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a b s t r a c t

We obtain the full-wave solution for the wave propagation at the surface of anisotropic media using two
spectral numerical modeling algorithms. The simulations focus on media of cubic and hexagonal symme-
tries, for which the physics has been reviewed and clarified in a companion paper. Even in the case of
homogeneous media, the solution requires the use of numerical methods because the analytical Green’s
function cannot be obtained in the whole space. The algorithms proposed here allow for a general mate-
rial variability and the description of arbitrary crystal symmetry at each grid point of the numerical mesh.
They are based on high-order spectral approximations of the wave field for computing the spatial deriv-
atives. We test the algorithms by comparison to the analytical solution and obtain the wave field at dif-
ferent faces (stress-free surfaces) of apatite, zinc and copper. Finally, we perform simulations in
heterogeneous media, where no analytical solution exists in general, showing that the modeling algo-
rithms can handle large impedance variations at the interface.

� 2011 Elsevier B.V. All rights reserved.

1. Introduction

The problem of surface acoustic wave (SAW) propagation in
anisotropic media has been studied for many decades. Neverthe-
less, anisotropy induces great difficulties in analytically and explic-
itly studying wave propagation because the anisotropic behavior of
the medium considerably modifies the existence and the structure
of the SAW that propagates at the free surface of the medium (see a
companion paper [1] for a detailed review). Few problems in elas-
todynamics have a closed-form analytical solution and some can
be investigated with semi-analytical methods, but often one can-
not be sure if these methods give reliable solutions. Being able to
accurately simulate wave propagation numerically is therefore
essential in a wide range of fields, including ultrasonics, earth-
quake seismology and seismic prospecting. The emergence of
ultrasonic techniques for nondestructive evaluation has provided
a strong impulse to the study of wave propagation and its numer-
ical simulation [2–8]. Ultrasonic theory and numerical modeling is
applied to the detection of flaws and micro-cracks, inhomogeneous

stress field evaluation, and the characterization of effective
mechanical properties of fibers and composites with imperfect
interface bonding. These systems generally possess anisotropic
properties, described, in their most general form, by 21 elastic
coefficients and by the mass density of the material. Numerical
simulations therefore become an attractive method to describe
the propagation of SAWs generated by a point source at a free sur-
face that can be different from a symmetry plane of a given aniso-
tropic medium and for which no analytical solution can be derived.

In the following sections we use two full-wave numerical meth-
ods to solve the problem without any approximation regarding the
type of symmetry nor the orientation of the free surface. The meth-
ods are highly accurate because they are based on spectral repre-
sentations of the wave field. We present some examples in
hexagonal and cubic media, validation benchmarks against the
analytical solution in known cases, and snapshots of propagation
in more complex heterogeneous media.

2. Equation of motion

In a heterogeneous elastic, anisotropic medium, the linear wave
equation may be written as

q€u ¼ $ � rþ f;
r ¼ C : e;

e ¼ 1
2
½$uþ ð$uÞ>�;

ð1Þ
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where u denotes the displacement vector, r the symmetric, second-
order stress tensor, e the symmetric, second-order strain tensor, C
the fourth-order stiffness tensor, q the density, and f an external
source force. A dot over a symbol denotes time differentiation, a co-
lon denotes the tensor product, and a superscript > denotes the
transpose.

In the case of a fully anisotropic medium, the 3-D stiffness ten-
sor C has 21 independent components. In 2-D, the number of inde-
pendent components reduces to 6. Using the reduced Voigt
notation [9], Hooke’s law may be written in the form

rxx

ryy

rzz

ryz

rxz

rxy

0
BBBBBBBB@

1
CCCCCCCCA
¼

c11 c12 c13 c14 c15 c16

c21 c22 c23 c24 c25 c26
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0
BBBBBBBB@

1
CCCCCCCCA

exx

eyy

ezz

2eyz

2exz

2exy

0
BBBBBBBB@

1
CCCCCCCCA
: ð2Þ

Using this reduced notation, the stiffness matrix remains symmet-
ric, i.e., cIJ = cJI. The isotropic case is obtained by letting
c11 = c22 = c33 = k + 2l, c12 = c13 = c23 = k and c44 = c55 = c66 = l,
where k and l are the two Lamé parameters; all other coefficients
are then equal to zero.

In the case of a medium with free surfaces, e.g., the edges of a
crystal, or the surface of the Earth, the boundary condition is zero
traction at the surface: r � n̂ ¼ 0, where n̂ is the unit outward nor-
mal vector. The reader is referred for instance to Crampin et al.
[10], Thomsen[11], Helbig[9] or Carcione [12] for further details
on wave propagation in anisotropic media.

