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ine/cosine transforms and variable grid spacing
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ABSTRACT

Simulation of Rayleigh waves requires high accuracy and
an adequate spatial sampling at the surface. Discrete cosine
and sine transforms are used to compute spatial derivatives
along the direction perpendicular to the surface of the earth.
Unlike the standard Fourier method, these transforms allow
nonperiodic boundary conditions to be satisfied, in particular,
the stress-free conditions at the surface. Because simulation
of surface waves requires more points per minimum wave-
length at the surface than simulation of body waves, the equi-
spaced grid is not efficient. To overcome this problem, a grid
compression is performed at the surface to obtain a denser
spatial sampling. Grid size is minimal at the surface and in-
creases with depth until reaching, at a relatively shallow
depth, the grid points per wavelength required by the body
waves. The stress-free boundary conditions are naturally
handled by expanding the appropriate stress components in
terms of the discrete sine transform. The wave equation is
solved in the particle-velocity and stress formulation using a
Runge-Kutta time integration and the convolutional PML
�CPML� method to prevent reflections from the mesh bound-
aries. The simulations are very accurate for shallow sources
and receivers and large offsets.

INTRODUCTION

Artificially generated surface waves �and particularly Rayleigh
aves� are important in various geophysical applications. In geo-

echnical characterization, use of the Rayleigh wave enables us to
stimate the thickness and shear modulus of the surface layer �Gabri-
ls et al., 1987�, to predict the lithology ahead of drilling �Bohlen et
l., 2007�, and to establish seismic microzonation maps �Kind et al.,
005�. Malagnini et al. �1995� use Rayleigh waves to determine the
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T133
nelastic properties of Quaternary layers. Rayleigh waves also are
enerated naturally by earthquakes. In this case, they are useful to
xtract information about the structure and properties of the earth at
ifferent scales �Knopoff et al., 1966�.

Simulation of Rayleigh waves is generally performed by using
ow-order finite-element and finite-difference �FD� methods �e.g.,
evander, 1988�. Recent works using finite differences and stag-
ered grids �Mittet, 2002; Bohlen and Saenger, 2006� review the ex-
sting methods and propose new approaches to model free-surface
oundary conditions. In particular, Bohlen and Saenger �2006� use
he so-called image method and compare their results to those of

ittet’s heuristic method.
Simulation of the Rayleigh wave requires more points per mini-
um wavelength than simulation of body waves. This requirement

s not only numerical but also due to the fact that the Rayleigh wave
s propagating in the horizontal direction but is exponentially
amped in the vertical direction. This means that the Rayleigh wave
as higher spatial-wavenumber components in the vertical direction
Mittet, 2002�. Elastic forward modeling by pseudospectral �PS�
ethods offers higher accuracy than modeling by FD methods be-

ause the differential operator is global, i.e., it uses all the grid points
long the direction of differentiation to obtain the derivative. Gener-
lly, two grid points per minimum wavelength is enough to model
ody waves. The drawback is that it is less efficient in terms of com-
uter time compared to FD methods, but this is compensated by the
equirement of fewer grid points to discretize the model, mainly in
D space �e.g., Carcione, 2007�.

In addition, unlike with FD methods, it is difficult to implement
he free-surface boundary condition with the complex Fourier meth-
d because of the spatial periodicity of the derivative operator. A so-
ution to this limitation is offered by Kosloff et al. �1990�, where a
hebyshev expansion of the solution is used instead of the Fourier
xpansion �see Carcione, 2007�. See also Carcione �1992�, Carcione
nd Helle �2004�, and Carcione et al. �2004� for additional applica-
ions of this technique. However, the Chebychev expansion uses a

ovember 2009; published online 13August 2010.
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T134 Kosloff and Carcione
onuniform grid that contains more sample points than a regular
esh.
This work presents a new PS modeling scheme in which the vari-

bles are expanded in the vertical direction by nonperiodic staggered
ine and cosine transforms, which can mathematically handle zero-
tress boundary conditions �Press et al., 1992�. In the horizontal di-
ection, the solution is expanded by a standard discrete and complex
ourier transform. A grid compression in the vertical direction
olves the problem of correct sampling of the surface wave, and use
f the convolutional PML �CPML� absorbing-boundary algorithm
e.g., Komatitsch and Martin, 2007� guarantees the absence of arti-
acts coming from the edges of the mesh.

