THM thermoelastic 
model (Li et al. 2023) for the cyclic recovery of fractured-vuggy thermal reservoirs. Zhang 
et al. (2022) analyze the significance of thermal radiation on the hybrid nanofluid based 
on the generalized thermoelasticity model. For the R/T phenomena of thermoporoelastic 
waves we concern mostly, Wei et  al. (2016) formulate an R/T model of lossless P-wave 
incidence at the interface between thermoelastic and thermoporoelastic media. Sharma 
(2018) addresses a similar problem but considers an inhomogeneous incident wave. The 
effects of the thermal parameters on dispersion (Zhou et al. 2019) and R/T amplitudes (Liu 
et al. 2021) are discussed for homogeneous plane waves in unsaturated thermoporoelastic 
media. Wang et al. (2021) and Liu et al. (2022) study the reflection of plane waves at the 
free surface of thermoporoelastic media. The former compares the LS, GL, and generalized 
LS models for the phase velocity and attenuation of inhomogeneous plane waves, while the 
latter focuses on the influence of thermophysical parameters on homogeneous behavior in 
unsaturated media.

In this study, we follow Wang et al. (2021) to analyze the R/T coefficients of inhomoge-
neous plane waves at the interface between two dissimilar fluid-saturated thermoporoelastic 
media. Based on the generalized Snell law for temperature and heat flux continuities across 
the interface, we formulate the R/T coefficients of inhomogeneous plane waves using the 
LS, GL, and generalized LS thermoporoelastic models, respectively. The propagation and 
attenuation directions do not coincide due to wave inhomogeneity. We investigate the effect 
of incidence angle, inhomogeneity angle, and type of incident wave on the velocity and 
attenuation. We discuss the effect of relaxation times on the thermoporoelastic attenuation 
by comparing with the classical Biot theory and generalized LS model.

2  Thermoporoelasticity

2.1  Governing Equations

Considering a thermally homogeneous porous solid saturated with a viscous compressible 
fluid, implying the whole aggregate assumes isotropic. The grain of solid is characterized by 
its bulk modulus by Ks and density �s . The pore fluid is characterized by its thermoelasticity 
coefficient �f  , bulk modulus Kf  , viscosity � , and density �f  . The rock frame is characterized 
by its bulk modulus Km , Lamé constants � and � , porosity �̄� , permeability �̄� , structure fac-
tor tortuosity T  , and density 𝜌 = (1 − �̄�)𝜌s + �̄�𝜌f  . The bulk thermal property is characterized 
by its thermoelasticity coefficient � , the specific heat of the unit volume in the absence of 
deformation c, thermal conductivity �̄� , relaxation time � , and absolute temperature T0 . With u 
and w representing the average solid and fluid displacements of the medium and T denoting 
the increment of temperature above a reference T0 for the state of zero stress and strain, the 
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relative compact equations for the displacement components and temperature fluctuation are 
defined from Eq. (A.3) as (Carcione et al. 2019b; Wang et al. 2021)

where m = T𝜌f∕�̄� , the relaxation times ( �1 and �2 ) denote the temperature variation depend-
ence of the elastic deformation, and �3 and �4 are the MVC relaxation times. The Einstein 
implicit summation is assumed, and a dot above a variable denotes time derivative. The 
Biot effective stress coefficient �̄� and coupling modulus M are (Carcione et al. 2019b)

and the thermoelasticity coefficients are related with the coefficients of thermal expansion 
and above coefficients. In the LS theory, �1 = �2 = 0 , �3 = �4 for the classical one (Car-
cione et al. 2019b) and �3 ≠ �4 for the generalized case. The GL model holds �4 = 0 and 
�1 = �2 ≥ �3 (Ignaczak and Ostoja-Starzewski 2010; Sharma 2018)

2.2  Plane‑Wave Solution

Let us consider a Helmholtz decomposition of the two potential functions ( � and 𝜓 n̂ ) to 
describe the displacement vectors u and w

Substituting Eqs. (3) into (1), we obtain

where ∇2 is the Laplacian operator and the potential and temperature of the plane wave are

(1)

(𝜆 + 𝜇 + �̄�2M)uj,ji + 𝜇ui,jj + �̄�Mwj,ji − 𝛽(T,i + 𝜏1Ṫ,i) = 𝜌üi + 𝜌f ẅi, i, j = x, y, z,

