
Simulation of thermoelastic waves based on the Lord-Shulman theory

Wanting Hou1, Li-Yun Fu2, José M. Carcione3, Zhiwei Wang1, and Jia Wei4

ABSTRACT

Thermoelasticity is important in seismic propagation due to the
effects related to wave attenuation and velocity dispersion. We
have applied a novel finite-difference (FD) solver of the Lord-
Shulman thermoelasticity equations to compute synthetic seismo-
grams that include the effects of the thermal properties (expansion
coefficient, thermal conductivity, and specific heat) compared
with the classic forward-modeling codes. We use a time splitting
method because the presence of a slow quasistatic mode (the ther-
mal mode) makes the differential equations stiff and unstable for
explicit time-stepping methods. The spatial derivatives are com-
puted with a rotated staggered-grid FD method, and an unsplit

convolutional perfectly matched layer is used to absorb the waves
at the boundaries, with an optimal performance at the grazing
incidence. The stability condition of the modeling algorithm is
examined. The numerical experiments illustrate the effects of
the thermoelasticity properties on the attenuation of the fast
P-wave (or E-wave) and the slow thermal P-wave (or T-wave).
These propagation modes have characteristics similar to the fast
and slow P-waves of poroelasticity, respectively. The thermal
expansion coefficient has a significant effect on the velocity
dispersion and attenuation of the elastic waves, and the thermal
conductivity affects the relaxation time of the thermal diffusion
process, with the T mode becoming wave-like at high thermal
conductivities and high frequencies.

INTRODUCTION

The theory of thermoelasticity describes the coupling between
elastic deformation and temperature, based on the classic theory of
elasticity and the heat-conduction equation. The theory has been con-
sidered in earthquake seismology (Boschi, 1973), geothermal explo-
ration (Jacquey et al., 2015), and in the exploration of high-pressure,
high-temperature deep reservoirs of hydrocarbon source rocks (Fu,
2012, 2017). The classic theory has been established by Biot (1956a)
based on a parabolic equation of heat conduction. However, this theory
predicts infinite velocities. The Lord-Shulman (LS) model overcomes
this problem (Lord and Shulman, 1967) by transforming the heat equa-
tion into a hyperbolic one, including a relaxation time. The theory pre-
dicts an additional P-wave called the thermal wave (T-wave) having
characteristics similar to the slow P-wave of poroelasticity (Biot,

1956b). The existence of the T-wave has been verified in experimental
measurements in solid helium (Ackerman et al., 1966) and sodium
fluoride (NaF) crystals (Jackson et al., 1970; McNelly et al., 1970).
Numerical simulation of seismic wave propagation is an impor-

tant tool for studying geophysical exploration such as geothermal
exploration and earthquake seismology. Including thermal effects is
important for modeling the effects of attenuation and velocity
dispersion. Several simulation techniques are reported in the elastic
case, such as the finite-difference (FD) (Zhang et al., 2014), finite-
element (Serón et al., 1990), boundary elements (Fu and Mou,
1994; Hu et al., 2009), and spectral (Faccioli et al., 1997) methods.
In particular, Veres et al. (2013) and Carcione et al. (2019a, 2019b)
include LS thermoelasticity effects, based on staggered FD grids
and the Fourier pseudospectral method, respectively. Moreover,
Green’s functions are available (Wang et al., 2020; Wei et al.,
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2020). Shaw and Mukhopadhyay (2011) study thermoelastic waves
with thermal relaxation in an isotropic micropolar plate.
Staggered grids can effectively improve the accuracy of FD meth-

ods and are widely used in numerical simulations. However, in the
presence of strong heterogeneities, standard staggered grids (SSGs)
cause instabilities and boundary problems (Virieux, 1986). Here, we
use rotated staggered grids (RSGs) (Saenger et al., 2000; Saenger and
Shapiro, 2002), which can handle these problems, even for high-con-
trast discontinuities. Moreover, we implement effective absorbing
boundaries based on the unsplit convolutional perfectly matched layer
(CPML) method, which requires limited memory storage, has good
computational efficiency, and removes spurious modes at the grazing
incidence and low-frequency energy (Komatitsch and Martin, 2007;
Martin and Komatitsch, 2009; Wang et al., 2019). The equations,
being numerically stiff, are integrated in time with a time splitting
or partition method (Carcione and Quiroga-Goode, 1995).
The effect of thermal properties (specific heat, thermal conduc-

tivity, and coefficient of thermal expansion) on wave velocity and
attenuation are studied with a plane-wave analysis. We first com-
pute snapshots in a 2D homogeneous medium and a heat source,
and we analyze the physics of propagation. Finally, we consider
heterogeneous models consisting of layers and volcanoes.

