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We study the reflection and transmission coefficients of plane waves incident at an
interface between two isotropic thermoelastic half spaces and compare them with
those of the elastic case. The models include the classical-Biot (B) and extended Lord-
Shulman (LS) theories, and predict reflected and transmitted fast-compressional (P),
thermal (T) and shear (S) waves. The coefficients are formulated in terms of incidence
and inhomogeneity angles, medium properties and potential functions. We consider
different incident wave types and inhomogeneity angles to analyze the magnitude,
phase and energy ratio of the plane waves, and perform a comparison with the
isothermal (elastic) theory. The thermoelastic and elastic models predict different
energy partitions between the P and S modes, satisfying the conservation of energy.
The LS model exhibits higher T-wave thermal attenuation with increasing inhomogeneity
angle at high frequencies, accordingly predicting more interference energy. The angle
affects the energy partitions, particularly at the critical angle and near grazing incidence for
an incident P wave, which satisfies the conservation of energy. Beyond the critical angle,
the energy flux perpendicular to the interface of the isothermal model vanishes, while it is
significant in the thermoelastic case. The T-wave magnitudes increase when the thermal
conductivity (relaxation time) increases.

Keywords: thermoelasticity and elasticity, reflection and transmission coefficients, energy partitions,
inhomogeneous plane waves, attenuation angle

1 INTRODUCTION

The thermoelasticity theory couples the fields of elastic deformation and temperature and has been
largely studied in several fields during the past decades, such as mechanics of materials, ultrasonics
and to a much lesser extent in exploration geophysics (Zener, 1938; Savage, 1966; Armstrong, 1984;
Veres et al., 2013; Wang and Li, 2013; Carcione et al., 2019). It is also of interest in geothermal
applications (Buijze et al., 2019) and generally in the analysis of deep reservoirs, where temperature
effects are important, mainly in relation to seismic-reflection technology, whose physics is based on
the reflection and transmission (R/T) of waves.

Biot (1956) introduced the classical thermoelasticity theory, hereafter B theory, based on the
parabolic Fourier heat conduction law, where the P or T waves propagate with unrealistic infinite
phase speeds at high frequencies (Deresiewicz, 1957; Rudgers, 1990, Figures 1–3). Lord and Shulman
(1967) introduced a relaxation term into the thermoelasticity equations to obtain finite wave
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velocities (hereafter LS theory), which led to the Maxwell-
Cattaneo-Vernotte hyperbolic heat equation (Maxwell, 1867;
Vernotte, 1948; Cattaneo, 1958). The involved relaxation time
represents the time lag from imposing the temperature
disturbance to the establishment of the steady-state regime.
The LS theory predicts two compressional waves (P and T)
and a shear wave having similar characteristics to the waves of
poroelasticity (Biot, 1956), where the existence of the T wave has
been verified experimentally (Ackerman et al., 1966; Jackson
et al., 1970; McNelly et al., 1970) and numerically (Carcione
et al., 2019; Wang Z.-W. et al., 2020). Green and Lindsay (1972)
developed a similar thermoelasticity theory by introducing
additional relaxation times. Generalized approaches, based on

fractional derivatives, have been developed by Kumar et al. (2013)
and Hobiny and Abbas (2020).

Research on reflection and transmission phenomena in elastic,
anelastic and poroelastic media (e.g., Pilant, 1979) involves
numerous approaches (Rokhlin et al., 1986; Denneman et al.,
2002; Carcione, 2014; Wang E. et al., 2020). Here, we consider the
theory of thermoelasticity, which is more general and provides
realistic results. The reflection of thermoelastic waves at the free
surface of an elastic half-space, based on the generalized Green-
Lindsay theory, has been studied by Sinha and Elsibai (1996) and
a similar problem has been attacked by Sharma et al. (2003) and
Zenkour et al. (2013). Kumar and Sarthi (2006) solved the R/T
problem, but ignoring energy dissipation, and Singh and
Chakraborty (2013) assumed an initial stress at a solid-liquid
interface, while Sharma (2018) considered a poroelastic/elastic
interface. More recently, Sarkar and Mondal (2020) considered a
stress-free and thermally insulated surface on the basis of the
modified Green-Lindsay theory, but their formulation neglects
the presence of inhomogeneous plane waves, violating Snell’s law,
which is inappropriate but appears in many papers (e.g., Sinha
and Elsibai, 1997; Wei et al., 2016; Sarkar et al., 2020). Wang et al.
(2021) studied the scattering coefficients at a free surface in the
framework of the thermo-poroelasticity theory.