�̄�Muj,ji +Mwj,ji −
𝛽f

�̄�
(T,i + 𝜏2Ṫ,i) = 𝜌f üi + mẅi +

𝜂

�̄�
ẇi,

�̄�T,jj − c(Ṫ + 𝜏3T̈) − 𝛽T0[(u̇j,j + 𝜏4üj,j) + (ẇj,j + 𝜏4ẅj,j)] = 0,

(2)

�̄� = 1 −
Km

Ks

,

M =
Ks

1 − �̄� − Km∕Ks + �̄�Ks∕Kf

,

Km = 𝜆 +
2

3
𝜇,

(3)
u = ∇𝜙s + ∇ × (𝜓sn̂),

w = ∇𝜙f + ∇ × (𝜓f n̂),

(4)

(𝜆 + 2𝜇 + �̄�2M)∇2𝜙s + �̄�M∇2𝜙f − 𝛽(T + 𝜏1T̈) = 𝜌�̈�s + 𝜌f �̈�f ,

�̄�M∇2𝜙s +M∇2𝜙f −
𝛽f

�̄�
(T + 𝜏2Ṫ) = 𝜌f �̈�s + m�̈�f +

𝜂

�̄�
�̇�f ,

�̄�∇2T − c(Ṫ + 𝜏3T̈) − 𝛽T0∇
2[(�̇�s + 𝜏4�̈�s) + (�̇�f + 𝜏4�̈�f )] = 0,

𝜇∇2𝜓s = 𝜌�̈�s + 𝜌f �̈�f ,

𝜌f �̈�s + m�̈�f +
𝜂

�̄�
�̇�f = 0.

(5)
� = APexp[i(�t − �P ⋅ x)],

� = ASexp[i(�t − �S ⋅ x)],
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where t is the time variable, � is the angular frequency, kP and kS are the complex wave-
number vectors for the compressional and shear waves, respectively, x is the position vec-
tor, i2 = −1 and the matrices are

where A�s
 , A�f

 , AT , A�s
 and A�f

 are the amplitudes, and complex wavenumber is

where � and � are the magnitudes of the real wavenumber and attenuation vectors, and � 
and � are the inhomogeneity and incidence angles, respectively. Thus, we get

For homogeneous waves,

Substituting the plane waves Eqs. (8) into (4), we obtain the dispersion relation for three 
longitudinal waves

where

and

Similarly, considering an S plane wave

(6)
� =

[
�s, �f , T

]T
, AP =

[
A�s

, A�f
, AT

]T
,

� =
[
�s, �f

]T
, AS =

[
A�s

, A�f

]T
,

(7)
k = 𝜅�̂ − i𝛼�̂, k ⋅ k = k2,

�̂ = (sin 𝜃, cos 𝜃), �̂ = (sin (𝜃 − 𝛾), cos (𝜃 − 𝛾)),

(8)
𝜙 = A𝜙E, T = ATE,

E = exp
[
i(𝜔t − (𝜅�̂ − i𝛼�̂) ⋅ x

]
.

(9)𝛾 = 0◦, �̂ = �̂, k = k�̂.

(10)a6k
6
P
+ a4k

4
P
+ a2k

2
P
+ a0 = 0,

(11)

a6 = �̄�EM�̄� ,

a4 = −𝜔
[
i𝛽T0𝜏4a41 + �̄�(icEM𝜏3 + �̄�a42)

]
,

a2 = 𝜔2
[
i𝛽T0𝜏4a21 + b�̄�a22 + 𝜔2�̄� �̄�(m𝜌 − 𝜌2

f
) + i𝜔c�̄�𝜏3a23

]
,

a0 = −i𝜔4�̄�c𝜏3(ib𝜌 + 𝜔m𝜌 − 𝜔𝜌2
f
),

(12)

E = 𝜆 + 2𝜇, b =
𝜂

�̄�
, 𝜏a = 1 − i𝜔𝜏a,

a41 = M(�̄� − 1)(�̄�𝛽f 𝜏2 − 𝛽�̄�𝜏1) + 𝜏2𝛽f E,

a42 = E(ib + 𝜔m) +M
[
ib�̄�2 + 𝜔(�̄�2m − 2�̄�𝜌f + 𝜌)

]
,

a21 = 𝜔
[
𝛽�̄�𝜏1(m − 𝜌f ) + 𝜏2𝛽f (𝜌 − 𝜌f )