THEORY OF THERMOELASTICITY

Biot (1956a) establishes the classic theory of thermoelasticity, in
which a parabolic equation of the heat conduction equation leads
to unphysical solutions, such as unrealistic infinite velocities as a func-
tion of frequency. Introducing a relaxation time into the classic equa-
tions, Lord and Shulman (1967) obtain a hyperbolic heat equation that
overcomes this problem. It is worth mentioning that there are two the-
ories of hyperbolic thermoelasticity (Ignaczak and Ostoja-Starzewski,
2010), namely, the LS model with one relaxation time and the Green-
Lindsay model (Green and Lindsay, 1972) with two relaxation times.
The latter is a generalization by including another (phenomenological)
relaxation time in the coupling term of stress-strain relations.
The following heat equation relates the strain ϵ and temperature Tas

κΔT ¼ cð _T þ τT̈Þ þ γT0ð_ϵþ τϵ̈Þ þ q; (1)

where τ is the relaxation time, κ is the thermal conductivity, c is the
specific heat of the unit volume in the absence of deformation, T0 is
the reference absolute temperature, γ is the thermal modulus, q is the
external heat flux, Δ is the Laplacian operator, and the dot above a
variable denotes the time differentiation. The thermal modulus is re-
lated to the Lamé constants λ and μ through the linear thermal expan-
sion coefficient αT as

γ ¼ ð3λþ 2μÞαT: (2)

The relaxation time represents the time lag to establish a steady-
state heat conduction in an element of volume when a temperature
gradient is suddenly imposed on the element. As formulated in the
poroelasticity theory, which introduces fluid properties to stress-
strain relationships, thermoelasticity considers a temperature into
it for coupling. Therefore, the relaxation time relevant to thermal
properties in elastic media can be expressed as (Rudgers, 1990)

τ ¼ κρ

cðλþ 2μÞ ; (3)

where ρ is the mass density. The classic theory of thermoelasticity
neglects the time lag. If the medium is subjected to a mechanical or
thermal perturbation, the effects of the perturbation are felt at an
infinite distance from the source. This causes unphysical behavior
of thermoelastic waves propagating by an infinite velocity.
We use the Einstein implicit summation as follows. The constit-

utive relations for stress-strain given by Biot (1956a) are

σij ¼ 2μϵij þ ðλϵ − γTÞδij þ fij; (4)

where σij and ϵij (i,j = x, y, z) denote the components of the stress and
strain tensors, respectively, fij is the external stress forces, δij is the
Kronecker-delta components, and ϵð¼ ϵiiÞ is the bulk strain, with

2ϵij ¼ ui;j þ uj;i; (5)

where ui denotes the components of the displacement field and sub-
script “,i” denotes a spatial derivative. The equations of momentum
conservation are

σij;j ¼ ρüi þ fi; (6)

where fi denotes the components of the external body force. Thus,
using the strain-displacement relations (equation 5) and substituting
the constitutive relations (equation 4) into the momentum equations
(equation 6), we obtain the equations coupling the elastic and temper-
ature fields,

ðλþ μÞuj;ji þ μui;jj − γT;i − ρüi ¼ 0;

κT;jj − cð _T þ τT̈Þ − γT0ð _uj;j þ τüj;jÞ − q ¼ 0: (7)

Unlike classic thermoelasticity, equation 7 couples mechanical mo-
tions and time-relaxation thermal perturbations, implying the propaga-
tion of finite-velocity signals. In fact, equation 7 for the coupling of
strains and temperature fields is formally analogous to the case of po-
roelasticity for the coupling of strains and fluid pressures (Norris,
1992). The mathematical analogy in the constitutive equations of po-
roelasticity and thermoelasticity implies that the elastic solid response
couples with a dissipative process, namely, hydraulic and thermal con-
ductions, respectively.