First, we consider the B and LS theories, based on the Helmholtz
potential function decomposition law, and obtain the respective
inhomogeneous plane-wave solutions and dispersion relations.
Then, using the boundary conditions and Snell’s law, we obtain
the R/T coefficients for incident P and S waves at an interface
between two thermoelastic media and compare them with the
elastic case to illustrate the difference between the two theories and

FIGURE 1 | Reflection and transmission of plane waves at the interface
separating two thermoelastic media. The solid and dashed arrows represent
the propagation and attenuation directions, respectively.

FIGURE 2 | Phase velocity and attenuation coefficients of the P wave (A,B) and T wave (C,D) as a function of frequency in the incidence medium with different γ0.
The superscripts LS and B represent the Lord-Shulman and classical-Biot theories, respectively.
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the influence of the inhomogeneity angle. Moreover, we verify the
conservation of energy and discuss the variations of the coefficients
as a function of the thermal conductivity and relaxation time.

2 THERMOELASTICITY

2.1 Governing Equations
The equations of thermoelasticity describe the relation between the
stress-deformation and the temperature fields. We consider the
generalized (LS) theory proposed by Lord and Shulman (1967). Let
us define by ui, i = x, y, z the displacement components and byT the
increment of temperature field above the reference absolute
temperature T0 for the state of zero stress and strain. In a linear
isotropic medium, combining the stress-strain and strain-
displacement relations with the momentum conservation
equation (Carcione et al., 2019), we obtain the displacement
equation of motion and the law of heat conduction:

λ + μ( )uj,ji + μui,jj − �γT,i − ρ€ui � 0, i, j � x, y, z,
�κT,jj − c _T + τ €T( ) − �γT0 _uj,j + τ€uj,j( ) − q � 0,

(1)

where ρ is the mass density, �κ is the thermal conductivity, c is the
specific heat of the unit volume in the absence of deformation, τ is
the relaxation time, q is the external heat source, a dot above a
variable denotes time differentiation and the Einstein implicit
summation is assumed. The thermal modulus is �γ � (3λ + 2μ)�α,
where λ and μ are the Lamé constants and �α is the linear thermal
expansion coefficient. More details are given in Appendix A. In
the B theory, τ = 0, and the heat equation is parabolic (diffusion-
like), but it is hyperbolic (wave-like) in the LS theory.

2.2 Plane-Wave Solution
Let us consider that the displacement vector u can be
described by a Helmholtz decomposition of the two
potential functions:

u � ∇ϕ + ∇× ψn̂( ). (2)
Substituting Eq. 2 into Eq. 1, we obtain

λ + 2μ( )∇2ϕ − �γT � ρ€ϕ,
�γT0 ∇2 _ϕ + τ∇2€ϕ( ) � �κ∇2T − c _T + τ €T( ),
μ∇2ψ − ρ€ψ � 0,

(3)

where ∇2 is the Laplacian operator and the plane-wave versions of
the potential and temperature are

ϕ � Aϕ exp i ωt − k · x( )[ ],
T � AT exp i ωt − k · x( )[ ], (4)

where Aϕ and AT are the amplitudes, ω is the angular frequency, t
is the time variable, k is the complex wavenumber vector for the
compressional waves (Chadwick, 1960; Jiao et al., 2019), x is the
spatial vector and i2 = −1, where

k � κκ̂ − iαα̂,
k · k � k2,

κ2 − α2 � Re k2( ),
2κα cos γ � −Im k2( ), (5)

where Re (·) and Im (·) denote real and imaginary parts,
respectively, γ is the inhomogeneity angle, κ and α are the
magnitudes of the real wavenumber and attenuation vectors,
respectively, and the directions of these vectors are

FIGURE 3 | Phase velocity and attenuation coefficients of the P wave (A,B) and T wave (C,D) as a function of frequency in the transmission medium with different
γ0. The superscripts LS and B represent the Lord-Shulman and classical-Biot theories, respectively.
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κ̂ � sin θ, cos θ( ),
α̂ � sin θ − γ( ), cos θ − γ( )( ), (6)

where the hat denotes a unit vector, θ is the angle between the real
wavenumber vector and a line perpendicular to the interface.
Thus, we can set

ϕ � AϕE, T � ATE,
E � exp i ωt − x κ sin θ − iα sin θ − γ( )( ) − z κ cos θ − iα cos θ − γ( )( )( )[ ].

(7)
When γ is zero, the wave is homogeneous

k � κ − iα( )κ̂ � kκ̂,

vc � ω

k
, (8)

where vc is the complex velocity.
Substituting the plane waves Eq. 7 into Eqs. 31 and 32, using

(5) we obtain

H · A � �γ k2 λ + 2μ( ) − ρω2

ωc i − τω( ) + �κk2 −�γT0ωk
2 i − τω( )[ ] AT

Aϕ
[ ] � 0. (9)

The condition det(H) = 0 yields the dispersion equation

k4L2 − L0 + L1( )ω2k2 + ω4 � 0, (10)
where

L0( )LS � iω�κ
c 1 + iτω( ), L0( )B � iω�κ

c
,

L1 � v20 +
�γ2

ρc
T0,

L2 � v20L0,

v20 �
λ + 2μ

ρ
.