]
,

a22 = i�̄�𝜌𝜔 − 𝛽2T0𝜏1𝜏4 − c𝜏3(E +M�̄�2),

a23 = Em +M�̄�2m +M(𝜌 − 2�̄�𝜌f ),

(13)� = A�E,
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where A� is the amplitude and replacing Eq. (13) into (4)4 and (4)5, we have

so that the corresponding wavenumber is

The S wave is not affected by the thermal effects in (homogeneous) thermoelastic media.
Then, solving for � and � , we obtain (Carcione 2014, Eq. (3.34))

where wavenumber k corresponds to P-wave ( kP ) and S-wave ( kS ) complex wavenumbers, 
respectively. The expressions for the phase velocity and attenuation, assuming that the 
wave is inhomogeneous, are given by (Carcione 2014)

If the wave is homogeneous ( � = 0◦ ), the quantities Vph and A are obtained from the com-
plex wavenumber and should be replaced by

and the attenuation coefficient is (Deresiewicz 1957)

3  Reflection and Transmission Coefficients

We study the incidence of an inhomogeneous wave (P or S wave) striking an interface between 
two thermoporoelastic media as shown in Fig. 1. In the following formulation, we use super-
scripts I and II on the material properties to denote the incidence (z > 0) and transmission 
(z < 0) media. The wave incident at a certain angle generates reflected fast P (P1), thermal 
(T), slow Biot (P2) and shear (S) waves in the upper-medium I and four corresponding trans-
mitted waves in the lower medium II. For clarity, the subscript 0 indicates the incident wave, 
and symbols 1, 2, 3 and 4 (5, 6, 7 and 8) are reflected (transmitted) P1, P2, T and S waves, 
respectively. Considering a planar interface in an elastic and isotropic homogeneous medium, 

(14)�(�m + ib)k2
S
+ �3

(
�2
f
− m� −

ib�

�

)
= 0,

(15)kS = �

√
ib� + m�� − ��2

f

�(ib + m�)
.

(16)

�2 =

√[
Re(k2)

2

]2
+

[
Im(k2)

2 cos �

]2
+

Re(k2)

2
,

�2 =

√[
Re(k2)

2

]2
+

[
Im(k2)

2 cos �

]2
−

Re(k2)

2
,

(17)Vph =
�

�
, A = �.

(18)Vph =
[
Re

(
k

�

)]−1
, A = −�Im

(
k

�

)
,

(19)L = 4�
A ⋅ Vph

�
.
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the characteristics of waves are modeled through eight boundary conditions between the two 
half-spaces ( z = 0 ); that is (Ignaczak and Ostoja-Starzewski 2010; Wang et al. 2020a)

where Q = 0 and 1 denote impermeable (pores sealed) and permeable (pores open) bound-
aries, respectively.

The potential functions of the plane waves are given by (similar to Hou et al. 2022b Eq. 
(20))

where if Ξ = 1 corresponds to an incident P wave and if Ξ = 0 is S mode. For incidence 
(reflection) media (l denotes I and � = 1 ), m = 1 , n = 3 and b = 4 , whereas for transmission 
case (l denotes II) that m = 5 , n = 7 , b = 8 and � = 0 . And displacement potentials are

where Aa and Ab are the amplitudes and the wave vectors are

the horizontal wavenumber pc remains unchanged during the propagation following the 
generalized Snell law (Carcione 2014; Borcherdt 2009) and the vertical wavenumbers qc 
obtained from complex wavenumbers kc

(20)

uI
z
= uII

z
, uI

x
= uII

x
, 𝜎I

zz
= 𝜎II

zz
, 𝜎I

xz
= 𝜎II

xz
,

wI
z
= Q ⋅ wII

z
, Q ⋅ pI = Q ⋅ pII + (1 −Q) ⋅ wII

z
,

T I = T II, �̄�I 𝜕T
I

𝜕z
= �̄�II 𝜕T

II

𝜕z
,

(21)
�l
s
= �Ξ�s

0
+

n∑
a=m

�s
a
, �l

f
= �Ξ�

f

0
+

n∑
a=m

�f
a
,

� l
s
= �(1 − Ξ)� s

0
+ � s

b
, � l

f
= �(1 − Ξ)�

f

0
+ �

f

b
,

(22)
�a = Aa exp[i(�t − ka ⋅ x)], a = 0, 1, ..., 7 and ≠ 4,

�b = Ab exp[i(�t − kb ⋅ x)], b = 4, 8,

(23)kc ⋅ x = pcx + qcz, c = 0, 1,… 8,

(24)
pc = |�| sin � + i|�| sin(� − �),

qc = DR + iDI , D = ±pv

√
k2
c
− p2

c
,

Fig. 1  Schematic plot of the 
inhomogeneous-waves reflection 
and transmission at an interface 
between two thermoporoelastic 
media. �

0
 is the inhomogene-

ity angle between attenuation 
(dashed arrows) and propagation 
(solid arrows) directions for 
incident wave
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where pv
√
W denotes the principal value of the square root of the complex number W. The 

downward waves correspond to the minus signs otherwise are positive to ensure the decay 
of the reflected and transmitted waves along the positive z-direction.