NUMERICAL METHODOLOGY

Spatial-derivative approximation and time stepping

SSG-FDmethods arewidely used in seismology to simulate elastic
wave propagation, but RSG-FD methods achieve better performance
in high-contrast heterogeneous media. The velocity components are
defined in one grid, and the stress components, temperature, and
physical properties are defined in another (staggered) grid (see Fig-
ure 1). Compared to the SSG-FD mesh, the RSG-FD grid consists of
rhombi instead of rectangles. As indicated by Saenger et al. (2000),
rotating the entire grid by 45°, the direction to derive spatial deriv-
atives follows the diagonal of an evenly sampled mesh.
As shown in Figure 1, we rotate the direction of the spatial

derivatives from the horizontal and vertical directions x and z to the
diagonal directions ~x and ~z as

~x ¼ Δx
Δr

x −
Δz
Δr

z;

~z ¼ Δx
Δr

xþ Δz
Δr

z; (8)
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where Δr denotes the diagonal length of the grid elementffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Δx2 þ Δz2

p
. Hence, the spatial derivatives along the new diagonal

directions are

∂
∂x

¼ Δr
2Δx

�
∂
∂~z

þ ∂
∂~x

�
;

∂
∂z

¼ Δr
2Δz

�
∂
∂~z

−
∂
∂~x

�
: (9)

Analogous to equation 9, the 2Nth-order derivatives are shown in
equation A-1. The first-order velocity-stress-temperature formu-
lation of the 2D thermoelasticity equations is implemented from
equations 1 to 6 as

_Vx ¼ ρ−1ð∂xσxx þ ∂zσxz − fxÞ;
_Vz ¼ ρ−1ð∂xσxz þ ∂zσzz − fzÞ;
_σxx ¼ ðλþ 2μÞ∂xVx þ λ∂zVz − γϕþ _fxx;

_σzz ¼ ðλþ 2μÞ∂zVz þ λ∂xVx − γϕþ _fzz;

_σxz ¼ μð∂zVx þ ∂xVzÞ þ _fxz;

_T ¼ ϕ;

_ϕ¼ −
γT0

cτ
ð∂xVx þ ∂zVzÞ−

γT0

cρ
ð∂xxσxx þ ∂zzσzz þ 2∂xzσxzÞ

þ κ

cτ
ð∂xxT þ ∂zzTÞ−

1

τ
ϕ− q 0; (10)

where q 0 ¼ ðq∕cτÞ − ðγT0∕cρÞðfx;x þ fz;zÞ. This set of equations
can be combined into a matrix system as

_vþ s ¼ Mv; (11)

where the 7 × 7 matrix Mv is given by

Mv¼

2
66666666666666664

0 0 ∂x
ρ 0

∂z
ρ 0 0

0 0 0
∂z
ρ

∂x
ρ 0 0

ðλþ2μÞ∂x λ∂z 0 0 0 0 −γ

λ∂x ðλþ2μÞ∂z 0 0 0 0 −γ

μ∂z μ∂x 0 0 0 0 0

0 0 0 0 0 0 1

−γT0

cτ ∂x −γT0

cτ ∂z −γT0

cρ ∂xx −γT0

cρ ∂zz −2γT0

cρ ∂xz
κ
cτð∂xxþ∂zzÞ −1

τ

3
77777777777777775

×

2
66666666666666664

Vx

Vz

σxx

σzz

σxz

T

ϕ

3
77777777777777775

; (12)

and the source vector is

s ¼ ½ fx∕ρ fz∕ρ − _fxx − _fzz − _fxz 0 q 0 �⊤: (13)

Then, we illustrate the partition method of Carcione and Quiroga-
Goode (1995) to perform the time stepping. In this algorithm, equa-
tion 11 is solved in two steps. First, the matrix operator M is par-
titioned as

M ¼ Mr þMs; (14)

where

Ms ¼

2
666666664

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 −γ
0 0 0 0 0 0 −γ
0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 − 1
τ

3
777777775
; (15)

and the time integration from t to tþ dt for this matrix is solved
analytically to obtain the intermediate solutions

ðσnþ1
xx Þ� ¼ σnxx þ τγðe−Δt

τ − 1Þϕn;

ðσnþ1
zz Þ� ¼ σnzz þ τγðe−Δt

τ − 1Þϕn;

ðϕnþ1Þ� ¼ e−
Δt
τ ϕn: (16)

For time stepping, we use the time-splitting algorithm of Carcione
et al. (2019b). Discretizing time as t ¼ ndt, where dt is the time
step, we have

