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ABSTRACT
We use a poroelastic modelling algorithm to compute numerical experiments on wave
propagation in a rock sample with partial saturation using realistic fluid distribution
patterns from tomography scans. Frequencies are in the range 10 to 500 kHz. The
rock is a homogeneous isotropic sandstone partially filled with gas and water, which
are defined by their characteristic values of viscosity, compressibility and density. We
assume no mixing and that the two different pore-fills occupy different macroscopic
regions. The von Kármán self-similar correlation function is used, employing different
fractal parameters to model uniform and patchy fluid distributions, respectively, where
effective saturation is varied in steps from full gas to full water saturation.

Without resorting to additional matrix–fluid interaction mechanisms, we are able
to reproduce the main features of the variation in wave velocity and attenuation
with effective saturation and frequency, as those of published laboratory experiments.
Furthermore, the behaviour of the attenuation peaks versus water saturation and
frequency is similar to that of White’s model. The conversion of primary P-wave
energy into dissipating slow waves at the heterogeneities is shown to be the main
mechanism for attenuating the primary wavefield. Fluid/gas patches are shown to
affect attenuation more than equivalent patches in the permeability or solid-grain
properties.

I N T R O D U C T I O N

The primary goals of seismic exploration are the identifica-
tion of pore fluids and the mapping of hydrocarbon deposits.
In the area of hydrocarbon field reservoir management, recent
developments in borehole acoustic measurements and subsea
geophone arrays make it feasible to conduct high-resolution
surveys to detect pockets of unswept reserves and to monitor
the progress of enhanced recovery by gas and water injection.
Understanding the physics of elastic waves in porous rocks
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partially filled with gas and liquid is thus important for ex-
ploring and exploiting hydrocarbon reservoirs.

Regions of non-uniform patchy saturation occur at gas–oil
and gas–water contacts in hydrocarbon reservoirs. Also, dur-
ing production, gas may come out of solution and create pock-
ets of free gas. When laboratory measurements and sonic logs
are used to infer the acoustic properties at seismic frequencies,
the frequency dependence of these properties becomes a key
factor. As demonstrated by White (1975), wave velocity and
attenuation are substantially affected by the presence of par-
tial (patchy) saturation, depending mainly on the size of the
gas pockets (saturation), frequency, permeability and porosity
of rocks.

Patchy saturation effects on acoustic properties have
been observed by Murphy (1984) and Knight and
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Nolen-Hoecksema (1990). Cadoret, Marion and Zinszner
(1995) have observed the phenomenon in the laboratory in the
frequency range 1–500 kHz. Two different saturation meth-
ods result in different fluid distributions and produce two
different values of velocity for the same saturation. Imbibi-
tion by depressurization produces a very uniform saturation,
while drainage by drying produces heterogeneous saturation
at high water-saturation levels. In the latter case, the exper-
iments show considerably higher velocities, as predicted by
White’s (1975) theory. The experimental results of Yin, Batzle
and Smith (1992) at 2 kHz display consistent peaks in reso-
nance attenuation at high water saturation. A strong depen-
dence on the saturation history is evident, with the attenuation
peak located at 90% water saturation in the drainage exper-
iment, and 98% water saturation for imbibition techniques.
Similar features have been reported by Bourbie and Zinszner
(1984) at 500 kHz and Cadoret, Mavko and Zinszner (1998)
at 1 kHz.

A number of theories have predicted the effects of fluids on
attenuation and seismic velocities at full saturation (e.g. Biot
1962; O’Connell and Budiansky 1977) while fewer theories
address partial saturation (e.g. White 1975). Although atten-
uation still remains poorly understood and underexploited,
it is believed by many investigators that in the seismic and
sonic frequency range (10 Hz–20 kHz), the dominating mech-
anisms of wave attenuation are oscillating flow of the viscous
pore fluid and the grain boundary friction (Winkler and Nur
1979, 1982). The role of pore fluid in controlling the velocity
was well established in the low-frequency (seismic) limit by
Gassmann (1951), and for ultrasonic frequencies (0.5 MHz
and above) by the experimental studies of Gregory (1976),
Domenico (1977) and others. The few published results ob-
tained in the sonic frequency band (1–20 kHz), e.g. by Murphy
(1984) and Cadoret et al. (1995), are usually in relatively good
agreement with the Gassmann model. For higher frequencies
(50 kHz and above), the velocity versus water saturation rela-
tionship is more complex and depends strongly on rock type
and porosity (Gregory 1976). Heterogeneity of the rock mate-
rial (Lucet and Zinszner 1992) and fluid distribution (Cadoret
et al. 1995, 1998) seem to be important factors in explaining
the observed behaviour of elastic waves at sonic and ultrasonic
frequencies.