Combining the boundary conditions Eq. (20) with potentials (3) and (21), we obtain 
the matrix form

The column vector X consists of the complex-valued amplitude ratios, defined as

and the explicit expressions of G and Y in Eq. (25) are

and

and

(25)
8∑

b=1

(
Gab ⋅ Xb

)
= Ya, a = 1, 2, ..., 8.

(26)Xb =
As
b

As
0

,

(27)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

G1a = qa, G2a = pa,

G3a = (p2
a
+ q2

a
)(−MI(𝛼I)2 −MI𝛼IVa − 𝜆I) + 𝛿a𝛽

I(i𝜔𝜏I
1
− 1) − 2𝜇Iq2

a
, G4a = 2𝜇Ipaqa,

G5a = qaVa, G6a = Q

�
(p2

a
+ q2

a
)MI(Va + 𝛼I) −

𝛿a𝛽
I
f

𝜙I
(i𝜔𝜏I

2
− 1)

�
,

G7a = 𝛿a, G8a = �̄� I𝛿aqa, (a = 1, 2, 3),

G1b = qb, G2b = −pb,

G3b = (p2
b
+ q2

b
)(MII(𝛼II)2 +MII𝛼IIVb + 𝜆II) − 𝛿b𝛽

II(i𝜔𝜏II
1
− 1) + 2𝜇IIq2

b
, G4b = 2𝜇IIpbqb,

G5b = QqbVb, G6b = Q

�
−(p2

b
+ q2

b
)MII(Vb + 𝛼II) +

𝛿b𝛽
II
f

𝜙II
(i𝜔𝜏 II

2
− 1)

�
+ (1 −Q)G5b,

G7b = −𝛿b, G8b = �̄� II𝛿bqb, (b = 5, 6, 7),

G14 = p4, G18 = −p8,

G24 = −q4, G28 = −q8,

G34 = −2𝜇Ip4q4, G38 = −2𝜇IIp8q8,

G44 = 𝜇I(p2
4
− q2

4
), G48 = −𝜇II(p2

8
− q2

8
),

G54 = 𝜙Ip4(V4 − 1), G58 = −𝜙IIp8(V8 − 1),

G68 = (1 −Q)G58, G64 = G74 = G78 = G84 = G88 = 0,

(28)

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

Y1 = Ξq0 − (1 − Ξ)p0, Y2 = −Ξp0 − (1 − Ξ)q0,

Y3 = Ξ
�
(p2

0
+ q2

0
)(MI(𝛼I)2 +MI𝛼IV0 + 𝜆) − 𝛿0𝛽

I(i𝜔𝜏I
1
− 1) + 2𝜇Iq2

0

�
− 2𝜇Ip0q0(1 − Ξ),

Y4 = 2𝜇Ip0q0Ξ − 𝜇I(p2
0
− q2

0
)(1 − Ξ),

Y5 = Ξq0V0 − p0V0(1 − Ξ),

Y6 = Ξ

�
−(p2

0
+ q2

0
)MI(V0 + 𝛼I) +

𝛿0𝛽
I
f

𝜙I
(i𝜔𝜏I

2
− 1)

�
,

Y7 = −Ξ𝛿0, Y8 = �̄� I𝛿0q0Ξ,
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where a = 0, 1, 2, 3 and b = 4 correspond to medium I parameters (with superscript I), 
while 5 to 8 are medium II (with superscript II).

Once the linear system is solved, the reflection ( Ra ) and transmission ( Tb ) coefficients are 
calculated using complex wavenumbers ka (or kb)

where ||Ra
|| and ||Tb|| denote the R/T amplitudes, while �a and �b are the corresponding phase 

angles.