Figure 1. The RSG for the discretization of the thermoelasticity
equations. The temperature T and stress components σij are discre-
tized on the same grid. The sizes of the rectangular elementary cells
of the grid are Δx and Δz, and the diagonal directions ~x and ~z are
obtained by rotating the horizontal and vertical directions x and z.
The grid of the velocity components Vi is shifted by a half grid in
both directions, i.e., Δx∕2 and Δz∕2.
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Vnþ1
x ¼ Vn

x þ dt½∂xðσnþ1
xx Þ� þ ∂zσnxz�∕ρ;

Vnþ1
z ¼ Vn

z þ dt½∂zðσnþ1
zz Þ� þ ∂xσnxz�∕ρ;

σnþ1
xx ¼ ðσnþ1

xx Þ� þ dt½ðλþ 2μÞ∂xVn
x þ λ∂zVn

z �;
σnþ1
zz ¼ ðσnþ1

zz Þ� þ dt½ðλþ 2μÞ∂zVn
z þ λ∂xVn

x �;
σnþ1
xz ¼ σnxz þ dt · μð∂zVn

x þ ∂xVn
z Þ;

Tnþ1 ¼ Tn þ dtðϕnþ1Þ�;

ϕnþ1 ¼ ðϕnþ1Þ� þ dt
cτ

½κð∂xx þ ∂zzÞTn − γT0ð∂x þ ∂zÞVn
x

−
τγT0

ρ
ð∂xxðσnþ1

xx Þ� þ ∂zzðσnþ1
zz Þ� þ 2∂xzσnxzÞ�; (17)

where the eighth- and second-order FD approximations are used for
the space and time derivatives, respectively. The variables indicated
with an asterisk correspond to the intermediate solutions at each
time step, as illustrated in equation 16.

Absorbing boundaries

The modeling method requires efficient absorbing boundaries to
avoid unphysical reflections. The PML is a suitable technique for all
incidence angles, in particular the computationally efficient unsplit
CPML, illustrated in Appendix B. The algorithm is developed by
modifying the complex coefficient sx and introducing the auxiliary
variables dx, αx, and χx, where dx denotes the damping profile and
χx ≥ 1 and αx ≥ 0 are the two real variables. From equation B-2, we
obtain

∂~x¼
1

sx
∂x¼

�
1

χx
−

dx
χ2xðiωþαxþdx

χx
Þ

�
∂x¼

1

χx
∂xþ ~ψx; (18)

where i ¼ ffiffiffiffiffiffi
−1

p
. The specific derivation and detailed implementa-

tion of this equation are given in Appendix B. Let ψx denote the
inverse of ~ψx; the iterative solution of ψx is shown in equa-
tion B-6. We obtain

∂~x ¼
1

χx
∂x þ ψx: (19)

Then, applying an RSG-FD scheme with a CPML absorbing
boundary to the velocity-stress-temperature equations, we obtain
the final formulation of the thermoelasticity equations:

ρ _Vx¼
1

χx
∂xσxxþψx;σxx þ

1

χz
∂zσxzþψ z;σxz ;

ρ _Vz¼
1

χx
∂xσxzþψx;σxz þ

1

χz
∂zσzzþψ z;σzz ;

_T¼ϕ;

_σxx¼ðλþ2μÞ
�
1

χx
∂xVxþψx;Vx

�
þλ

�
1

χz
∂zVzþψ z;Vz

�
−γϕ;

_σzz¼ðλþ2μÞ
�
1

χz
∂zVzþψ z;Vz

�
þλ

�
1

χx
∂xVxþψx;Vx

�
−γϕ;

_σxz¼μ

�
1

χx
∂xVzþψx;Vz

þ 1

χz
∂zVxþψ z;Vx

�
: (20)

DISPERSION, ATTENUATION, AND
NUMERICAL STABILITY

Velocity dispersion and attenuation

The phase velocity Vp and attenuation factor A of the two longi-
tudinal waves are computed from the complex velocity Vc obtained
in Appendix C as

Vp ¼
�
Re

�
1

Vc

��
−1
; A ¼ −ω Im

�
1

Vc

�
: (21)

Deresiewicz (1957) introduces an attenuation coefficient, which
is

L ¼ 4π
AVp

ω
: (22)