White’s (1975) model describes wave velocity and attenu-
ation as a function of frequency, permeability and porosity,
among other parameters. Attenuation and velocity dispersion
are caused by fluid flow between the water phase and the gas
pockets, which have different pore pressures. The critical fluid
diffusion relaxation scale is proportional to the square root of

the permeability-to-frequency ratio (e.g. Mavko, Mukerji and
Dvorkin 1998, p. 207). At seismic frequencies, the length scale
is very large, and the pressure is nearly uniform throughout the
medium, but as frequency increases, pore pressure differences
can cause an important increase in P-wave velocity. White’s
model considers spherical gas pockets located at the centre
of a cubic array saturated with liquid. For simplicity in the
calculations, White considered two concentric spheres, where
the volume of the outer sphere is the same as the volume of
the elementary cube. The theory provides an average of the
bulk modulus for a single gas pocket, without taking into ac-
count the interactions between neighbouring gas pockets. Gist
(1994) successfully used White’s model to fit ultrasonic ve-
locities obtained from saturations established using drainage
techniques. He used saturation-dependent moduli as input to
White’s model instead of the dry-rock moduli. The predicted
velocities, considering local fluid flow, are higher than the ve-
locities predicted by White’s model. Recently, Johnson (2001)
developed a generalization of White’s model for patches of
arbitrary shape. This model has two geometrical parameters
besides the usual parameters of Biot’s theory: the specific sur-
face area and the size of the patches. The model was used
by Tserkovnyak and Johnson (2002) to determine the char-
acteristic patch size as a function of water saturation from
the dispersion and attenuation data of Cadoret et al. (1995,
1998).

Numerical simulations, based on the full-wave solution of
the poroelastic equations, can be useful to study the physics
of wave propagation in partially saturated rocks. Although
White’s (1975) model is an ideal representation of patchy sat-
uration, its predictions are qualitatively correct, and serve as a
reference theoretical framework. However, Biot’s (1962) the-
ory provides the only existing treatment of the problem that
directly relates acoustic velocity and attenuation to measur-
able macroscopic characteristics of a rock. In this sense, it is
useful to compare the results of White’s model with numerical
simulations based on Biot’s theory of poroelasticity as made
in a recent study by Carcione, Helle and Pham (2003). This
analysis confirms that Biot’s theory shows more dissipation
and higher velocities than White’s model due to multiple scat-
tering of slow waves and local fluid-flow effects.

In the present investigation, a more realistic situation is con-
sidered, where an arbitrary (general) pore-scale fluid distri-
bution is modelled. By using computerized tomography (CT)
scans, it is possible to visualize the fluid distribution in real
rocks (Cadoret et al. 1995). Fractal models, such as the von
Kármán autocovariance function, calibrated by the CT scans,
are used to model realistic fluid distributions. We introduce
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a numerical rock sample with homogeneous rock properties,
but with alternately uniform and patchy fluid distributions,
based on a fractal model utilizing the CT scans of Cadoret et al.

(1995). Using numerical simulations of poroelastic wave prop-
agation in the frequency range 10–500 kHz, we investigate the
effect of varying the fluid distribution patterns and effective
saturation. By analysing the recorded wave arrivals, we obtain
values of velocity and attenuation versus effective fluid satu-
ration that are consistent with published laboratory measure-
ments. Visual inspection of the numerical wavefield reveals
that the attenuation of the primary wave can be explained
by slow-wave conversion at the saturation heterogeneities.
For comparison, we substitute the gas pockets with material
inclusions of equivalent seismic contrast, but otherwise the
same homogeneous permeability and porosity, fully saturated
with water. Finally, we include patches of low-permeability
rock coinciding with the gas pockets, embedded in a high-
permeability water-saturated background. Heterogeneities in
gas/fluid distribution are shown to be more effective in atten-
uating the primary wavefield than those of equivalent hetero-
geneities in rock material and permeability.

We solve the poroelastic equations with an algorithm devel-
oped by Carcione and Helle (1999), which uses a 4th-order
Runge–Kutta time-stepping scheme and the staggered Fourier
method for computing the spatial derivatives. The stiff part of
the differential equations is solved with a time-splitting tech-
nique, which preserves the physics of the quasi-static slow
wave at low frequencies.

In general, P-wave and S-wave velocities can be higher in
partially saturated rocks than in dry rocks. As predicted by
White’s (1975) model, this behaviour depends on frequency,
viscosity and permeability. It is therefore important to inves-
tigate the sensitivity and properties of wave velocity and at-
tenuation versus pore-fluid distribution. This is the basis for
direct hydrocarbon detection and enhanced oil recovery and
monitoring, since techniques such as ‘bright spot’ and AVO
analyses make use of those physical properties. The modelling
methodology used in the present study constitutes a powerful
computational tool to investigate the physics of wave propa-
gation in porous rocks, and, in some cases, can be used as an
alternative method to laboratory experiments.