3. Time-domain modeling methods

We propose algorithms to simulate surface waves in a material
with arbitrary symmetry. The computations are based on two dif-
ferent numerical techniques, namely, the Fourier-Chebyshev
pseudospectral method (PSM) [13,14,12] and the spectral finite-
element method (SEM) [15–20]. The first is based on global differ-
ential operators in which the field is expanded in terms of Fourier
and Chebyshev polynomials, while the second is an extension of
the finite-element method that uses Legendre polynomials as
interpolating functions. Both methods have spectral accuracy up
to approximately the Nyquist wavenumber of the mesh. One of
the aims of this work is to provide reliable techniques to compute
numerical solutions in, e.g., crystals, metals and minerals for which
analytical solutions do not exist. The proposed algorithms can ob-
tain solutions for general heterogeneous media because the space
is discretized on a mesh whose grid points can have varying values
of the elastic properties, i.e., the medium can be inhomogeneous.

3.1. The pseudospectral method

The implementation of the pseudospectral method to simulate
wave propagation in 2D and 3D unbounded anisotropic media is
given in Carcione et al. [21,22], respectively. The method including
a free surface was first introduced by Kosloff et al. [23] for the 2D
isotropic-elastic case. For computing spatial derivatives, the
scheme is based on the Fourier and Chebyshev differential opera-
tors in the horizontal and vertical directions, respectively. These
operators have infinite accuracy (within machine precision) up to
two points per wavelength (the Nyquist wavenumber) and p
points per wavelength, respectively.

This modeling technique has been extended to the 3D aniso-
tropic-elastic case by Tessmer [13] and to the 3D isotropic-anelas-
tic case by Carcione et al. [24]. The first algorithm is used here to
model surface waves. For completeness and ease in programming,

we explicitly outline the equation of motion and the complete
boundary treatment used in the calculations. The particle-veloc-
ity/stress formulation is

_�v ¼ H � �v þ f; ð3Þ

where

�v ¼ ðv>;r>Þ> � ðvx; vy;vz; rxx;ryy;rzz;ryz;rxz;rxyÞ> ð4Þ

and

qf ¼ ðfx; fy; fz;0;0;0;0;0; 0Þ> ð5Þ

are the particle-velocity/stress and body-force vectors ðv ¼ _uÞ,

H ¼ 03 q�1r
C � r> 06

 !
; ð6Þ

with

r ¼
@x 0 0 0 @z @y

0 @y 0 @z 0 @x

0 0 @z @y @x 0

0
B@

1
CA ð7Þ

and On denotes the zero matrix of dimension n � n. Moreover, q is
the mass density. A numerical solution of Eq. (3) is obtained by
means of a fourth-order Runge-Kutta method [12].

A less straightforward issue using pseudospectral differential
operators is to model the free-surface boundary condition. While
in finite-element methods the implementation of traction-free
boundary conditions is natural – simply do not impose any con-
straint at the surface nodes – finite-difference and pseudospectral
methods require a particular boundary treatment [23,14,25,26].
Free-surface and solid–solid boundary conditions can be imple-
mented in numerical modeling with the Chebyshev method by
using a boundary treatment based on characteristics variables
[12]. Most explicit time integration schemes compute the opera-
tion H � �v � ð�vÞold. The array ð�vÞold is then updated to give a new ar-
ray ð�vÞnew that takes the boundary conditions into account. Let us
consider the boundary z = 0 (e.g., the surface) and let us assume
that the wave is incident on this boundary from the half-space
z > 0. The free surface conditions are obtained by computing the
stresses from

rðnewÞ
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;
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while the velocities are given by
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In the equations above, coefficients aij depend only on the elastic
coefficients and on density. Indeed, these coefficients may be com-
puted based on the following three-step algorithm:

Step 1: Define the matrix

:

Step 2: Compute the matrix Q whose columns are the eigenvec-
tors of matrix C, and note that it has the form

:

ð10Þ

Step 3: Compute the inverse of matrix Q, and note that it has the
form

:

ð11Þ

The relationship between matrices (10) and (11) is given by

a16 ¼ ½p9ðq8r4 � q4r8Þ þ p8ðq4r9 � q9r4Þ þ p4ðq9r8 � q8r9Þ�=d1;

a18 ¼ ½p9ðq4r6 � q6r4Þ þ p6ðq9r4 � q4r9Þ þ p4ðq6r9 � q9r6Þ�=d1;

a19 ¼ ½p8ðq6r4 � q4r6Þ þ p6ðq4r8 � q8r4Þ þ p4ðq8r6 � q6r8Þ�=d1;

a26 ¼ ½p9ðq8r5 � q5r8Þ þ p8ðq5r9 � q9r5Þ þ p5ðq9r8 � q8r9Þ�=d1;