Stability analysis

Numerical stability is required to obtain the solution. For the
velocity-stress-temperature FD equations, second order in time and
2Nth order in space, the stability condition of the rotated and classic
staggered methods is

VE · Δt
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

Δx2
þ 1

Δz2

r
≤

1

C
; (23)

with

C ¼
XN
i¼0

jcij; (24)

where ci denotes the spatial difference coefficients related to the
2Nth order of the spatial derivative and VE is the maximum wave
velocity in the medium. The coefficient of the eighth-order approxi-
mation is C ¼ 1.2863.
In addition to the above condition, the accuracy and stability of

the RSG-FD method are dictated by the number of grid points per
minimum wavelength. In general, for the eighth-order RSG-FD
(Chen et al., 2006), it is

VT

4f0Δh
> 3; (25)

where f0 denotes the source center frequency and Δh denotes the
spatial discretization step, whereas VT is calculated from equa-
tion C-6.

NUMERICAL SIMULATIONS

Influence of the thermoelasticity properties

The phase velocities and attenuation coefficients of the two longi-
tudinal waves are calculated from their complex velocities obtained
as the roots of equation C-3, whereas the shear velocity VS is not
affected in homogeneous media as shown in equation C-2.
In all of the numerical simulations, except where stated other-

wise, the elastic constants are those of Carcione et al. (2019b):
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ρ ¼ 2560 kg∕m3, λ ¼ 4.2 GPa, μ ¼ 6.4 GPa, T0 ¼ 300 K,
αT ¼0.24×10−6 K−1, κ¼9.5mkg∕ðs3KÞ, and c¼146kg∕ðms2KÞ.
We vary these thermal properties (thermal conductivity, thermal ex-
pansion coefficient, and specific heat) to investigate the frequency
dependence of two P-waves (P and T) and an S-wave (S). The three
thermal parameters constitute the basic thermoelastic coefficients of
rock materials that control the propagation characteristics of ther-
moelastic waves. Especially, the thermal conductivity characterizes
the thermophysical property of rocks. It is the most important
parameter because heat transfer in the lithosphere is controlled by
heat conduction. Other thermal properties can be determined from
these three basic parameters.
Figures 2, 3, and 4 show the frequency dependence of phase

velocity and attenuation for the P-, T-, and S-waves. As expected,
the S-wave phase velocity is independent of frequency because the
shear strain is not coupled with the heat equation; that is, the S-
waves are not affected by the temperature. From Figure 2, with three
thermal conductivities in steps of 5 mkg∕ðs3 KÞ, we see that the
relaxation peak of the P-wave moves toward the low frequencies
with increasing thermal conductivity (see Figure 2a), but with the
same width of the peak and maximum attenuation (see Figure 2b).
The relaxation frequency is approximately fr ¼ ωr∕2π ¼ 1∕τ
(Wang and Santamarina, 2007). For the P- and T-waves, the
low- and high-frequency limits do not change by varying the con-

ductivity. Higher conductivity requires longer times or lower
frequencies for the medium to relax, and this behavior can be ob-
served in the snapshots presented subsequently.
Figure 3 illustrates the effect of different thermal expansion

coefficients (varying in steps of 6 × 10−7 K−1) on the frequency
dependence of the phase velocity (Figure 3a) and attenuation
(Figure 3b) for these waves. The thermal expansion coefficient de-
scribes temperature-induced linear or volume changes in rocks. It
characterizes the magnitude of thermal expansion, associated closely
to thermal stresses and strains. The results show that the relaxation
frequencies move toward lower values with increasing thermal ex-
pansion coefficient, as in the case of the thermal conductivity, but
in this case the shift is smaller and the attenuation values are com-
parable. However, the P-wave velocity increases, whereas that of the
T-wave decreases for increasing thermal expansion. Figure 4 shows
the results by varying the specific heat capacity in steps of 40 kg/(m s2

K). Compared with Figure 3, the behavior is the opposite when the
heat capacity increases.
The thermal mode (T-wave) has characteristics similar to the slow

P-wave of poroelasticity. It is diffusive at low thermal conductiv-
ities, but it becomes wave-like for high thermal conductivities. Like
the slow P-wave of poroelasticity, the T-wave is diffusive at low
frequencies. The behavior depends on the thermal conductivity
and specific heat as shown in equation 3, whereas it is related to
the fluid viscosity and permeability ratio in Biot’s case.