4  Energy Partitions

Wang et al. (2020a) give the energy flux for double-porosity theory, and the corresponding 
energy balance is given. Here, the time-averaged energy flow along the z-direction 

⟨
Fz

⟩
 hold-

ing for the thermoporoelastic case is developed (Sharma 2018) by

The energy partitions are denoted by

where a, b = 0, 1, … , 4 denote the incidence 
(⟨

F
i
ab

⟩)
 , a, b = 5, 6, 7, 8 are transmission (⟨

F
t
ab

⟩)
 medium, the star denotes the complex conjugate, and the indices a and b of 

stresses and displacements correspond to the different waves (same as Eq. 30).
The procedure to obtain the energy balance based on the energy ratios is

The R/T coefficients (Eq. (30)) are verified by energy conservation, which is calculated by 
the energy ratios (see Hou et al. (2022b), Eqs. (47) and (48)). Let diagonal entries Ei

aa
 and 

Et
bb

 represent the energy ratios of reflected and transmitted waves, and off-diagonal Ei
ab

 and 
Et
ab

 represent the corresponding interference energy ratios, which are

(29)

Va =
𝛽�̄�𝜏1

(
M�̄�(p2

0
+ q2

0
) − 𝜔2𝜌f

)
− 𝜏2𝛽f

(
(E + �̄�2M)(p2

0
+ q2

0
) − 𝜌𝜔2

)

𝛽�̄�𝜏1
(
m𝜔2 + ib𝜔 −M(p2

0
+ q2

0
)
)
+ 𝜏2𝛽f

(
M�̄�(p2

0
+ q2

0
) − 𝜌f𝜔

2
) ,

𝛿a =
i𝜔𝛽𝜏4T0(1 + Va)(p

2
0
+ q2

0
)

i𝜔𝜏2c − �̄�(p2
0
+ q2

0
)

, a = 0, 1, ..., 7 and ≠ 4,

Vb =
−𝜔𝜌f

m𝜔 + i𝜂∕�̄�
, b = 4, 8,

(30)
Ra =

Aa

A0

ka

k0
= ||Ra

|| exp(i�a), a = 1, 2, 3, 4,

Tb =
Ab

A0

kb

k0
= ||Tb|| exp(i�b), b = 5, 6, 7, 8,

(31)
⟨
Fz

⟩
=

1

2
Re

(
𝜎zzu̇

∗
z
+ 𝜎xzu̇

∗
x
− pẇ∗

z

)
.

(32)
⟨
F

i
ab

⟩
=

1

2
Re

(
𝜎a
zz
(u̇∗

z
)b + 𝜎a

xz
(u̇∗

x
)b − pa(ẇ∗

z
)b
)
,

(33)
4∑

a=1

4∑
b=1

⟨
Fi

ab

⟩
+

4∑
a=1

(⟨
Fi

0a

⟩
+
⟨
Fi

a0

⟩)
−

8∑
a=5

8∑
b=5

⟨
Ft

ab

⟩
= −

⟨
Fi

00

⟩
.
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5  Examples

Oil–water contacts are commonly encountered in the transition zone of hydrocarbon res-
ervoirs. We evaluate the influence of thermoelastic parameters on the R/T characteristics 
(amplitudes, phase angles and energies) of inhomogeneous plane waves at an oil–water 
interface. The properties of the medium used in the following numerical simulations are 
listed in Table 1, which are used and validated by Corredor et al. (2014) and Wang et al. 
(2021).

We assume that the porous medium background is an unconsolidated sandstone 
with a porosity of 30% . On the basis of the properties of Table 1, Figs. 2 and 3 display 
the phase velocity and attenuation coefficient as a function of frequency for the oil-
saturated (Incidence I) and water-saturated (Transmission II) cases, respectively. The 
results are obtained based on the thermoporoelastic LS and GL theories, respectively. 
We see that the fast P (P1) wave has two Zener-like relaxation peaks, related to the 

(34)

Ei
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=

4∑
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00
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00
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=

8∑
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t
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Fi
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⟩ , Et
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00
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,

Econs =

4∑
a=1

4∑
b=1

⟨
Fi
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⟩
⟨
F

i
00

⟩ +

4∑
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⟩
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F

i
00

⟩ +
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F
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−

8∑
a=5

8∑
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Ft

ab

⟩
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F

i
00

⟩ = −1.