Moreover, the use of staggered grids with nonlocal differential
perators �such as in the pseudospectral method� is important be-
ause computation on ordinary uniform grids could cause strong nu-
erical artifacts in the form of noncausal ringing. See Carcione

1999�, who solves the viscoelastic equation using the complex ver-
ion of the staggered Fourier transform.

The algorithm is illustrated with Lamb’s problem �a shallow
ource� and large offsets that require very high accuracy. A typical
ear-surface example is simulated.

THE WAVE EQUATION

The 2D particle-velocity-stress equations for elastic propagation
n the x-y plane can be expressed by �e.g., Carcione, 2007�

. Newton’s equations:

� xx,x�� xz,z��v̇x� fx,

� xz,x�� zz,z��v̇z� fz, �1�

where vx and vz are the particle velocities, � xx, � zz, and � xz are
the stress components, � is the density, and fx and f z are the
body forces.Adot above a variable denotes time differentiation
and a subindex after a comma indicates spatial differentiation.

. Constitutive equations:

�̇ xx�c11vx,x�c13vz,z,

�̇ zz�c13vx,x�c33vz,z,

igure 1. Equispaced numerical mesh used to compute staggered
ifferential derivatives and implement free-surface boundary condi-
ions. Regular grid points are denoted by �i, j� �full circles�, and
taggered grid points by �is, js�; dx and d� indicate the grid spacing.
grid compression is applied to this mesh to reduce grid spacing at
�̇ xz�c55�vx,z�vz,x�, �2�

where cIJ are the elastic constants.

In this work, we consider an isotropic medium �c13�c11�2c55

nd c33�c11�, but the algorithm is valid for a transversely isotropic
olid with its symmetry axis perpendicular to the surface of the earth
VTI medium� in the case that no constraints, other than stability, are
mposed on c13 and c33.

STAGGERED MESH

On a regular grid, all the field components and material properties
re represented at the same grid point. On a staggered grid, the field
ariables are defined at grid points and at half-grid points, as indicat-
d in the mesh shown in Figure 1. Material properties are defined at
he grid points corresponding to the following variables:

�i,j�� �i,j�� xx,� zz,c11,c33,c13,

�is,j���i�
1

2
,j�vx,fx,�,

�i,js���i,j�
1

2
�vz,fz,�,

�is,js���i�
1

2
,j�

1

2
�� xz,c55. �3�

he grid spacings are dx and d� along the horizontal and vertical di-
ections, respectively. A grid compression is applied in the vertical
irection, implying a variable grid spacing near the surface with a
inimum grid size dz � d� �see below�.
Material properties at half-grid points are computed by averaging

he values defined at regular points. The averaging is chosen in such
way to reduce the error between the numerical solution corre-

ponding to an interface aligned with the numerical grid and the
quivalent solution obtained with a regular grid. Minimum ringing
mplitudes for the example illustrated in the next section are ob-
ained when the averages are computed as follows �Røsten et al.,
996�. Density is averaged as

�i�
1
2

,j�
1

2
��i,j��i�1,j� and �i,j� 1

2 �
1

2
��i,j��i,j�1�,

�4�

nd c55 as

�c55
i�

1
2

,j� 1
2��1

�
1

4
��c55

i,j��1� �c55
i�1,j��1� �c55

i,j�1��1

� �c55
i�1,j�1��1� . �5�

n the other hand, the alternative averaging performed by Mittet
2002� can be used �i.e., arithmetic averages for density and shear
odulus�. He tries several averaging schemes for the density, but

hey all lead to numerical artifacts even for plane interfaces, espe-
ially if the source is placed close to the interface. The interface ap-
ears to have a saw-edge behavior if density averaging is not per-
ormed properly.
he surface.
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Simulation of Rayleigh waves T135
CALCULATION OF SPATIAL DERIVATIVES