P-wave

S-wave

T-wave

T-wave

P-wave

a)

b)

Figure 2. (a) Phase velocity and (b) attenuation coefficient of the
P-, S-, and T-waves as a function of frequency, where we vary the
thermal conductivity in steps of 5 mkg∕ðs3 KÞ.

P-wave

T-wave

T-wave

S-wave

P-wave

a)

b)

Figure 3. (a) Phase velocity and (b) attenuation coefficient of the
P-, S-, and T-waves as a function of frequency, where we vary the
thermal expansion coefficient in steps of 0.6 × 10−6 K−1.

Simulation of thermoelastic waves T159

D
ow

nl
oa

de
d 

05
/1

7/
21

 to
 1

59
.2

26
.1

17
.1

30
. R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

S
E

G
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 T

er
m

s 
of

 U
se

 a
t h

ttp
://

lib
ra

ry
.s

eg
.o

rg
/p

ag
e/

po
lic

ie
s/

te
rm

s
D

O
I:1

0.
11

90
/g

eo
20

20
-0

51
5.

1



Wave simulation in a homogeneous medium

We consider 501 grid points along the horizontal and vertical di-
rections, with a grid size of Δx ¼ Δy ¼ 0.3 mm and Δt ¼ 10 ns.
The source is a Ricker wavelet with a dominant frequency of
0.6 MHz located at the center of the mesh [grid (251, 251)].
For comparison, snapshots of the different field variables with
κ ¼ 9.5 m kg∕ðs3 KÞ and κ ¼ 9500 mkg∕ðs3 KÞ are computed at
t ¼ 16 μs (Figures 5 and 6, respectively). The wavefront of the E-
(or P-) wave travels with the adiabatic velocity VA ¼ 3247 m∕s
and the high-frequency velocities are VEðω→∞Þ ¼ 3749 m∕s and
VTðω→∞Þ ¼ 1878 m∕s. As expected, the S-wave is not present. In
Figure 5, the thermal wave is diffusive, with a high value of the at-
tenuation coefficient (see Figure 2b). On the contrary, the T-wave is
wave-like in Figure 6 because of its negligible attenuation. Two longi-
tudinal waves are coupled here. According to the stress-strain relation-
ships, if αT is equal to zero, the two waves become uncoupled.

CMPL absorbing boundary

Then, we compute 2D snapshots by implementing the CPML
method, in which the thermal conductivity is κ ¼ 9500 mkg∕ðs3 KÞ.
The stress component σzz due to a heat source is obtained at 15 and
30 μs, and the CPML absorbing boundary has a length of 40Δx (see
Figure 7a and 7b, respectively). The source is located at grid point
(400, 100), and it has a central frequency of 0.6MHz.We can see that
the spurious waves disappear at the edges of the model.
Figure 8 compares synthetic seismograms at different receiver lo-

cations, where we can see the absorption effect due to the distinct
thicknesses of the absorbing boundary. For clarity, Figure 9 compares
the traces at the source location, where it is evident that the T-wave is
more damped; otherwise, it becomes stronger. The behavior is also
associated with the thermal parameter and center frequency used for

P-wave

S-wave

T-wave

T-wave

P-wave

a)

b)

Figure 4. (a) Phase velocity and (b) attenuation coefficient of the
P-, S-, and T-waves as a function of frequency, where we vary the
specific heat in steps of 40 kg∕ðms2 KÞ.
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Figure 5. Snapshots at 16 μs of the (a) stress com-
ponent σzz, (b) particle-velocity component Vz,
and (c) temperature field for a heat source with
a center frequency of 0.6 MHz. The thermal con-
ductivity is κ ¼ 9.5 m kg∕ðs3 KÞ.
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Figure 6. The remaining values are the same as in
Figure 5, with κ ¼ 9500 mkg∕ðs3 KÞ.

T160 Hou et al.

D
ow

nl
oa

de
d 

05
/1

7/
21

 to
 1

59
.2

26
.1

17
.1

30
. R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

S
E

G
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 T

er
m

s 
of

 U
se

 a
t h

ttp
://

lib
ra

ry
.s

eg
.o

rg
/p

ag
e/

po
lic

ie
s/

te
rm

s
D

O
I:1

0.
11

90
/g

eo
20

20
-0

51
5.

1



simulation. In this example, we use κ ¼ 9500 mkg∕ðs3 KÞ and
f0 ¼ 0.6 MHz, indicating a negligible attenuation for thermal wave.