Table 1  Medium properties
Grain bulk modulus, KI

s
/KII

s
35/35 GPa

Density, �I
s
/�II

s
2650/2650 kg/m3

Frame bulk modulus, KI

m
/KII

m
1.7/1.7 GPa

Shear modulus, �I/�II 1.885/1.885 GPa
Porosity, �̄�I/�̄�II 0.3/0.3
Permeability, �̄�I/�̄�II 1/1 Darcy

Tortuosity, TI/TII 2/2

Fluid density, �I
f
/�II

f
700/1000 kg/m3

Viscosity, �I
f
/�II

f
0.004/0.001 Pa s

Bulk modulus, KI

f
/KII

f
0.6/2.4 GPa

Thermoelasticity coefficient, �I
f
/�II

f
8×105/8×105 kg/(m⋅s2⋅K)

Bulk specific heat, cI∕cII 1.8×106/3.2×106 kg/(m⋅s2⋅K)
Thermoelasticity coefficient, �I/�II 2.5×106/2.5×106 kg/(m⋅s2⋅K)
Absolute temperature, T I

0
/T II

0
300/300 K

Thermal conductivity, �̄� I/�̄� II 4.5/8.7 m⋅kg/(s3⋅K)
Relaxation time, �I

1
 ( �I

2
)/�II

1
 ( �II

2
) 0.3/0.3 ns

‘ ’, �I
3
 ( �I

4
)/�II

3
 ( �II

4
) 0.15/0.15 ns
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Biot (approximately 10 kHz) and thermal (approximately 1 GHz) loss mechanisms. 
The former induces the velocity dispersion of the P1 and P2 waves. The associated 
thermal attenuation only affects wave propagation at high frequencies, especially for 
the T wave. For clarity, we enlarge the phase velocities and attenuations of P1 and P2 
waves at relaxation peaks as shown in Figs. 2a–2d and  3a–3d).

The GL model predicts more pronounced velocity dispersions and higher thermal 
attenuations of P1 and P2 waves than the LS model. The P2 and T waves are strongly 
diffusive at low frequencies and more wave-like at the high range. Due to the influ-
ence of relaxation times, the GL shows a higher P2-wave velocity than that of the LS 
model, whereas the behavior of the T wave is the opposite. The R/T properties depend 
on inhomogeneity angles. The inhomogeneous waves (P1 and P2) show higher veloc-
ity dispersion and stronger attenuation than the homogeneous waves, especially for the 
inhomogeneity angle closer to 90◦ . The water-saturated medium has a higher velocity 
than the oil-saturated medium as expected. In the following, we consider an incident 
wave with a frequency of 1 GHz (corresponding to the thermal relaxation peak) to 
highlight the thermal effect as well as the difference between the LS and GL models.

Fig. 2  Phase velocities (a, c, e) and attenuation coefficients (b, d, f) of the P1, P2 and T waves as a func-
tion of frequency at oil-saturated media (incidence media I). The blue, black and red lines correspond to the 
results of the �

0
= 0

◦ , 40◦ and 80◦ , and solid and dashed lines are for the GL and LS theories
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5.1  P‑Wave Incidence

The results for the LS and GL models with P-wave incidence are plotted as the solid and 
dashed lines in Figs. 4, 5, 6, 7, respectively. In Figs. 4 and 6, we see that both models have 
similar S-wave R/T coefficients and energies at small angles of incidence. But become dif-
ferentiated near the P-wave critical angle due to the velocity variation of velocities (see 
Figs. 2 and 3). Under the same condition (homogeneous or inhomogeneous), the LS model 
predicts higher amplitudes of the R/T P2 waves than the GL model, which becomes the 
opposite for the reflected T wave. As shown in Figs. 4d, h,  6d, h, the S-wave amplitudes 
and energy fluxes vanish at normal incidence because there is no converted wave. However, 
the R/T S waves by the GL model show half-phase effects due to inhomogeneity angles 
(see Fig. 5d, h). The overall discrepancy in the R/T phases is small.

Figure 6 shows the partition of energy, where the transmitted P1-wave energy decreases 
with increasing angles. For incidences beyond 50◦ , the energy in the vertical direction by 
the LS model vanishes until grazing incidence, because the wave propagates along the 
interface, carrying no energy flux in the vertical direction. Since the theory predicts a very 
low attenuation (see Figs.  2b and 3b), the medium behaves elastically at a frequency of 
1 GHz. The opposite behavior is observed for the reflected P1 wave, where the energy 
increases gradually with increasing angles. The influence of inhomogeneity angles on the 
R/T waves is particularly evident near grazing incidence (see Fig. 6b–h), where the effect 
on the reflected P is maximum at the critical angle. The GL model predicts more interfer-
ence energy (see Fig. 7b) due to its sensitivity to thermal attenuation than the LS model. 

Fig. 3  Same as Fig. 2 but for the water-saturated media (transmission media II)
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The energy conservation at the interface is guaranteed as the sum of all the ratios is -1 (see 
Fig. 7a).