The real sine and cosine discrete Fourier transforms �DST and
CT� can be used to solve differential equations with spectral accu-

acy and nonperiodic boundary conditions. Moreover, these trans-
orms can handle common boundary conditions of their functions
aturally, i.e., they have the value zero at the boundaries or their de-
ivatives are zero at the boundaries. In the first instance, the natural
ransform to use is the sine transform. In the second case, it is the co-
ine transform. The DCT-I and DST-I compute the transforms of
unctions sampled at regular grid points, and DCT-II and DST-II
ompute the transforms of functions sampled at half-grid points. The
ST/DCT transforms are used here for expanding the solution in the
ertical direction. Calculation of derivatives in the horizontal direc-
ion is carried out with a staggered discrete Fourier expansion �see
arcione, 1999, 2007�, satisfying periodic boundary conditions.
For a function with values given on regular grid points, the sine

xpansion is

f�xj�� �
i�1

N�1

Fi sin�kixj�, ki�
i�

Ndx
and xj� jdx,

j�1, . . . ,N�1, �6�

here dx is the grid spacing and Fi are calculated by the DST-I:

F�ki��
2

N
� j�1

�N�1
f j sin�kixj� . �7�

he corresponding cosine expansion is

f�xj���i�0
�N

Fi cos�kixj�, ki�
i�

Ndx
and xj� jdx,

j�0, . . . ,N, �8�

here Fi are calculated by the DCT-I:

F�ki��
2

N
� j�0

�N
f j cos�kixj� . �9�

prime on the summation symbol means that the terms for j�0 and
j�N have a coefficient 1

2 in front.
For a function with values given on half grid points, the sine ex-

ansion is

f�xj�
dx

2
��

2

N
�i�1

N
Fi sin�ki�xj�

dx

2
�	,

j�0, . . . ,N�1, �10�

here Fi are calculated by the DST-II:

F�ki�� �
j�0

N�1

f i sin�ki�xj�
dx

2
�	 . �11�

he corresponding cosine expansion is

f�xj�
dx

2
��

2

N
�i�0

�N�1
Fi cos�ki�xj�

dx

2
�	,

j�0, . . . ,N�1, �12�

here F are calculated by the DCT-II:
i
F�ki�� �
j�0

N�1

f i cos�ki�xj�
dx

2
�	 . �13�

For instance, the staggered derivative of equation 8 is given by

�f

�x
�xj�

dx

2
�� �

i�0

N�1

Gi sin�ki�xj�
dx

2
�	, �14�

here Gi��kiFi. The calculation is performed by first computing
i by a DCT-I on f , then calculating Gi and an inverse DST-II to get

he derivative. The staggered derivative of equation 6 at xj is calcu-
ated in a similar manner with a DST-II, calculation of Fi�kiGi, and
n inverse DCT-I.

COORDINATE COMPRESSION

Mittet �2002� shows that the Rayleigh wave cannot be sampled
roperly with two grid points per shortest wavelength if the shortest
avelength is calculated as the Rayleigh-wave velocity divided by

he maximum frequency. This is because the Rayleigh wave is a
ropagating wave parallel to the free surface, but exponentially
amped away from the free surface. This damping of the Rayleigh
ave generates high spatial wavenumbers in the wavefield, and
enser sampling is required at the free surface in the vertical direc-
ion. This is well accomplished by the Chebyshev method when
omputing the derivatives along the vertical direction �Kosloff et al.,
990� because the Gauss-Lobatto points are denser at the boundaries
f the grid.

Here we use a coordinate compression at the surface to obtain a
ariable grid spacing. We consider the mapping function

z�� ���1��

2
�� ��1��

2
� � 0

�
sin���

� 0
�, �15�

here � is the vertical coordinate in the equispaced mesh, � 0 is a giv-
n vertical distance in that mesh, and � is the compression factor. If
� is the original grid spacing, then dz�z�d� ��z�0�
�d� , i.e., if
�0.5, the grid spacing is reduced by half at the surface. If � �� 0,

he physical distance is z0� �1��� /2 and the grid spacing at and
elow z0 is d� .