Wave simulation in an inhomogeneous medium

An inhomogeneous-layered model with two interfaces is shown in
Figure 10, in which the dominant frequency is 60 Hz. We vary only
the thermal conductivity, whereas the other thermoelastic properties
are those of the previous section. The snapshots are computed at
0.16 s propagation time. The reflected, transmitted, and converted
transmitted waves are denoted by r, t, and tc, respectively; rc is
a converted reflected wave. Even if the model has two flat interfaces,
the wavefield is complex, and it could be more complex in the pres-
ence of S-waves.
Finally, we compute wavefields at 0.6 s in more complex media,

representing volcanoes (Figure 11), where we consider a center

source frequency of f0 ¼ 15 Hz. In Figure 11a, the thermal conduc-
tivities inside and outside the volcano are κ ¼ 1010 m kg∕ðs3 KÞ and
κ ¼ 9.5 m kg∕ðs3 KÞ, respectively. The example in Figure 11b has
these values exchanged. We can see the complex seismic response
generated by the volcanoes. The results indicate that the T-wave can

Figure 7. Snapshots at (a) 10 μs and (b) 15 μs of the σzz
component due to a heat source located at grid point (400, 100).
The CMPL layers of length 40Δx are implemented. The source
center frequency is 0.6 MHz, and the thermal conductivity is
κ ¼ 9500 m kg∕ðs3 KÞ.
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Figure 8. Synthetic seismogram using a CPML
absorbing boundary of length 40Δx: Yrp indicates
the ordinate of the receiver position at (a) 40Δx,
(b) 20 Δx, and (c) 1 Δx, respectively.

Figure 9. Comparison of the traces at the source location, corre-
sponding to the seismograms shown in Figure 8.
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Figure 10. Snapshots at 0.16 s of the σzz component due to a
heat source indicated by a star with f0 ¼ 60 Hz. (a) The upper
and lower half-spaces have κ ¼ 9.5 m kg∕ðs3 KÞ and the layer has
κ ¼ 1010 m kg∕ðs3 KÞ. (b) The snapshot after the values of thermal
conductivity used in (a) are reversed. The images show the direct, re-
flected (r), converted (c), and transmitted (t) waves.
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also be used to map, when possible, the geometry of heterogeneous
thermal bodies.

CONCLUSION

We apply a numerical technique to model wave propagation in a
thermoelastic medium. The algorithm is based on a rotated stag-
gered-grid FD method to compute the spatial derivatives and a par-
tition (splitting) algorithm for time stepping. Reflections from the
model boundaries are damped with an unsplit CPML absorbing
method. The modeling allows us to compute snapshots of the wave-
field and synthetic seismograms. A plane-wave analysis shows how
the thermal properties affect the phase velocities and attenuation
coefficients of the longitudinal elastic and thermal waves, indicating
that introducing heat effects into the wave equation is important.
The longitudinal wave generates temperature gradients leading to
mechanical energy dissipation and heat-conduction absorption,
whereas the heat equation predicts a T-wave analogous to the slow
P-wave of the Biot theory of poroelasticity. In the low-frequency
range, the thermal wave is a diffusive mode especially at low ther-
mal conductivities, whereas it is wave-like at high frequencies. It is
similar to the behavior exhibited in poroelasticity. The modeling
illustrates the wavefield generated by a heat source in homogeneous
and heterogeneous media, in particular, the complex wave pattern
observed even in simple cases, due to the presence of the thermal
wave and multiple mode conversions.
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APPENDIX A

COMPUTATION OF SPATIAL DERIVATIVES
AND TIME STEPPING

Here, we illustrate the RSG-FD algorithm. With 2Nth-order preci-
sion, we have the 2Nth-order derivatives for velocity, stress, and tem-
perature:
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where cn denotes the difference coefficients.