5.2  S‑Wave Incidence

Figures  8,  9,  10 show the R/T coefficients, phases, and energy ratios as a func-
tion of incidence angles for different inhomogeneity angles, respectively. Since the 
S-wave wavenumber is real, the inhomogeneity angle has no effect as can be seen in 
Figs. 8, 9, 10, 11 where both the homogeneous ( �0 = 0 ◦ ) and inhomogeneous ( �0 = 40◦ ) 
waves produce the same results for the LS (black and red solid lines, respectively) and 
GL (black and red dashed lines, respectively) models, respectively, in the whole range 

Fig. 4  Reflection and transmission amplitudes as a function of the P-wave incidence angle, corresponding 
to the LS (solid lines) and GL (dashed lines) models at 1 GHz for homogeneous �

0
= 0

◦ and inhomogene-
ous �

0
= 40

◦ cases

Fig. 5  Same as Fig. 4 but for the phase angles
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of incidence angles. As shown in Fig. 8, the solutions by the two theories show similar 
angle-dependent features for these R/T P1, P2, and T waves, with the increasing differ-
ence occurring after the critical angle. whereas the R/T S-wave results of the two theo-
ries coincide. Intriguingly, such discrepancies become negligible when the angle nears 
grazing incidence. Since the velocity of the incident S wave is lower than the R/T P1 
velocities, there exist two peaks of longitudinal waves. The LS solution predicts wave 
amplitudes higher at the first peak but lower around the second peak than the GL solu-
tion. This shows a complex coupled mode with the thermal effect. For the R/T S waves, 
the two theories produce the same solutions.

Figure 9 shows that both theories have consistent trends in phase angle. In Fig. 10, the 
behavior of P-wave energies by the LS theory is analogous to that of the P-wave incidence 
(see Fig. 6) due to the elastic characteristic of low attenuation shown in Figs. 10a, e. As 
expected, the energies and amplitudes of the P2, T, and S waves have similar variations. 
Moreover, the GL model predicts more interference energy than the LS one, as shown in 
Fig. 11b. The energy conservation at the interface is satisfied as exhibited in Fig. 11a.

Fig. 6  Same as Fig. 4 but for the energy ratios, considering the flux in the z-direction

Fig. 7  Same as Fig. 4 but for the sum of the energy ratios (energy balance) (a) and the interference energy 
(b)
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5.3  Generalized LS Theory

Let us consider the generalized LS model by assuming different values of relaxation time 
�4 (Wang et al. 2021)

We compare different thermoporoelastic models with the classical Biot poroelastic theory 
to highlight the influence of thermal characteristics. Figures  12 and  13 show the phase 
velocity and attenuation as a function of frequency for different models with �0 = 40◦ . We 
see that the Biot theory predicts lower velocities of the P1 and P2 waves at all the frequen-
cies and weaker Biot dispersion for the P1 wave, implying strong thermal effects on wave 

(35)� I
4
= � II

4
= 0.15 ns, 0.30 ns, 0.45 ns.

Fig. 8  Reflection and transmission amplitudes as a function of the S-wave incidence angle, corresponding 
to the LS (solid lines) and GL (dashed lines) models at 1 GHz for homogeneous �

0
= 0

◦ and inhomogene-
ous �

0
= 40

◦ cases

Fig. 9  Same as Fig. 8 but for the phase angles
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propagation. With increasing �4 , the P1 wave presents increasing thermal attenuation and 
velocity dispersion, while the relaxation frequency remains unchanged. The thermal effect 
on the P2 wave is similar to the P1 wave at high frequencies, but is contrary to the T wave. 
Note that, for the case �4 = �1 = �2 = 0.30 ns, the LS prediction agrees with the result by 
the GL model (Ignaczak and Ostoja-Starzewski 2010; Wang et  al. 2021), implying that 
varying �4 can determine different levels of dispersion.

Next, we focus on the analysis of the P1-wave incidence, which is of primary interest 
in exploration applications. We use the parameters based on Figs.  12 and  13 at 1 GHz. 
Figure 14 shows the R/T coefficients as a function of incidence angles with �0 = 40◦ . The 
results associated with different models show an evident dependence on thermal charac-
teristics. The Biot model predicts a smaller critical angle because of ignoring the thermal 
parameters. The Biot model displays stronger magnitudes for the P2 waves than the LS and 
GL cases, whereas the opposite behavior occurs for the P1 and converted S waves due to 
the existence of the T waves. The GL theory shows an analogous behavior to the general-
ized LS model at �4 = 0.30 ns as shown in Fig. 14. Irrespective if the interface is open (see 

Fig. 10  Same as Fig. 8 but for the energy ratios, considering the flux in the z-direction

Fig. 11  Same as Fig. 8 but for the sum of the energy ratios (energy balance) (a) and the interference energy 
(b)
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Fig. 14) or sealed (see Fig. 15), increasing �4 decreases the amplitude of the reflected P 
wave at small incidence angles, but will be the opposite at large ones. The dependence of 
P2 and S waves on the boundary conditions can be seen in the coefficients and energies 
shown in Figs. 14 and 15, where we have assumed a sealed boundary.