The derivative of a field variable is calculated by the chain rule

�f

�z
�

�f

��
·
d�

dz
, �16�

here

dz

d�
��1��

2
��1�cos���

� 0
�	�� . �17�

STRESS-FREE BOUNDARY CONDITIONS

The free-surface boundary conditions are

� xz
new�� zz

new�0, �18�

t j�0 as indicated in Figure 1, where superindices “new” and
old” �see below� indicate the new and old values of the fields after
nd before the imposition of the boundary conditions, respectively.
he staggered index j is represented by an integer number in pro-
s



g
D
�
p
l
h

�
a
e
a
H
b
v
�

r
P
t
a

w

T
D

t

W

w
i
m
1

o

T
T

�
e
f
e
c
i
t

w
w

w

�

w
l

l
H
a

w
p

T

�
w
�
e
d
t
l
e
�

T136 Kosloff and Carcione
ramming. Vertical derivatives of vx and vz are calculated by DCT-I/
ST-II and DST-II/DCT-I expansions, and vertical derivatives of
xz and � zz are calculated by DST-II/DCT-I and DST-I/DCT-II ex-
ansions, respectively. However, the condition � zz

new�0 is equiva-
ent to replacing vz,z

old by vz,z
old�c33

�1�̇ zz
old �see equations 2�. Then, we

ave to modify � xx at the surface using the following equation:

� xx
new�� xx

old�
c13

c33
� zz

old, at j�0. �19�

The modification is performed at the same time step.� Conditions 18
re satisfied because the stress components are represented by sine
xpansion and therefore their values are zero at the surface. One may
rgue that vz�0 at the free surface because of the expansion DST-II.
owever, the value is effectively modified there, after enforcing the
oundary conditions � zz

new�0. Actually, we do not take the value of
z,z from the DST-II/DCT-I calculation, but we effectively set vz,z

new

��c13 /c33�vx,x
old �from � zz

new�0 at z�0�.
We impose rigid boundary conditions at the bottom.

CPML ABSORBING BOUNDARIES

We use the last version of the PML method to absorb unphysical
eflections from the edges of the mesh. It is the unsplit convolutional
ML method or CPML �e.g., Komatitsch and Martin, 2007�. Inside

he PML strips, each of the spatial derivatives in equations 1 and 2
re replaced by a time convolution

�i f →s��i f , i�x,z, �20�

here

s�t��
� �t�

�
�a exp��bt�H�t� . �21�

ime convolution is denoted by �, H is the step function, � is the
irac function, and � , a, and b are absorbing parameters.
Let us transform the convolution into a differential equation. Note

hat

s�
�

�
�gH, g�a exp��bt�, ġ��bg . �22�

e have

s��i f �
�i f

�
�ef, ef �gH��i f , �23�

here ef is a memory variable. The idea of using memory variables
s similar to that used in numerical modeling in geophysics to imple-

ent viscoelasticity in the seismic wave equation �Carcione et al.,
988�.

The time derivative of the memory variable is

ėf � �� g� ġH���i f �g�0��i f �bgH��i f

�g�0��i f �bef, �24�

r

ėf �a�i f �bef . �25�

here are eight distinct spatial derivatives in equations 1 and 2.
hese are modified inside the absorbing strips only. Each derivative
if is replaced by ��if�/��ef and the additional differential equation
˙ f �a�if�bef has to be solved. This equation is slightly different
rom that obtained by Komatitsch and Martin �2007�. However, both
quations are equivalent for the time step used in the numerical cal-
ulations �dt is small enough� and the performance is the same. This
s shown in the following. Using our notation, equation 26 of Koma-
itsch and Martin �2007� can be written as

ef
n�1��ef

n�
a

b
��i f�n�1/2	exp��bdt��

a

b
��i f�n�1/2,

�26�

here n denotes the n-th time step. Because exp��bdt�
1�bdt,
e obtain

ef
n�1�ef

n�dt�a��i f�n�1/2�bef
n�, �27�

hich is precisely the first-order time discretization of equation 25.
Assume the x-direction. According to Komatitsch and Martin

2007�, � �1,

a�
3vp ln�0.001��i�1�2dx2

2L3 , i�1, . . . ,N, �28�

b��
� fp�i�N�dx

L
�a, �29�

here N is the number of points of the strip, L� �N�1�dx is the
ength of the strip, dx is the grid spacing, vp is the phase velocity, and
f p is the source peak frequency.