N U M E R I C A L R O C K W I T H F R A C TA L
F L U I D / G A S D I S T R I B U T I O N

The numerical rock sample is a homogeneous isotropic Berea
sandstone with a porosity of 24.6% and permeability of
0.55 darcy (King, Marsden and Dennis 2000), partially filled

Table 1 Material properties of the single constituents

Solid Bulk modulus, Ks 35.0 GPa
Shear modulus, µs 35.0 GPa
Density, ρs 2650 kg/m3

Matrix Bulk modulus, Km 9.25 GPa
Shear modulus, µm 9.25 GPa
Porosity, φ 0.246
Permeability, κ 0.55 D
Tortuosity, T 2.5

Gas Bulk modulus, Kg 0.01 GPa
Density, ρg 100 kg/m3

Viscosity, ηg 0.02 cP

Water Bulk modulus, Kw 2.4 GPa
Density, ρw 1000 kg/m3

Viscosity, ηw 1.0 cP

Table 2 Properties of the saturated rock

Water-filled Gas-filled

ρ 2244 kg/m3 2023 kg/m3

cP+ (0) 3418 m/s 3268 m/s
cP+ (∞) 3434 m/s 3275 m/s
cP− (0) 44 m/s 23 m/s
cP− (∞) 813 m/s 195 m/s
f peak(P+) 27.79 kHz 5.56 kHz

with water and gas. The properties of the rock and pore-filling
fluids are given in Table 1. No mixing is assumed and the
two different pore-fills occupy different macroscopic regions
of the model. In Table 2, we give the bulk properties of the
rock, fully saturated with a single fluid, gas or water, respec-
tively, where the relaxed (f = 0) and unrelaxed (f = ∞) phase
velocities of the fast compressional wave (cP+ ) and the slow
wave (cP− ) are given. Also listed is the central frequency of
the dominant attenuation peak (f peak) corresponding to the
Biot peaks for the rock, fully saturated with gas or water,
respectively.

Statistically, seismic heterogeneity is often characterized by
the so-called von Kármán self-similar correlation function,
commonly cited in turbulence theory and given by

N(r ) = 1
2m−1�(m)

(r
l

)m
Km

(r
l

)
, (1)

where r is the lag, l is the correlation length, � is the gamma
function and Km is the modified Bessel function of the second
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kind. Following Frankel and Clayton (1986), we consider a
specific type of von Kármán function where m = 0 and

N(r ) = K0

(r
l

)
. (2)

The corresponding wavenumber-domain correlation function
is

P(kx, kz) = 

(
1 + kr

2l2
)−(ν+E/2)

, (3)

where kr = (k2
x + k2

z )1/2 is the radial wavenumber, ν (0 < ν <

1) is a self-similarity coefficient, 
 is a normalization constant,
and E is the space dimension. If ν = 0, the function has pure
fractal behaviour, and if ν = 0.5, the exponential correlation
function is obtained. The von Kármán correlation function
describes self-affine, fractal processes of fractal dimensionD =
E + 1 − ν at scales smaller than l. For a 2D model, E = 2 and
D thus lies between 2 for very smooth fluctuations and 3 for
very complex fluctuations (Holliger 1997). Here, we setD = 2
and vary the fractal correlation parameter l to generate models
with uniform and patchy fluid distribution, respectively, using
small values of l for uniform saturation and larger values for
patchy saturation. For modelling the patchy distribution, we
set the correlation length l = lp, expressed by

lp(Sw) = γ1 + γ2 exp (γ3(|Sw − 0.5| + 0.5)) , (4)

to account for the fact that patches are more pronounced at
high and low values of saturation Sw than in the intermediate
range. The factors γ i are estimated from the CT scans, and to
estimate the correlation length in the case of uniform distribu-
tion l = lu, we simply determine the ratio lu/lp by comparing
the corresponding CT images. For models used in this study,
we have determined the following values for the coefficients
of (4): γ 1 = 3 × 10−4 m, γ 2 = 6 × 10−8 m, γ 3 = 10 and
lu/lp = 0.3.

To construct the fluid distribution of a given effective water
saturation Sw ∈ [0,1] on the 2D numerical grid, we adopted
the following procedure: Firstly, a random number generator
assigned a value between zero and one, sequentially, to each
gridpoint. The random field was then Fourier transformed to
the wavenumber domain, filtered by (3) to obtain the desired
spectrum, transformed back to the spatial domain and normal-
ized to the interval P ∈ [0,1] to yield the saturation field for
the simulations. Secondly, to design effective saturation values
for the numerical rock, where each gridpoint is assigned pure
water or pure gas, we introduce a control parameter � ∈ [0,1]
such that for each gridpoint we assign water if P < � and gas
if P ≥ �. For example, for 100% gas saturation (Sw = 0), we
set � = 0 and for 100% water (Sw = 1), we set � = 1. For

Figure 1 Examples of uniform distribution of fluid for Sw = 0.2 (top)
and Sw = 0.9 (bottom) in a 70 × 70 mm rock sample. Water and
gas are indicated by black and white, respectively. Grid size is 1 mm.
Fractal correlation length is lu ≈ 0.25 mm and patch dimension is in
the range 1–5 mm.

� = 0.5 we obtain Sw around 0.5, but the exact value remains
to be determined by point-counting the grid as was done for
the CT scans by Cadoret et al. (1995). Examples of the re-
sulting distribution of gas and water for uniform and patchy
saturation are shown in Figs 1 and 2, respectively.