a28 ¼ ½p9ðq5r6 � q6r5Þ þ p6ðq9r5 � q5r9Þ þ p5ðq6r9 � q9r6Þ�=d1;

a29 ¼ ½p8ðq6r5 � q5r6Þ þ p6ðq5r8 � q8r5Þ þ p5ðq8r6 � q6r8Þ�=d1;

a36 ¼ ½p9ðq8r7 � q7r8Þ þ p8ðq7r9 � q9r7Þ þ p7ðq9r8 � q8r9Þ�=d1;

a38 ¼ ½p9ðq7r6 � q6r7Þ þ p7ðq6r9 � q9r6Þ þ p6ðq9r7 � q7r9Þ�=d1;

a39 ¼ ½p8ðq6r7 � q7r6Þ þ p7ðq8r6 � q6r8Þ þ p6ðq7r8 � q8r7Þ�=d1;

Table 1
Elastic constants and density of the different materials used in this study.

Material c11 (GPa) c12 (GPa) c13 (GPa) c33 (GPa) c55 (GPa) q (kg/m3) Symmetry

Apatite 167 13.1 66 140 66.3 3190 Hexagonal
Beryllium 292 26.7 14 336 162 1848 Hexagonal
Zinc 165 31 50 62 39.6 7140 Hexagonal
Copper 169 122 c12 c11 75.3 8920 Cubic
Epoxy 7.17 c11 � 2c55 c12 c11 1.61 1120 Isotropic

(a)

(b)

Fig. 1. Wave fronts in apatite (a) and corresponding snapshot computed using the
pseudospectral technique (b) at the (x,z)-plane containing the source, which is
located at the surface.
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together with

;

where

d1 ¼ p9ðq6r8 � q8r6Þ þ p8ðq9r6 � q6r9Þ þ p6ðq8r9 � q9r8Þ;

d2 ¼ 2½p3ðq1r2 � q2r1Þ þ p2ðq3r1 � q1r3Þ þ p1ðq2r3 � q3r2Þ�:

Finally, the non-reflecting (i.e., absorbing) boundary conditions
arise from the following system of equations for the particle
velocities
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together with the following system of equations for the stresses
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;

where

(a)

(b)

Fig. 2. Same as Fig. 1 for zinc.

(a)

(b)

Fig. 3. Same as Fig. 1 for copper.
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rzz
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;

with A and B given in (9), while b1, b2 and b3 are given by (8).

3.2. The spectral-element method

In the spectral-element method (SEM), which is a continuous
Galerkin approach, the strong form of the equations of motion
(1) is first rewritten in a variational or weak formulation. Using
such a variational approach has the direct advantage that the
free-surface boundary condition at the surface of the model, which
says that traction should be zero along the surface, is the natural

boundary condition of the technique. Thus, one does not need to
implement it explicitly, it is automatically enforced accurately. Be-
cause of that, the propagation of surface waves and their interac-
tion with the shape of the surface of laboratory models can be
computed in a very precise fashion [27]. This is true for geophysical
models as well, for which the effect of complex topography on both
surface waves and body waves can be accurately predicted [28].

The SEM being a full waveform modeling technique, it can com-
pute terms that are often neglected in approximate methods, for
instance the near-field terms [29]. Another advantage of that tech-
nique is that, contrary to finite-difference methods for instance, it
does not need to resort to a staggered numerical grid in which dif-
ferent components of the strain tensor are defined at different
locations; on the contrary, in the SEM all the components are de-
fined at the same Gauss–Lobatto–Legendre grid point, and as a

0

4

8

12

16

20

24

28

32

36

40

y 
(c

m
)

x (cm)

0

4

8

12

16

20

24

28

32

36

40

y 
(c

m
)

x (cm)

0

4

8

12

16

20

24

28

32

36

40

y 
(c

m
)

0 4 8 12 16 20 24 28 32 36 40 0 4 8 12 16 20 24 28 32 36 40

0 4 8 12 16 20 24 28 32 36 400 4 8 12 16 20 24 28 32 36 40

x (cm)

0

4

8

12

16

20

24

28

32

36

40

y 
(c

m
)

x (cm)

Fig. 4. Snapshots at propagation times of 28 ls, 34 ls, 40 ls and 46 ls computed using the spectral-element technique at the surface of a three-dimensional copper crystal,
i.e., in the (x,y)-plane.
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result the sum of all the strain terms required by Hooke’s law in the
case of general anisotropic media (2) can be performed without
any additional interpolation. As a result, the SEM is very well sui-
ted to studying elastic wave propagation in complex anisotropic
media [30–32].