(11)

Eq. 10 has the solutions

k2 � ω2

2L2
L0 + L1( ) ±















L0 + L1( )2 − 4L2

√[ ]. (12)

There are two P-wave wavenumbers, a fast P-wave (minus sign)
and a T-wave (plus sign). We have (Carcione, 2014, Eq. 3.34)

κ2 � 1
2

Re k2( ) + 























Re k2( )[ ]2 + Im k2( )[ ]2 sec2 γ√[ ],

α2 � 1
2

−Re k2( ) + 























Re k2( )[ ]2 + Im k2( )[ ]2 sec2 γ√[ ]. (13)

For an inhomogeneous wave, the phase velocity and attenuation
factor are (Carcione, 2014; Carcione et al., 2019)

vph � ω

κ
, A � α. (14)

For a homogeneous wave with γ = 0°, these quantities, expressed
in terms of the real and imaginary parts of the complex velocity in
Eq. 8, are

vph � Re
1
vc
( )[ ]−1, A � −ωIm 1

vc
( ), (15)

and the attenuation coefficient is

L � 4π
Avph
ω

, (16)

(Deresiewicz, 1957).
Similarly, considering an S plane wave

ψ � AψE, (17)
where Aψ is the amplitude and replacing Eq. 17 into (3)3, we have

κ2 − α2 − i2κα cos γ � ω2ρ

μ
, (18)

so that Im (kS) = 0, and the corresponding wavenumber and
phase velocity are

kS � ω



ρ

μ

√
and vS �




μ

ρ

√
, (19)

respectively. The S wave is not affected by the thermal effects in
(homogeneous) thermoelastic media.

3 REFLECTION AND TRANSMISSION
COEFFICIENTS

We consider the 2D case in the (x, z) plane, an interface defined
by z = 0, the incidence media I (z > 0) and transmission media II
(z < 0). The properties of medium II are represented with a prime
superscript. The incident wave generates six waves, namely, three
reflected and three transmitted, illustrated in Figure 1 where the
subscripts 0, 1, 2 and 3 represent the incident, P, T and S waves,
respectively.

3.1 Potential Functions
Consider an incident P wave, where the superscripts i, r and t
represent incident, reflected and transmitted, respectively. Then,
the potential functions are

ϕI � ϕi + ϕr � A0H0 + A1H1 + A2H2( ),
ψI � ψr � A3H3,
ϕII � ϕt � A1′H1′ + A2′H2′,
ψII � ψt � A3′H3′,

(20)

where

H0 � exp i ωt − p0x − q0z( )( )[ ],
Hm � exp i ωt − pmx + qmz( )( )[ ],
Hm′ � exp i ωt − pm′ x − qm′ z( )( )[ ], (21)

where Am andAm′ are wave amplitudes, pm and pm′ are horizontal
wavenumbers, qm and qm′ are vertical wavenumbers, and the
subscripts 0,m = 1,m = 2 andm = 3 correspond to the incident, P,
T and S waves, respectively. We consider Snell’s law which
establishes the continuity of the horizontal wavenumbers (e.g.,
Carcione, 2014; Wang E. et al., 2020)

p0 � pm � pm′ , (22)
where

p0 � |κ0| sin θ0 − i|α0| sin θ0 − γ0( ), (23)
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where θ0 is the incidence angle and κ0 and α0 are given by Eq. 13
with k = k0 and γ = γ0 (see Figure 1). Generalized Snell’s law
(Borcherdt, 2009, Eq. (5.2.20)) is

sin θ0( )
vph( )0 � sin θm( )

vph( )m � sin θm′( )
vph′( )m , |α0| sin θ0 − γ0( )

� |αm| sin θm − γm( ) � |αm′ | sin θm′ − γm′( ). (24)
Because the phase velocities of the incident P (or T) and reflected
P (or T) waves are the same, namely θ0 = θ1 (or θ0 = θ2), we get γ0
= γ1 (or γ0 = γ2) from Eqs. 12, 13. From Eqs 18 and Sharma
(2018), we obtain

γ3 � γ3′ �
π

2
. (25)

The reflection angle θ2 (or θ1) and transmission angles θ1′ and θ2′
satisfy

sin θm( ) � sin θ0( ) vph( )m
vph( )0 , sin θm − γm( ) � sin θ0 − γ0( ) |α0||αm|, m � 2 or 1( ),

sin θn′( ) � sin θ0( ) vph′( )n
vph( )0 , sin θn′ − γn′( ) � sin θ0 − γ0( ) |α0|

|αn′|, n � 1, 2,

(26)
and

tan θm( ) � Re p0( )
Re qm( ), tan θm − γm( ) � Im p0( )