TESTS AND GEOPHYSICAL EXAMPLE

We compare numerical and analytical solutions for Lamb’s prob-
em. The latter solution is obtained by the method of Cagniard-De
oop �Berg et al., 1994�. To compute the transient responses, we use

s a source a Ricker time history of the form

h�t���	 �
1

2
�exp��	 �, 	 ����t� ts�

tp
	2

, �30�

here tp is the period of the wave �the distance between the side
eaks is �6tp /�� and we take ts�1.4tp. Its frequency spectrum is

H�
��� tp

��
�	̄ exp��	̄ � i
ts�, 	̄ �� 



p
�2

,


p�
2�

tp
. �31�

he peak frequency is f p�1 / tp and the cut-off frequency is 2 f p.
The material properties are c11�c33��vP

2 �8.8 GPa, c13

2.93 GPa, c55��vS
2 �c11 /3�2.93 GPa, and � �2.2 g /cm3,

hich give the P- and S-wave velocities vP�2000 m /s and vS

vP /�3�1155 m /s, respectively. We take f p�15 Hz and consid-
r a mesh with grid points Nx�Nz�264, dx�10 m, and
� �5 m. For the first test, we consider an equispaced grid, i.e.,
here is no grid compression �� �1�. The source is a vertical force f z

ocated at grid point �100,2�, i.e., at a depth of 7.5 m, and the receiv-
rs are placed at grid point �170,2�. This means �695,5� m for vx and
700,7.5� m for , relative to the source �see a more detailed expla-
vz
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Simulation of Rayleigh waves T137
ation below to properly locate the fields in a staggered grid�. The
ime-stepping method used for the simulations is a fourth-order
unga-Kutta algorithm �e.g., Carcione, 2007�. At the sides and bot-

om of the mesh, there are strips of a length of 20 grid points to imple-
ent the CPML absorbing conditions. The solution is obtained with
time step dt�0.25 ms. Figure 2 compares the numerical and ana-

ytical solutions, where it can be seen that the match is not good. In
his case, the number of points per dominant Rayleigh wavelength
vR / � f pd� �� is approximately 14 �seven points per minimum wave-
ength�, based on a �Poisson’s solid� Rayleigh-wave velocity vR

0.92vS. On the other hand, the P-wave is correctly simulated, with
oints per dominant P-wavelength equal to 13 if we consider hori-
ontal grid spacing and 26 if we consider vertical grid spacing.

Now let us consider a variable grid spacing at the surface and
ore challenging conditions, i.e., shallower location of source and

eceivers. Compression parameters are � �0.1, so that dz�0.5 m
t the surface and � 0 /d� �50. Then, the first 250 m in the equis-
aced mesh are compressed to 137.5 m in the physical mesh. The
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igure 2. Comparison between the numerical and analytical solu-
ions for a source-receiver distance of 700 m; �a� and �b� correspond
o the horizontal and vertical particle-velocity components, respec-
ively, normalized with respect to the maximum value of vz. There is
o compression of grid points at the surface �� �1�, source depth is
.5 m, and receiver depth is 5 m for v and 7.5 m for v .
x z
ource is located at the grid point �i, js�� �100, 5�, and two receiv-
rs R1 and R2 record the field at grid points �is, j�� �170, k� for vx

nd �i, js�� �170, k� for vz, where k�2 �R1� and k�83 �R2�. For
he comparison, one has to correctly compute locations of the source
nd receiver for calculation of the analytical solution. Let us consid-
r receiver R1. Taking Figure 1 as a reference, the location of the
ource is �0, 22.5� m in the equispaced grid and �0, 2.38� m in the
hysical grid because js�5. The receivers are located at
695, 0.75� m for vx and �700, 1� m for vz �physical grid� because
or these, is� i� 1

2 and js�5, respectively. Then, the actual loca-
ion of the vertical force �in the equispaced grid� is �k�

1
2�d� , and

he location of the horizontal force is kd� . Compression mapping
ives the physical locations through equation 15. Receiver R2 has
he following locations in the physical space: �695, 297.5� m for vx

nd �700, 300� m for vz. The comparison for R1 is shown in Figure
. As can be appreciated, the match is very good. Figure 4 shows a
omparison at a depth of 300 m. In this case, the agreement is excel-
ent. Using the same medium properties and modeling parameters,
e consider an offset of 1.4 km. The comparison for the shallow re-
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ompression factor is � �0.1, source depth is 2.38 m, and receiver
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T138 Kosloff and Carcione
eiver is shown in Figure 5, where we can see that the agreement is
till satisfactory for practical purposes. Numerical experiments with
� �10 m and a compression factor � �0.1 show that the results
re equally satisfactory. In this case, grid spacing at the surface is
m and the points per minimum wavelength computed on the basis

f this grid spacing are approximately 35. The use of fewer points
han this limit does not provide a good agreement between solutions.