P H A S E V E L O C I T Y A N D AT T E N U AT I O N

The concept of complex velocity can be used to obtain the
phase velocity and attenuation factor (e.g. Carcione 2001,
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Figure 2 Same parameters as in Fig. 1 but for patchy distribution.
Fractal correlation length is lp ≈ 1 mm and patch dimension is in the
range 1–12 mm.

p. 55). Let v be the P-wave complex velocity obtained with
White’s (1975) model. Then the phase velocity and attenua-
tion factor are given by

c =
[
Re

(
1
v

)]−1

(5)

and

α = −ω Im
(

1
v

)
, (6)

respectively, where ω is the angular frequency. If we approx-
imate the porous medium by a viscoelastic solid, the quality

factor can be expressed as

Q = Re(v2)
Im(v2)

. (7)

[Otherwise, the Q factor for porous media has a more com-
plex expression (Carcione 2001, p. 289).] The relationship
between the attenuation factor and the quality factor Q can
be expressed as

α = 2π f
c

(
√

Q2 + 1 − Q) ≈ π f
cQ

, (8)

where f = ω/(2π ) is the frequency (Carcione 2001, p. 139).
The second relationship on the right-hand side holds for low-
loss solid (Q  1).

Determination of velocity and attenuation is based on the
recorded wave arrivals in three equidistant circular arrays of
points within the model, centred at the source location as
shown in Fig. 3. While recordings from R1 and R3 are the
main data for the analysis, the middle receiver R2 is used for
verification (Fig. 4). The phase velocity in the numerical exper-
iments is computed from the centre of gravity of |v|2 versus
propagation time, where v is the bulk particle-velocity field
(Carcione 1996). The numerical phase velocity is estimated
by averaging the velocities obtained at the five receivers R3.
More details about this calculation are given in Carcione,

Figure 3 Source (S) and receiver (Ri) geometry used for recording the
transmitted wavefield. A circular region of radius r0 surrounding the
source is fully water saturated to assure a uniform initial wavefront.
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Quiroga-Goode and Cavallini (1996) and Carcione (2001,
p. 145). The determination of phase velocity in terms of the lo-
cation of the energy is justified from the fact that for isotropic
media and homogeneous viscoelastic waves, the phase velocity
is equal to the energy velocity (Carcione 2001, p. 99).

0 5 1 0 1 5 2 0 2 5 3 0

P − (R
1  
)R1

Time (µs)

R3R2

P − (R
1  
)

 

f = 500 kHz

f = 250 kHz

Figure 4 Examples of recorded fluid pressure of fast P-wave (P+)
arrivals at the three receiver locations R1, R2 and R3 (Fig. 3) for
250 kHz and 500 kHz. The slow P-wave (P−) recorded at R1 is the
dominating event. Fully water saturated (Sw = 1).
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Figure 5 Examples of amplitude spectra of the 250 kHz fast P-wave arrivals at the receiver locations R1 and R3 (a) and the corresponding
spectral ratio (b) for estimating the attenuation.

To estimate attenuation, we use the classical spectral ratio
approach discussed by Toksöz, Johnston and Timur (1979),
implying that the amplitude ratio A1/A3 at the dominant fre-
quency f (Fig. 5) satisfies

ln
[

A1( f, r1)
A3( f, r3)

]
= α(r3 − r1) + ln

(
G1

G3

)
, (9)

where ri denotes the source–receiver radial distances, and Gi

denotes the respective geometrical spreading factors. Using
relationship (8), equation (9) can be rewritten as

ln
[

A1( f, r1)
A3( f, r3)

]
= π f (r3 − r1)

Qc
+ ln

(
G1

G3

)
. (10)

The quality factor is determined from the slope of the line
fitted to ln(A1/A3).

WAV E S I M U L AT I O N A N D A N A LY S I S
O F T H E WAV E F I E L D S

The objective of this study is to determine from numerical
experiments the wave velocity and attenuation as a function
of water saturation Sw and dominant wave frequency f . The
frequencies used in the experiments and the corresponding
numerical grids are listed in Table 3. We consider a regular
grid where the size and grid spacing are adjusted to the wave
frequency. For the high frequencies (250–500 kHz), a small
numerical grid consisting of 198 × 198 (nx × nz) points at
�x = 0.5 mm spacing is sufficient. For the low frequency
of 10 kHz (long wavelength), we expanded the model to
804 points at 2 mm spacing in the primary direction (z) to
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Table 3 Numerical parameters for the wave simulations

f � x = � z �t
(kHz) (mm) nx, nz na (ns) nt r0 r1 r2 r3

500 0.5 198 30 62 500 23 28 68 108
250 0.5 198 30 62 500 23 28 68 108
125 1 208 30 124 550 30 32 70 108
100 1 208 30 124 550 30 32 70 108
75 1 420 60 163 850 60 64 142 220
50 1 420 60 163 850 60 64 142 220
10 2 495, 840 120 444 1800 150 152 280 410