Im qm( ), m � 2 or 1( ),

tan θn′( ) � Re p0( )
Re qn′( ), tan θn′ − γn′( ) � Im p0( )

Im qn′( ), n � 1, 2,

(27)
where q0 is the vertical wavenumber of the incident wave,
given by

q0 � DR + iDI, D � pv







k20 − p2

0

√
, (28)

where DR and DI denote the real and imaginary parts of the
complex quantity D, pv denotes the principal value and the
calculations of the vertical wavenumber are similar for the
reflected (qm) and transmitted (qm′ ) waves. The reflected P (or
T) wave is homogeneous if and only if the incident P (or T) wave
is homogeneous. If θc is a critical angle for the transmitted P wave,
namely θ1′ � π/2, the corresponding inhomogeneity angle is

tan γ0( ) � tan θc −
2Im k′21( )

Im k20( )sin 2θc( ), (29)

where k0 and k1′ are the wavenumbers of the incident and
transmitted P-waves. If the incident P wave is homogeneous
(γ0 = 0°) and not normally incident, using Eqs. 26, 29 the waves
are homogeneous if and only if (Borcherdt, 2009)

sin2θ0 ≤
Im k22( )
Im k20( ) � k22

k20
,

Re k20( )
Im k20( ) � Re k22( )

Im k22( ), reflected T wave,

sin2θ0 ≤
Im k′ 2m( )
Im k20( ) � k′ 2m

k20
,

Re k20( )
Im k20( ) � Re k′ 2m( )

Im k′22( ), m � 1, 2,

(30)

where the subscripts 1 and 2 correspond to the transmitted P and
T waves, respectively. Then, substituting Eq. 20 into (3)1, we
obtain

T � −1
�γ
∑2
m�0

ζmAmHm,

T′ � − 1
�γ′ ∑2m�1

ζm′ Am′Hm′ ,
(31)

where

ζm � 2μ + λ( )p2
m − ρω2,

ζm′ � 2μ′ + λ′( )pm′
2 − ρ′ω2.

(32)

On the other hand, for the incident S wave,

ϕI � ϕr � A1H1 + A2H2,
ψI � ψi + ψr � A0H0 + A3H3,
ϕII � ϕt � A1′H1′ + A2′H2′,
ψII � ψt � A3′H3′,

(33)

and, similarly,

T � −1
�γ
∑2
m�1

ζmAmHm,

T′ � − 1
�γ′ ∑2m�1

ζm′ Am′Hm′ ,
(34)

the corresponding expressions are given in Eqs. 21, 32. From
Eq. 25, the incident S wave is inhomogeneous, and so are the
reflected and transmitted S waves. The properties of the
reflected and transmitted longitudinal waves generated by an
incident S wave are analogous to those of the incident P wave in
Eqs. 26, 30.

3.2 Zoeppritz Equations
At z = 0, the boundary conditions to be satisfied are the continuity
of temperature, heat flux, and normal and tangential
displacements and stresses (Ignaczak and Ostoja-Starzewski,
2010), i.e.,

T � T′, �κ
zT

zz
� �κ′zT′

zz
, uz � uz′, ux � ux′ , σzz

� σzz′ , σxz � σxz′ . (35)
Substituting Eqs. 2, 20 into the boundary conditions

(35), we get the Knott equations (Knott, 1899) for the incident
P wave

a11 a12 a13 a14 a15 a16
a21 a22 a23 a24 a25 a26
a31 a32 a33 a34 a35 a36
a41 a42 a43 a44 a45 a46
a51 a52 a53 a54 a55 a56
a61 a62 a63 a64 a65 a66

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

A1/A0

A2/A0

A3/A0

A1′/A0

A2′/A0

A3′/A0

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
�

a17
a27
a37
a47
a57
a67

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦, (36)

where
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a11 � a12 � −a14 � −a15 � −a17 � p0 , a13 � −q3 , a16 � −q3′,
a21 � a27 � q0 , a22 � q2 , a23 � −a26 � p0 , a24 � q1′, a25 � q2′,
a31 � a32 � −a37 � ρω2 − 2μp2