APPENDIX B

CPMLS FOR THE THERMOELASTICITY
EQUATIONS

The CPML is implemented by using complex coordinates as

~x ¼ x −
i
ω

Z
x

0

dxðsÞds (B-1)

and

∂~x ¼
1

sx
∂x; (B-2)

where
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Figure 11. Snapshots at 0.6 s of the σzz component due to a heat
source indicated by a star [grid point (251,251)], with f0 ¼ 15 Hz.
The body is a volcano, corresponding to (a) wave-like and (b) diffusive
T modes, depending on the thermal conductivity. (a) The conductiv-
ities inside and outside the volcano are κ ¼ 1010 m kg∕ðs3 KÞ and
κ ¼ 9.5 m kg∕ðs3KÞ, respectively. (b) The snapshot after the conduc-
tivity values used in (a) are reversed. The images show the direct, re-
flected (r), converted (c), and transmitted (t) waves.
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sx ¼
iωþ dx

iω
¼ 1þ dx

iω
: (B-3)

The extension function is

sx ¼ χx þ
dx

αx þ iω
: (B-4)

In equation 18, ~ψx is written as

i ~ω ~ψx þ
�
αx þ

dx
χx

�
~ψx ¼ −

dx
χ2x

∂x: (B-5)

Let ψx denote the inverse of ~ψx and ψx is
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χxðχxαx þ dxÞ
∂x;

(B-6)

and we use the damping profile

dxðlÞ ¼ dmax

�
l
L

�
m
; (B-7)

with

dmax ¼ −
ðmþ 1ÞVmax

2L
lnðRÞ; (B-8)

where l denotes the distance from the calculation point to the inner
absorbing boundary of the PML region, L is the thickness of the
PML layer, m is the order of the polynomial, usually chosen as
2 or 3, and R is the theoretical reflection coefficient, set to 10−6

here. Moreover,

χx ¼ 1þ ðχmax − 1Þ
�
l
L

�
m
;

αx ¼ παmax

�
1 −

l
L

�
; (B-9)

where χmax can be obtained by testing, αmax ¼ f0, and f0 is the
dominant frequency of the source wavelet.
Substituting these auxiliary variables into the velocity-stress-tem-

perature equation 10, the final RSG-FD scheme with the CPML
technique is equation 20.

APPENDIX C

PLANE-WAVE ANALYSIS

To show the characteristics of the wave propagation, we consider
the plane waves

u ¼ U exp½iωðt − d · xÞ�; T ¼ T0 exp½iωðt − d · xÞ�;
(C-1)

where ω denotes the angular frequency, t is the time, d is the
slowness vector, x is the position vector, and i ¼ ffiffiffiffiffiffi

−1
p

. The terms
U and T0 define the amplitude of displacement and temperature

fields, respectively. In terms of the complex velocity Vc, d is written
as d ¼ N∕Vc, where N ¼ ðn1; n2; n3Þ denotes the direction of
propagation. Substituting equation C-1 into equation 7, and assum-
ing Uili ¼ 0 and Uili ¼ 1, yields two equations for the S- and P-
waves, respectively. Hence, the phase velocity of the S-wave is

Vs ¼
ffiffiffiffiffiffiffiffi
μ∕ρ

p
: (C-2)

Because μ and ρ are not affected by the thermal properties in the
homogeneous case, the S-wave is not affected by the temperature.
The P-wave complex velocity is

V2
c ¼

1

2

�
V2
A þM �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðV2

A þMÞ2 − 4MV2
I

q �
; (C-3)

where the minus and plus signs correspond to the T-wave and E-
wave, respectively, and

M ¼ iωa2∕ð1þ iωτÞ;
VI ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðλþ 2μÞ∕ρ

p
;

VA ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
V2
I þ b2

q
; (C-4)

where M denotes a complex kernel corresponding to the Maxwell
viscoelastic mechanical model (Carcione, 2014), VA and VI are
the adiabatic and isothermal phase velocities, respectively,
b¼γ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
T0∕ðρcÞ

p
, and a ¼ ffiffiffiffiffiffiffiffi

κ∕c
p

is the thermal diffusivity. Thus,
at ω ¼ 0, the solutions are

Vc ¼ VT ¼ 0; Vc ¼ VE ¼ VA; (C-5)

where VT and VE denote the velocities of the thermal wave (T-
wave) and fast P-wave, respectively. For the lattice model, the re-
laxation time uses the relation τ ¼ κ∕ðcV2

I Þ. Therefore, for ω → ∞,
we have

2V2
c ¼ V2

A þ V2
I �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðV2

A þ V2
I Þ2 − 4V4

I

q
: (C-6)

Hence, the velocity approaches a finite value. The above complex
velocities are used to compute the phase velocitiesVp and attenuation
factor A of the two longitudinal waves (Carcione et al., 2019b).
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