allow for a sufficiently long travelpath and record length nt

for the wave analysis. The source is a Ricker wavelet applied
to the bulk material, with a dominant frequency f . A circu-
lar region of radius r0 (Fig. 3) surrounding the source is fully
water saturated to assure a uniform initial wavefront. Since
the source is radially symmetrical and the matrix is homoge-
neous and isotropic, no S-waves are generated. The wavefield
is computed with a time step �t varying from 62 to 444 ns,
within the limits of numerical stability for the grid size used.
Absorbing boundaries of width na points have been applied at
the borders of the mesh, using an exponential damper to pre-
vent wavefield wraparound from interfering with the primary
wavefield at the receiver locations. In a fan-shaped distribu-
tion along five rays centred at the source (Fig. 3), receivers are
located at distances r1, r2 and r3, given in terms of gridpoints
in Table 3.

Comparison of the wavefields (bulk and fluid pressure) after
300 time steps for the uniform and the patchy models, with
Sw = 0.9 and f = 500 kHz, are shown in Fig. 6. We iden-
tify the primary P-wave front at the top edge of the model
and the dominant slow-wave front encircling the source lo-
cation. In the uniform model, we see cascades of small-scale
events displaying the character of scattering diffractions. In
the patchy model, we identify the majority of these diffract-
ing events as slow waves generated when the primary P-wave
front intersects the fluid discontinuities. The latter is well ex-
pressed by the details displayed in Fig. 6(c) where the pri-
mary P-wave is seen to excite slow waves when intersecting
the gas pockets, leaving a cascade of slow waves in its tail.
Multiple scattering within the gas pockets also constitutes im-
portant events affecting the primary wavefield as discussed
in more detail by Carcione et al. (2003). Significant events
identified as mode conversion from slow to fast P-waves can
also be seen. Snapshots at the same instant and with the same
models, but for f = 250 kHz, are shown in Fig. 7. Here,

the above features are essentially repeated but with twice the
wavelength of the former simulation. Moreover, the primary
wavefront has travelled a shorter distance during the same
time interval as it is apparent in the micro-seismograms of
Fig. 4.

The velocity and attenuation estimated as a function of satu-
ration, for the range of frequencies, are shown in Figs 8 and 9,
respectively. In general, the velocities for the patchy models are
significantly higher than those for the uniform models, in qual-
itative agreement with White’s (1975) theory (see Carcione
et al. 2003) and published experimental data of e.g. Cadoret
et al. (1995). For the lower frequency range, the value of cP+
is slightly above the Gassmann lower bound (for f = 0), and
for the high-frequency range, the values are below the upper
bound, here indicated by the velocity at 500 kHz predicted
by the empirical model of Brie et al. (1995), and modified
by Pham et al. (2002) to account for a frequency-dependent
fluid bulk modulus. In general, the behaviour of cP+ versus
Sw is in fair agreement with the published laboratory data.
The initial decline in cP+ at low Sw for all frequencies in the
case of uniform saturation agrees with the results of Cadoret
et al. (1995). The opposite tendency for patchy saturation
at ultrasonic frequencies is also consistent with the observa-
tion of Cadoret et al. (1995) for Estaillades limestone. For
the patchy saturated ‘mean’ Berea sandstone data of King
et al. (2000), used as our model rock, the similarity is ob-
vious and the small mismatch can, in general, be attributed to
the higher frequencies (500–900 kHz) applied by King et al.

(2000).
Also, the P-wave attenuation versus Sw, commonly ex-

pressed by the inverse quality factor Q−1
P+ shown in Fig. 9,

displays the characteristic features of White’s (1975) model
and published experimental data, with low attenuation when
the rock is fully saturated with gas or water, respectively, and
higher attenuation at intermediate values of Sw, and with a
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Figure 6 Snapshots after 300 time steps
(18.6 µs) showing the bulk and fluid pres-
sure for (a) uniform and (b) patchy fluid dis-
tribution. Sw = 0.9, f = 500 kHz. Details of
slow-wave conversion at the gas pockets are
shown in (c). See models in Figs 1 and 2.

peak attenuation when approaching 100% water saturation.
In general, Q−1

P+ in the uniform models is higher than that of the
patchy saturation model by a factor of nearly two. The reason
for the latter becomes obvious when comparing the different
levels of slow-wave intensity apparent from the snapshots in
Figs 6 and 7. Since the quasi-static slow waves dissipate over
a much shorter distance than the fast waves and since the
slow waves extract energy from the primary wavefield, this

mode conversion constitutes an efficient loss mechanism. Ap-
parently, the more secondary slow waves are generated, the
greater the loss of primary P-wave energy. Since the wave-
length of slow waves is much smaller (1–15%) than for the
fast waves (1 mm and 7 mm at 500 kHz, 4 mm and 340 mm
at 10 kHz), small-scale heterogeneities, far below the wave-
length of the fast wave, may be equally important in the loss of
the primary wavefield. The population density of saturation
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Figure 7 Same properties as in Fig. 6 but for
f = 250 kHz.

heterogeneities, not their size, thus seems to be the key factor
in attenuating the primary wavefield.