0 , a33 � 2μp3q3 ,

a34 � − ρ′ω2 − 2μ′p1′
2( ), a35 � − ρ′ω2 − 2μ′p2′

2( ), a36 � 2μ′p3′q3′,

a41 � a47 � 2p0q0 , a42 � 2p2q2 , a43 � − q23 − p2
3( ), a44 � 2

μ′
μ
p1′q1′,

a45 � 2
μ′
μ
p2′q2′, a46 � μ′

μ
q3′

2 − p3′
2( ),

a51 � a57 � q0 λ + 2μ( ) p2
0 + q20( ) − ρω2[ ], a52 � q2 λ + 2μ( ) p2

2 + q22( ) − ρω2[ ],
a53 � a56 � 0, a54 � �κ′�γ

�κ�γ′q1′ λ′ + 2μ′( ) p1′
2 + q1′

2( ) − ρ′ω2[ ],
a55 � �κ′�γ

�κ�γ′q2′ λ′ + 2μ′( ) p2′
2 + q2′

2( ) − ρ′ω2[ ],
a61 � −a67 � λ + 2μ( ) p2

0 + q20( ) − ρω2 , a62 � λ + 2μ( ) p2
2 + q22( ) − ρω2 , a63 � a66 � 0,

a64 � − �γ

�γ′ λ′ + 2μ′( ) p1′
2 + q1′

2( ) − ρ′ω2[ ], a65 � − �γ

�γ′ λ′ + 2μ′( ) p2′
2 + q2′

2( ) − ρ′ω2[ ].

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
(37)

Similarly, we obtain the equations for the incident S wave,
where A0 is its amplitude in Eq. 36, and

a11 � a12 � −a14 � −a15 � p0 , a13 � a17 � −q0 , a16 � −q3′,
a21 � q1 , a22 � q2 , a23 � −a26 � −a27 � p0 , a24 � q1′, a25 � q2′,
a31 � a32 � ρω2 − 2μp2

0 , a33 � a37 � 2μp0q0 , a34 � a35 � − ρ′ω2 − 2μ′p2
0( ),

a36 � 2μ′p3′q3′,
a41 � 2p1q1 , a42 � 2p2q2 , a43 � −a47 � p2

0 − q20 ,

a44 � 2
μ′
μ
p1′q1′, a45 � 2

μ′
μ
p2′q2′, a46 � −μ′

μ
p3′

2 − q3′
2( ),

a51 � q1 λ + 2μ( ) p2
1 + q21( ) − ρω2[ ], a52 � q2 λ + 2μ( ) p2

2 + q22( ) − ρω2[ ],
a53 � a56 � a57 � 0, a54 � �κ′�γ

�κ�γ′q1′ λ′ + 2μ′( ) p1′
2 + q1′

2( ) − ρ′ω2[ ],
a55 � �κ′�γ

�κ�γ′q2′ λ′ + 2μ′( ) p2′
2 + q2′

2( ) − ρ′ω2[ ],
a61 � λ + 2μ( ) p2

1 + q21( ) − ρω2 , a62 � λ + 2μ( ) p2
2 + q22( ) − ρω2 ,

a63 � a66 � a67 � 0, a64 � − �γ

�γ′ λ′ + 2μ′( ) p1′
2 + q1′

2( ) − ρ′ω2[ ],
a65 � − �γ

�γ′ λ′ + 2μ′( ) p2′
2 + q2′

2( ) − ρ′ω2[ ].

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
(38)

Using the relations between displacement amplitudes and
their ratios, we obtain

Rm � Am

A0

km
k0

� Rm| |exp iϑm( ), Tm � Am′
A0

km′
k0

� Tm| |exp iϑm′( ),
(39)

where k0, km and km′ (m = 1, 2, 3) represent the complex
wavenumbers of incident, reflected and transmitted waves
respectively. |Rm| and |Tm| define the reflection and transmission
amplitudes, while ϑm and ϑm′ are the relative phase angles.

4 ENERGY-FLOW BALANCE

Let us consider the balance of energy flux between the incident
wave and the reflected and transmitted waves at a surface element
of unit area where the energy flux is the scalar product of the
surface traction and particle velocity. The time-averaged energy
flux is (Carcione, 2014, Eq. 3.106)

〈Fi〉 � 1
2
Re σ ij _uj*( ), i, j � x, z, (40)

where 〈 · 〉 denotes a temporal average over a period, the star is
the complex conjugate, and each component is the sum of the
components of the respective waves. The energy flux perpendicular
to the interface is continuous across the interface, because of the
continuity of stresses and displacements. Following Sharma (2018)
andWang E. et al. (2020), we consider the energy partition in the z-
direction (perpendicular to the interface plane)

〈Fz〉 � 1
2
Re σzz _uz* + σzx _ux*( ). (41)

In the following expressions, we have omitted the subscripts z for
simplicity. Denoting by 〈Fi〉 the energy flux of the incidence
medium, we obtain

〈Fi〉 � 〈Fi
ab〉 � 1

2
Re Pi

4×2 · Qi*2×4( ), a, b � 0, 1, 2, 3, (42)
where

Pi
4×2 �

σ 0( )
zz σ 0( )

xz

σ 1( )
zz σ 1( )

xz

σ 2( )
zz σ 2( )

xz

σ 3( )
zz σ 3( )

xz

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦, Qi
2×4 � _u 0( )

z _u 1( )
z _u 2( )

z _u 3( )
z

_u 0( )
x _u 1( )

x _u 2( )
x _u 3( )

x

[ ], (43)

where the diagonal element a = b = 0 of this matrix corresponds to
the energy flux of the incident wave, and a = b = 1, 2, 3 to the
reflected P, T, and S waves, whereas the off-diagonal elements are
the interference fluxes between the incident and reflected waves.