As we have seen, the algorithm performs well on a single-trace ba-
is and this makes it reliable for practical applications. The classical
xample in near-surface geophysics is the simulation of ground roll.
his is caused by the presence of a shallow low-velocity layer, usual-

y called the weathering layer. Let us assume the medium properties
f the previous tests for a shallow layer of 140 m thickness and two
ases as indicated in Figure 6, where the geological model is shown.
The S-wave velocity is given by vP /�3.� Seismograms correspond-
ng to the vertical particle velocities are shown in Figure 7a and b,
nd a snapshot of the vertical particle velocity for caseAis displayed
n Figure 8. When the surface layer has a low velocity �case A�, the
ayleigh wave is dispersive and ground roll is generated. On the oth-
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igure 4. Comparison between the numerical and analytical solu-
ions for a source-receiver distance of 700 m; �a� and �b� correspond
o the horizontal and vertical particle-velocity components, respec-
ively, normalized with respect to the maximum value of vz. The
ompression factor is � �0.1, source depth is 2.38 m, and receiver
epth is 297.5 m for v and 300 m for v .
x z
r hand, when there is an inversion in the seismic velocity �case B�,
round roll is not present. This occurs, for instance, in the earth
oles, where a high-velocity layer �ice� overlies a low-velocity layer
permafrost�, or on land, when there is a basalt layer at the surface.
here are no trapped modes in these cases, because P- and S-waves
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re not evanescent in the half space when its wave velocity is lower
han that of the layer. In mathematical terms, Mooney and Bolt
1966� show that when vS �half-space� �vS �layer�, the roots of the
ispersion equation are all complex unless that of the fundamental
ode.
Strong lateral variations of the near-surface properties can be han-

led appropriately by pseudospectral methods, such as the present
ethod. Examples can be found in Carcione �1992�, Priolo et al.
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igure 7. The vz seismograms corresponding to casesAand B for the
imulation of Rayleigh surface waves. The model is shown in Figure
. The dispersed Rayleigh wave �ground roll� can be seen clearly as a
igh-amplitude �linear� event with a traveltime of 1.4 s at a horizon-
al distance of 0 m.
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igure 8. The vz snapshots at t�1 s for case A. The model is shown
n Figure 6. The dispersed Rayleigh waves �ground roll� can be seen
t the horizontal distances of 500 and 2500 m.
1994�, and Carcione et al. �2004�, where a vertical interface touch-
ng the free surface with large property contrasts is considered.

CONCLUSIONS

It is already well established that simulation of seismic Rayleigh
aves �and surface waves in general� requires more grid points per
inimum wavelength than simulation of body waves, mainly when

he source and receivers are close to the surface �less than 2 or 3 m�
nd offsets are large, say, exceeding 500 m. Dense grid spacing in
he vertical direction is achieved by using a compression mapping in
region close to the surface, and spatial derivatives are computed us-

ng staggered pseudospectral cosine and sine transforms, which
uarantee the use of a coarse grid in the interior of the mesh. These
ransforms require half the grid points used by the Chebyshev differ-
ntial operator, which is also based on the fast Fourier transform.
Memory storage is reduced approximately by half.� This implies
he best discretization for pseudospectral methods in the presence of
ree-surface conditions. Because the grid compression is performed
t a zone near the surface, reduction of the model along the vertical
irection is minimal. Therefore, the proposed algorithm is highly ac-
urate and can handle the propagation of Rayleigh waves at large
ffsets. This is important for application to near-surface problems
nd earthquake seismology.

Further research involves analysis of the performance of alterna-
ive free-surface methods using the present numerical solver, as the
mage method or Mittet’s heuristic approach. Moreover, extension
f the algorithm to three dimensions is required to model Love
aves. In this case, the number of grid points per wavelength used
ere should be appropriate because Love waves propagate at a shear-
ave velocity that is slightly larger than Rayleigh-wave velocity.
rid compression is required only near the surface along the vertical
irection, and therefore the 3D extension is straightforward. Finally,
he modeling is also suitable to model Scholte waves �at fluid-solid
nterfaces�, which can be implemented by domain-decomposition

ethods, as previously performed by the authors using Chebyshev
patial differentiation.
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