C R I T I C A L B E H AV I O U R
O F T H E P O R O E L A S T I C WAV E F I E L D

As has been well established from White’s (1975) theory
and laboratory data, the attenuation is strongly dependent
on Sw and frequency f . A consistent feature apparent from
Fig. 9 is the shift in the attenuation peaks towards higher
Sw with decreasing f . While the 500 kHz wave in the uni-
form model has its attenuation peak for Sw = 0.6, the 10
kHz wave has its attenuation peak at Sw = 0.98. Maximum
attenuation occurs for f = 125 kHz at Sw = 0.95. It ap-
pears that a resonance phenomenon exists around 100 kHz
as shown by the three snapshots of fluid pressure shown in
Fig. 10. Here the small-scale pressure perturbations in the tail
of the primary wavefront are insignificant at Sw = 0.6 but
increase to a high intensity and amplitude at Sw = 0.9, indi-

cating remarkably strong pressure variations (and fluid flow)
at a scale much smaller than the wavelength of the primary
wavefield. Experimentally, such peaks in attenuation are fre-
quently observed. They include peaks in attenuation versus
permeability (Klimentos and McCann 1990; Akbar, Dvorkin
and Nur 1993), versus frequency and viscosity (Murphy,
Winkler and Kleinberg 1986; Jones 1986; Vo-Thanh 1990),
versus porosity (Ogushwitz 1985) and versus saturation
(Winkler and Nur 1979; Murphy 1982; Yin et al. 1992;
Cadoret et al. 1998).

Viscoelastic materials respond to wave excitation differ-
ently, depending on the frequency of the wave. At low fre-
quencies, fluid is relaxed causing a small induced fluid pres-
sure. At high frequencies, fluid is unrelaxed and the induced
fluid pressure is large. At an intermediate crossover frequency,
a transition from relaxed to unrelaxed mode occurs. This tran-
sition frequency, separating the relaxed and unrelaxed states,
that is, the location of the relaxation peak, is approximately
given by White’s (1975) theory,
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Figure 8 P-wave velocity versus water saturation as a function of fre-
quency determined from the numerical simulation in (a) uniform and
(b) patchy models. The models of Hill, Gassmann and the modified
Brie et al. (Pham et al. 2002) and the data of King et al. (2000) are
shown for comparison.

fc = κKE2

πη2(b − a)2
, (11)

where a and b are radii of the inner and outer spheres, re-
spectively, in White’s model, κ is the permeability, KE2 is an
effective bulk modulus of the water-filled rock (e.g. Mavko
et al. 1998, p. 208) and η2 is the viscosity of water. Dutta
and Seriff (1979) considered b2, instead of (b − a)2, in the de-
nominator. However, as pointed out by Carcione et al. (2003),
the relevant relaxation distance should be the thickness of the
outer shell, i.e. (b − a).

The gas saturation is given by Sg = 1 − Sw = (a/b)3 (White
1975), and assuming a constant gas-pocket radius a, the crit-
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Figure 9 P-wave attenuation factor versus water saturation as a func-
tion of frequency determined from the numerical simulation in (a)
uniform and (b) patchy models. Note the marked peaks around Sw =
0.9 at 50–125 kHz for the uniform models.

ical saturation is given by

Swc = 1 −
(

1 +
√

κKE2

πη2 f a2

)−3

, (12)

showing that the peak attenuation is located at low values of
Sw for the high-frequency range and vice versa, which is in
qualitative agreement with the results given in Fig. 9. Since
(11) has the form of the length-squared dependency charac-
teristic of diffusion phenomena, we define a critical length
scale,

Lc ≈
(

κKE2

πη2 f

)1/2

= (bc − a), (13)
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Figure 10 Perspective view of snapshots at 300 time steps showing
the fluid pressure field for the uniform model with saturations Sw =
0.6, 0.9 and 1.0. Note the critical behaviour at Sw = 0.9. The central
frequency is 100 kHz.

where bc is the critical value of b with a fixed, suggesting
that during a seismic period the pore pressure can equilibrate
over a spatial scale smaller than Lc, corresponding to the
distance over which the slow wave propagates/diffuses away
from a gas–fluid interface (e.g. Johnson 2001). This state as-
sumes a fine-scale, uniform distribution of fluids, which is
equivalent to our uniform models. In contrast, saturations
that are heterogeneous over scales larger than Lc have wave-
induced pore-pressure gradients that cannot equilibrate. This
state is referred to as patchy saturation. Critical saturation
scales are typically 1–10 mm for laboratory measurements and
tens of centimetres for field seismic frequencies (Mavko and
Mukerji 1998). Critical saturation and relaxation scale ver-
sus frequency, obtained from White’s model, are shown in
Fig. 11. Using the material properties from Table 1, the re-
laxation peaks appear close to Sw = 1 and their locations are
almost independent of frequency for a = 0.5 mm. For a =
2 mm, the location of Swc is very sensitive to frequency, start-
ing at Swc = 1 for f = 0 and rapidly decreasing to Swc = 0 at
about 800 kHz. According to (13), the relaxation scale Lc is
dependent only on the rock and fluid properties, and decreases
rapidly from several centimetres within the seismic frequency
band to about 2 mm in the ultrasonic range.