In the transmission medium, the energy flux can be express as

〈Ft〉 � 〈Ft
ab〉 � 1

2
Re Pt

3×2 · Qt*2×3( ), a, b � 1, 2, 3, (44)
where

Pt
3×2 �

σ ′ 1( )
zz σ ′ 1( )

xz

σ ′ 2( )
zz σ ′ 2( )

xz

σ ′ 3( )
zz σ ′ 3( )

xz

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦, Qt
2×3 � _u′ 1( )

z _u′ 2( )
z _u′ 3( )

z

_u′ 1( )
x _u′ 2( )

x _u′ 3( )
x

[ ]. (45)

The diagonal elements are the energy fluxes of the transmitted P,
T, and S waves. By scaling the energy flux with that of the incident
wave Fi

00, the relative energy ratios are

Ei
ab �

〈Fi
ab〉

〈Fi
00〉

, a, b � 0, 1, 2, 3( ), Et
ab �

〈Ft
ab〉

〈Fi
00〉

, a, b � 1, 2, 3( ).
(46)

According to Eqs. 46 and 43 can be rewritten as

Pi
4×2 �

2μp2
0 − ρω2 2μp0q0

A1

A0
2μp2

1 − ρω2( ) −A1

A0
2μp1q1

A2

A0
2μp2

2 − ρω2( ) −A2

A0
2μp2q2

−A3

A0
2μp3q3

A3

A0
μ q23 − p2

3( )

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

Qi
2×4 � ω

−q0 A1

A0
q1

A2

A0
q2

A3

A0
p3

p0
A1

A0
p1

A2

A0
p2 −A3

A0
q3

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦.

(47)
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Eq. 45 is

Pt
3×2 �

A1′
A0

2μ′p1′
2 − ρ′ω2( ) A1′

A0
2μ′p1′q1′

A2′
A0

2μ′p2′
2 − ρ′ω2( ) A2′

A0
2μ′p2′q2′

A3′
A0

2μ′p3′q3′
A3′
A0

μ q3′
2 − p3′

2( )

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

Qt
2×3 � ω

−A1′
A0

q1′ −A2′
A0

q2′
A3′
A0

p3′

A1′
A0

p1′
A2′
A0

p2′
A3′
A0

q3′

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦.

(48)

The energy-balance equation in the z-direction at the interface
is (Carcione, 2014, Eq. 6.116; Wang E. et al., 2020)

Esum � ∑3
a�0
∑3
b�0

Ei
ab − Ei

00
⎛⎝ ⎞⎠ −∑3

a�1
∑3
b�1

Et
ab � −1, (49)

where the sum of the vertical energy ratios result from the
interaction between the incident wave and the three reflected
waves, as well as interactions among the three reflected
waves, is

Er
ir �∑3

b�1
Er
b0 + Er

0b + ∑3
a�1

Er
ab − Er

bb
⎛⎝ ⎞⎠⎡⎢⎢⎣ ⎤⎥⎥⎦. (50)

Similarly, the corresponding vertical interference energy ratio for
the transmitted waves is

Et
ir �∑3

b�1
∑3
a�1

Et
ab − Et

bb
⎛⎝ ⎞⎠. (51)

Let us denote Eir � Ei
ir − Et

ir. The energy-flow balance verifies the
reflection and transmission coefficients.

5 EXAMPLES

The effects of thermoelasticity and the inhomogeneity angle
are illustrated by considering the magnitudes, phase angles
and energy of the reflection and transmission coefficients. We
assume the following reference properties of the incidence
and transmission media:Incidence medium: ρ = 2054 kg/m3, c
= 960 kg/(m s2 K), �κ = 10.5 m kg/(s3 K), �α = 0.33 × 10–5 K−1, T0

= 300 K, v0 = 2256.5 m/s, vS = 1302 m/s.Transmission
medium: ρ′ = 2600 kg/m3, c′ = 960 kg/(m s2 K), �κ′ =
10.5 m kg/(s3 K), �α′ = 0.33 × 10–5 K−1, T0′ = 300 K, v0′ =
3636.9 m/s, vS′ = 2100 m/s.

v0 and vS are the elastic longitudinal and transverse wave
velocities, consistent with Eqs 114 and 19. The relaxation
time is

τ � �κ

cv20
, (52)

(Rudgers, 1990), equal to 2.15 and 0.83 ns for the incidence and
transmission media, respectively. The corresponding velocities
and densities used here are those of Pilant (1979), whose

FIGURE 4 | Absolute values of the reflected P (A), reflected S (B), transmitted P (C) and transmitted S (D) waves as a function of the P-wave incidence angle,
corresponding to the elastic (black lines) and thermoelastic (color lines) cases at 100 MHz for different values of γ0.
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scattering coefficients in the isothermal case are represented in
his Figures 12-3 and 12-4, while the thermoelasticity
properties are taken from Carcione et al. (2019).