6  Conclusions

We describe the R/T phenomenon of inhomogeneous plane waves at an interface between two 
dissimilar fluid-saturated thermoporoelastic media, where the theory is formulated in terms 
of the classic LS, generalized LS and GL models, respectively. The presence of thermal char-
acteristics with relaxation times makes the media behave anelastically, which means that the 
propagation and attenuation directions do not necessarily coincide. The propagation character-
istics (Biot and thermal peaks) of inhomogeneous waves significantly depend on the inhomo-
geneity angle in the dispersion range, with a lower phase velocity and stronger thermal attenu-
ation than those of homogeneous waves. Considering the oil–water contact, we investigate the 
effects of types of incident wave, incidence and inhomogeneity angles, relaxation times, and 
boundary conditions on the R/T coefficients and associated phase angles and energy ratios. 
For an incident P wave, the effect of inhomogeneity angles on the energy partition becomes 
noticeable at the critical angle, whereas S-wave incidence is independent of inhomogeneity 

Fig. 12  Phase velocities (a, c, e) and attenuation coefficients (b, d, f) of the P1, P2 and T waves as a func-
tion of frequency at incidence media I (1 GHz). The blue, black and red solid lines correspond to the results 
of the classical Biot, GL and LS models with �

0
= 40

◦ , whereas blue and black dashed lines to the general-
ized LS theory with �

4
 = 0.30 ns and �

4
 = 0.45 ns, respectively



 Surveys in Geophysics

1 3

angles. We compare these thermoporoelastic models (LS, GL, and generalized LS) with the 
classical Biot poroelastic theory. The results show that the angle-dependent thermoporoelastic 
attenuation couples both the effects of thermoelasticity and poroelasticity. The relaxation time 
affects the P1-wave velocity dispersion more than other waves, whereas the P2 and S waves 
mainly depend on boundary conditions. The classical Biot model predicts lower velocities of 
the P1 and P2 waves, but shows stronger magnitudes for the P2 waves. Considering the influ-
ence of thermal parameters on R/T inhomogeneous waves, more accurate reservoir informa-
tion can be obtained, which provides theoretical support for seismic exploration.

Appendix A

The constitutive relations for the stress �ij , strain �ij and fluid pressure p of thermoporoelastic-
ity can be expressed as follows (Wang et al. 2021):

where �ij is the Kronecker function. The equations of momentum conservation are

(A.1)

𝜎ij = 2𝜇𝜖ij + [𝜆𝜖m + �̄�M𝜖 − 𝛽(T + 𝜏1Ṫ)]𝛿ij,

− p = M𝜖 −
𝛽f

�̄�
(T + 𝜏2Ṫ),

𝜖 = �̄�𝜖m + 𝜖f , 𝜖m = ui,i, 𝜖f = wi,i, 2𝜖ij = ui,j + uj,i,

Fig. 13  Same as Fig. 12 but for the transmission media II
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Substituting the stress–strain relation (Eq. (A.1)) into the equations of momentum conser-
vation (Eq. (A.2)) and strain–displacement relations, we obtain compact equations for dis-
placement components

(A.2)
𝜎ij,j = 𝜌üi + 𝜌f ẅi,

− p,i = 𝜌f üi + mẅi +
𝜂

�̄�
ẇi.

Fig. 14  Reflection and transmission amplitudes as a function of the P-wave incidence angle, corresponding 
to the classical Biot (blue solid lines), GL (black solid lines) and LS (red solid lines) models with �

0
= 40

◦ , 
whereas blue and black dashed lines to the generalized LS theory with �

4
 = 0.30 ns and �

4
 = 0.45 ns, 

respectively

Fig. 15  Reflection and transmission amplitudes as a function of the P-wave incidence angle, corresponding 
to the classical Biot (blue solid lines), GL (black solid lines) and LS (black dashed �

4
 = 0.15 ns and black 

solid �
4
 = 0.45 ns lines) models with �

0
= 40

◦ , whereas the boundary is sealed
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