From (11), it follows that the permeability κ and critical
frequency f c are linearly related, i.e. increasing permeability
causes the relaxation peak to move towards higher frequen-
cies. We have seen (Figs 9 and 10) that the relaxation peaks in
Sw are well expressed in the poroelastic simulation and are in
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Figure 11 Critical water saturation Swc (solid line) and relaxation
scale Lc (dashed line) as a function of wave frequency f for a range of
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model. Material and fluid properties as given in Table 1.
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100 kHz. The solid lines are the corresponding values from White’s
model with gas pockets of constant diameter a = 1.5 mm. Vertical
bars indicate critical saturations computed from (12). The models of
Hill and Gassmann are shown for comparison.

agreement with (12) for the range of wave frequencies f and
for a constant permeability κ = 550 mD. Changes in velocity
with frequency are a common experience. Changes in veloc-
ity with permeability have been paid less attention although
they follow from White’s (1975) theory. Figure 12 shows ve-
locity and attenuation as a function of Sw and permeability.
Here, we fix the frequency at 100 kHz and vary the perme-
ability. The effect of permeability on velocity is significant and
covers approximately the same envelope as that of varying the
frequency (Fig. 8a) with constant permeability. For κ = 0,
the velocity coincides with the high-frequency upper bound

(Hill’s average) and for κ = 5000 mD, it coincides with the
lower bound (Gassmann).

Velocity and attenuation from the poroelastic simulation
reveal similarity with those of White’s theory for fixed a =
1.5 mm. The locations of the relaxation peaks are reasonably
well predicted by White’s theory and equation (12). However,
the level of attenuation predicted by White’s theory is, in gen-
eral, less than that of poroelastic simulations, as also shown
by Carcione et al. (2003) for a regular distribution of circular
gas pockets.

H E T E R O G E N E I T I E S I N R O C K M AT E R I A L
V E R S U S F L U I D D I S T R I B U T I O N

Heterogeneity of the rock material has also been an important
factor in explaining the observed behaviour of elastic waves in
rocks. Blair (1990) compared experimental attenuation mea-
sured in two frequency ranges (1–150 kHz and 1–50 kHz) on
a dry granite block and concluded that grain clusters of the size
(∼10 mm) comparable to the wavelength rather than grains
(∼1 mm) themselves were responsible for the large ultrasonic
attenuation. Supported by X-ray scans of the rock samples,
Lucet and Zinszner (1992) showed similar results from sonic
and ultrasonic laboratory data in saturated limestone, con-
taining significant material heterogeneities. They suggested
that scattering (diffraction) of the waves at the heterogeneities
could be an additional mechanism for attenuating the primary
wavefield in the case of limestone. However, this mechanism
occurs mainly at ultrasonic frequencies when the wavelength
is comparable to the size of the heterogeneities. On the other
hand, sandstone samples with more smoothly varying rock
properties exhibit, in general, less ultrasonic attenuation. In
the experiment shown in Figs 13 and 14, we investigate this
phenomenon by substituting the gas with inclusions of low-
velocity grain material (Ki = 24.4 GPa embedded in a back-
ground of 35 GPa) such that P-wave impedance contrasts are
approximately the same as in the case of gas inclusions. The
fractal distributions are identical with those of the correspond-
ing gas–fluid models (Figs 1 and 2) and the rock is fully satu-
rated with water.

We display the results for 100 kHz and 500 kHz and com-
pare them with the corresponding models containing gas inclu-
sions. Firstly, in the case of material inclusions there is minor
velocity dispersion and negligible response to the patch size,
compared with those of gas inclusions (Fig. 13). For attenua-
tion (Fig. 14), on the other hand, we find a significant response
to both frequency and patch size. Moreover, the relaxation
peaks for material and gas inclusions coincide, indicating that
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Figure 13 P-wave velocity versus gas or material inclusion Si in a
water-saturated background determined from numerical simulation
in (a) uniform and (b) patchy models.

the same attenuation mechanism is active in the two mod-
els. For the magnitude of attenuation, the effects of patch size
are opposite: while small gas patches (uniform model) favour
high attenuation, the larger patch size (patchy model) seems
more favourable in the case of material inclusions, in particu-
lar at 500 kHz when the wavelength of the primary wave (λ ∼
5 mm) coincides with the dominant patch size (Fig. 2).

Heterogeneity in permeability is a related problem. We have
shown (Fig. 12) that in a fully saturated rock (gas or water)
the permeability has minor effects on the wavefield. On the
other hand, by introducing a small fraction of gas into water-
saturated rocks, the permeability becomes a key parameter.
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Figure 14 P-wave attenuation factor versus gas or material inclusion
Si in a water-saturated background determined from numerical simu-
lation in (a) uniform and (b) patchy models.