Figures 2, 3 show the phase velocities and attenuation
coefficients of the P and T waves in the incidence and
transmission media, as a function of frequency, respectively.

FIGURE 5 | Same as Figure 4 but for the phase angles of the reflected P (A), reflected S (B), transmitted P (C) and transmitted S (D) waves.

FIGURE 6 | Same as Figure 4 but for the square root of the energy ratios of the reflected P (A), reflected S (B), transmitted P (C) and transmitted S (D) waves,
considering the flux in the z-direction.
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The solid, dashed and dotted solid lines correspond to
inhomogeneity angles of 0°, 40° and 80°, and the
superscripts LS and B represent the Lord-Shulman and
classical-Biot theories, respectively. We can see that the
low-frequency behavior is almost the same, the T wave is
strongly dissipative at low frequencies (Figures 2D, 3D), and
that the P wave has a relaxation peak (Figures 2B, 3B) caused
by the thermal effects at a relaxation frequency of
approximately

fr � 1
2πτ

. (53)

The LS model predicts a finite high-frequency limit velocity
and a lower velocity dispersion of the T wave, which is wave-

like at high frequencies. Both the P and T waves have abnormal
velocity behaviors at and beyond the inflexion point in the B
case (velocity decreases) and T waves have infinite speed at
high frequencies (Figures 2C, 3C). The thermal relaxation
hardly affects the wave propagation at relatively low
frequencies. It can be seen that inflexion points in the
P-wave velocity occur at a frequency of approximately
100 MHz.

5.1 P-Wave Incidence
Figures 4, 5 show the absolute values of the reflection and
transmission coefficients and the corresponding phase angles
as a function of the incidence angle in the case of an incident
P wave with a frequency of 100 MHz. The elastic case is also

FIGURE 7 | Square root of the interference energy (A) and the sum of the energy ratios (energy balance) (B) for an incident P wave (see Figure 4).

FIGURE 8 | Absolute values of the reflected P (A), reflected S (B), transmitted P (C) and transmitted S (D) waves as a function of the S-wave incidence angle,
corresponding to the elastic (black lines) and thermoelastic (red line) cases at 100 MHz for different values of γ0.
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indicated. If the two media are elastic, there is a critical angle at
approximately 40°. If the incident wave travels along the z-
direction (vertical), an incident P wave will generate reflected

and transmitted longitudinal waves without conversion to the
shear modes. The incident P wave is homogeneous when γ0 = 0°,
and the behavior of the curves is close to that of the elastic case.

FIGURE 9 | Same as Figure 8 but for the phase angles of the reflected P (A), reflected S (B), transmitted P (C) and transmitted S (D) waves.

FIGURE 10 | Same as Figure 8 but for the square root of the energy ratios of the reflected P (A), reflected S (B), transmitted P (C) and transmitted S (D) waves,
considering the flux in the z-direction.
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We can see a pseudo critical angle at around 33° in the LS curves.
Note that there is a converted S wave when the propagation angle
is 0° and γ0 is non-zero as shown in Figures 4B,D, the effects on
the magnitudes are relatively strong at the critical angle, and the
phases of the reflected P wave are reversed at large incidence
angles.

The energy ratios are illustrated in Figure 6. Here, we plot the
square root of the relative energy ratios to show the reflection and
transmission, which is closer to the seismic response. The elastic
phase and square root of the energy ratios are presented in Pilant
(1979, Figure 12-3) and our results agree. The inhomogeneity
angle affects the magnitudes of the reflected and transmitted
waves (Figure 4) and consequently the energy partitions. In the
elastic case, the energy flux perpendicular to the interface of the
transmitted P wave (Figure 6C) vanish at the critical angle,
because the wave propagates along the interface, carrying no
energy flux in the vertical direction. The influence of γ0 on the

reflected P wave (Figure 6A) is evident at the critical angle, while
the effect on the other waves is maximum near grazing incidence.
The sum of all the energy ratios is −1, which implies energy
conservation at the interface as shown in Figure 7.