The observation of patchy distribution of permeability, ap-
parent in cores and well logs (Helle, Bhatt and Ursin 2001),
has led us to introduce the following model: The background
model is the porous rock (Table 1) with an effective water sat-
uration Sw = 0.9 where the water/gas is distributed according
to the uniform model. Superimposed on the uniform fluid het-
erogeneities, we introduce the patchy model for permeability,
using the binary values of 2 mD and 2000 mD, respectively, to
cover the range of effective permeabilities in a real reservoir.
This experiment mimics a realistic situation where the rock
contains a small fraction of gas (10%) uniformly distributed
throughout the matrix at a fine scale, but where patches of
calcite-cemented grains control the effective permeability at
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permeability (2–2000 mD) in a uniform fluid model of Sw = 0.9 and
a patchy permeability distribution using 2000 mD patches in a back-
ground rock of 2 mD.

a coarser scale. Starting with a model of homogeneous per-
meability of 2 mD, we gradually add permeability patches of
2000 mD until the rock attains a homogeneous permeability
of 2000 mD. The resulting velocity-attenuation pairs obtained
from the poroelastic simulation are shown in Fig. 15. For
100 kHz, there is a strong response in velocity and attenu-
ation due to the permeability patches, as may be expected
from the results shown in Fig. 12 where the response to per-
meability is at its maximum around Sw = 0.9. The response

is comparable in magnitude to the case of partial saturation.
For higher frequencies (500 kHz), the response is weak with
a slow monotonic increase in velocity and attenuation with
increasing effective permeability.

The snapshots of the fluid pressure for the three alternative
inclusions (Fig. 16) reveal that slow waves are generated at the
heterogeneities in all cases, but to varying degrees. Slow-wave
generation thus seems to be an important factor for any type of
heterogeneity in a fluid-filled porous rock, and is particularly
effective in the presence of gas. Gas inclusions are the most
effective slow-wave exciters, whereas material inclusions in
the case of full water saturation are less efficient. The effects
of permeability patches are of great practical significance and
therefore deserve a more detailed evaluation and discussion
in a separate paper. However, from the simple experiments
above, we conclude that patches in the permeability give a
strong response in the lower end of the ultrasonic band, and
probably also at sonic frequencies.

C O N C L U S I O N S

Seismic wave propagation in porous rocks depends not only
on the degree of saturation but also on the distribution of the
fluid phase and rock properties at various scales. In the present
study, we have applied a numerical solution of Biot’s poroelas-
tic differential equation to simulate the wavefield in a porous
rock partially saturated with water and gas. Two fractal dis-
tributions of the fluid are designed to match published labora-
tory experiments: uniform distribution of small-scale patches,
corresponding to variation of saturation by depressurization,
and large-scale patches, characteristic of the drainage by dry-
ing. We record and analyse the transmitted wave with respect
to P-wave velocity and attenuation in the frequency range 10–
500 kHz as a function of effective partial saturation. Without
resorting to additional phenomenological matrix–fluid inter-
action mechanisms (e.g. squirt flow), we are able to reproduce
the main features of published experiments on velocity and at-
tenuation of P-waves in partially saturated rocks.

Peaks in attenuation versus saturation are linked with a
crossover frequency, from relaxed to unrelaxed mode, deter-
mined by the hydraulic properties of the host rock, the prop-
erties of the viscous fluids and the fluid distribution within
the rock matrix. The observed critical saturation from the
poroelastic simulation is in qualitative agreement with White’s
(1975) theory and is equivalent to the observations of attenua-
tion peaks as a function of viscosity, permeability and porosity.
However, the level of attenuation estimated from the poroe-
lastic modelling exceeds that predicted by White’s theory, in
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Figure 16 Snapshots after 300 time steps (18.6 µs) of the fluid pressure for the patchy saturation for Sg = 0.1 (a), the equivalent distribution of
solid inclusions (b) and permeability inclusions (c) in a fully water-saturated rock (f = 500 kHz). The lower pictures show details of slow-wave
conversion at the inclusion patches.

agreement with the results of Carcione et al. (2003) for a reg-
ular distribution of gas pockets.

We have shown that the conversion of primary P-wave en-
ergy into dissipating slow waves at heterogeneities in the fluid
and rock properties is the main mechanism for the observed
P-wave attenuation. Inclusions of gas are far more efficient
slow-wave exciters than inclusions of rock material, and hence
more attenuation is observed for gas inclusions than for the
equivalent inclusions of rock material. While the uniform
model is the most effective in the case of fluid heterogeneities,
the patchy model is more effective in the case of rock inclu-
sions when the size of the inclusions is comparable with the
wavelength.

Since a patchy distribution of permeability represents an im-
portant practical problem, we have included a limited study in

this paper. With a small portion of gas in the pore-fill, the wave
response becomes very sensitive to permeability, and to the
permeability distribution. Experimental results indicate minor
effects at ultrasonic frequencies but a strong response in the
sonic band.
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