5.2 S-Wave Incidence
Next, we consider an incident S wave. Figures 8, 9 show the
absolute values of the reflection and transmission coefficients and
phase angles as a function of the incidence angle, and Figure 10
the corresponding energy ratios. Because the S-wave
wavenumber kS is real (see Eq. 19), the inhomogeneity angle
has no effect (see Eq. 25) as can be seen in Figures 8–11 (the three
curves overlap). The energy of the reflected and transmitted P
waves, at approximately 35° and 20° in Figures 10A,C, vanishes in
the elastic (lossless) case, where the wave propagates along the
interface and, as for the P wave, the plane wave is evanescent. The
curves in Figure 10 are identical to those of Pilant (1979, Figure

FIGURE 12 | Absolute values of the reflected P (A), reflected T (B), reflected S (C), transmitted P (D), transmitted T (E) and transmitted S (F)waves as a function of
the P-wave incidence angle at 100 MHz and γ0 = 40°, where we vary the thermal conductivity of the incidence media.

FIGURE 11 | Square root of the interference energy (A) and the sum of the energy ratios (B) (see Figure 8).
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12-4). At the S-wave critical angle (38°), the energy ratio of the
reflected S wave is 1 (Figure 10B), whereas the energy of other
waves is zero, since the wave propagating along the interface
carries no energy vertically. In the LS case, the behavior is
analogous to the elastic case. However, there is transmission
for all incidence angles and non-zero interference energy.
Moreover, significant energy conversion occurs, as shown in
Figure 11A, i.e., the LS model predicts more interference
energy than the elastic one. The energy conservation at the
interface is satisfied, as can be seen in Figure 11B. The same
results have been illustrated at the free surface of double-porosity

and two double-porosity media (Sharma, 2013; Wang E. et al.,
2020).

5.3 Effect of the Thermal Conductivity
(Relaxation Time)
Next, we study the effect of the relaxation time (see Eqs. 52, 53.
Increasing �κ, we obtain a higher τ and a lower fr (Carcione et al.,
2019; Wang Z.-W. et al., 2020). The thermal conductivities of the
incidence medium are assumed to be 0.5 m kg/(s3 K), 10.5 m kg/
(s3 K) and 20.5 m kg/(s3 K), respectively, and that of the

FIGURE 14 | Same as Figure 12 but for the absolute values of the reflected P (A), reflected T (B), reflected S (C), transmitted P (D), transmitted T (E) and
transmitted S (F) waves as a function of the S-wave incidence angle.

FIGURE 13 | Same as Figure 12 but for the square root of the energy ratios of the reflected P (A), reflected T (B), reflected S (C), transmitted P (D), transmitted
T (E) and transmitted S (F) waves, considering the flux in the z-direction.
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transmission medium is 10.5 m kg/(s3 K). Figures 12–15 show
the effects of �κ on the amplitudes and energy ratios. We observe
that it affects more the T wave conversion in the case of an
incident P wave (see Figures 12B,C). Higher �κ enhances the T
waves at the expense of the S waves for an incident S wave as
shown in Figures 14, 15, where the T wave is weaker attenuated,
according to Eqs. 52, 53 and curves of Figures 2D, 3D.

6 CONCLUSION

We obtain the reflection and transmission coefficients at an
interface separating two thermoelastic media, whose properties
are based on the Lord-Shulman theory. Comparing these
coefficients with those of the elastic (lossless) case, shows that
critical angles, amplitudes and energy ratios, including interference
fields, are affected by the presence of the thermal wave. Since the
presence of this wave makes the media anelastic, the propagation
and attenuation vectors of the incident wave do not necessarily
coincide (inhomogeneous plane wave). The effect of the
inhomogeneity angle is more noticeable at the critical angle and
near grazing incidence angle for an incident P wave, and has no
effect for an incident S wave, since the wavenumber of this wave is
real. Then, we analyze the influence of the thermal conductivity
(relaxation time) of the incidence media, which shows that this
property affects the converted thermal wave more than the others,
as expected. The calculations have been verified with the
conservation of energy. This study is aimed to further improve
the understanding of the behavior of the internal structure of the
Earth, where the temperature effects are important.
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APPENDIX A

Equations of Momentum Conservation and
Heat Conduction
The strain (ϵ)-displacement (u) and constitutive relations (Biot,
1956) are

2ϵij � ui,j + uj,i, (A.1)
and

σ ij � 2μϵij + λϵ − �γT( )δij + fij, (A.2)
respectively, where ϵ = ϵii, σij are the stress components, δij are the
Kronecker components and fij are external stress forces, and the
Einstein summation is asssumed.

The components of the equation of momentum
conservation are

σ ij,j � ρ€ui + fi, (A.3)
where fi are the components of external body forces. Substituting
the constitutive relations (A.2) into Eq. A.3 and using (A.1), in
the absence of external body and stress forces, we obtain

λ + μ( )uj,ji + μui,jj − �γT,i − ρ€ui � 0. (A.4)
On the other hand, the law of heat conduction is

�κT,jj − c _T + τ €T( ) − �γT0 _uj,j + τ€uj,j( ) − q � 0. (A.5)
where T is the tempeature field and q a heat source.
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