Another important property of the SEM is the fact that it can be
parallelized efficiently to take advantage of the distributed struc-
ture of modern supercomputers [33], and in particular on clusters
of Graphics Processing Units (GPU) graphics cards [34–36], reach-
ing speedup factors of more than an order of magnitude compared
to a reference serial implementation on a CPU core; this makes it
compare well in terms of performance to less flexible algorithms
such as finite differences in the time domain (FDTD), which can
also be implemented efficiently on GPUs [37,38].

Writing the variational form of the elastic wave equation is
accomplished by dotting the strong (i.e., differential) form of the

equation with an arbitrary test vector w and integrating by parts
over the region of interest:

Z
X
qw � €udXþ

Z
X

$w : C : $udX

¼
Z

X
w � f dXþ

Z
Cabs

w � tdC; ð12Þ

where f denotes the known external source force, t denotes the
traction vector, and X denotes the domain under study, whose
boundary C usually consists in two parts: a boundary Cf on which
free-surface (i.e., traction-free) conditions are implemented, and an
artificial boundary Cabs used to truncate semi-infinite domains and
on which outgoing waves must be absorbed. In the integration by
part above, we have used the fact that the traction vanishes on
the free boundaries Cf of the domain and thus the related terms
does not appear in the weak formulation because it is its natural
boundary condition. In order to absorb outgoing waves on the ficti-
tious edges of the mesh, Convolution Perfectly Matched absorbing
Layers (C-PML) are implemented, see e.g. [39–41]; however in the
case of elastic wave propagation in anisotropic crystals usually all
the edges of the crystal are either free (‘Neumann’ boundary condi-
tion) or fixed/rigid with zero displacement (‘Dirichlet’ boundary
condition) because the crystal is of finite size and thus no absorbing
conditions need to be implemented.

To implement the Legendre spectral element discretization of
the variational problem (12), one first needs to create a mesh of
nel non-overlapping hexahedra Xe on the domain X, as in a classi-
cal finite element method (FEM). These elements are subsequently
mapped to a reference cube K = [�1,1]3 using an invertible local

(a)

(b)

Fig. 5. Snapshots computed using the pseudospectral technique at the surface of
apatite, with the symmetry axis making an angle p/4 (a) and an angle p/2 (b) with
the surface.
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Fig. 6. Analytical three-dimensional Green’s function (i.e., impulse response) for
apatite (a) and beryllium (b) computed 15 cm below the source. Symbols tP and tR

denote the arrival time of qP and surface waves, respectively, while tS is the arrival
time of SH and qSV modes.
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mapping Fe : K! Xe, which enables one to go from the physical
domain to the reference domain, and vice versa.

On the reference domain K, one introduces a set of local basis
functions consisting of polynomials of degree N. On each element

Xe, mapped to the reference domain K, one then defines a set of
nodes and chooses the polynomial approximation ue

N and we
N of u

and w to be the Lagrange interpolant at this set of nodes. These
nodes ni 2 [�1,1], i 2 0, . . . ,N, are the Gauss–Lobatto–Legendre
(GLL) points which are the (N + 1) roots of

ð1� n2ÞP0NðnÞ ¼ 0; ð13Þ

where P0NðnÞ is the derivative of the Legendre polynomial of degree
N. On the reference domain K, the restriction of a given function uN

to the element Xe can be expressed as

ue
Nðn;g; cÞ ¼

XN

p¼0

XN

q¼0

XN

r¼0

ue
Nðnp;gq; crÞhpðnÞhqðgÞhrðcÞ; ð14Þ

where hp(n) denotes the pth 1-D Lagrange interpolant at the (N + 1)
GLL points ni introduced above, which is by definition the unique
polynomial of degree N that is equal to one at n = np and to zero
at all other points n = nq for which q – p. From this definition, one
obtains the crucial property

hpðnqÞ ¼ dpq; ð15Þ

which will lead to a perfectly diagonal mass matrix.
After introducing the piecewise-polynomial approximation

(14), the integrals in (12) can be approximated at the element level
using the GLL integration rule:Z

X
uNwN dX ¼

Xnel
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Z
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Nwe
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Fig. 7. Left column: Comparison of analytical (solid line) and numerical (black dots) solutions for the vertical component of the velocity vector for apatite (a) and beryllium
(b) in the case of the pseudspectral numerical technique. The source-receiver locations are those of Fig. 6. The dominant frequency of the source is 250 kHz for apatite in (a)
and 150 kHz for beryllium in (b). Right column: same comparison but for the analytical solution (solid line) versus the spectral-element numerical solution (dotted line).
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Fig. 8. Snapshot of a two-dimensional simulation for a copper crystal computed
using the staggered Fourier spectral technique of Carcione [52]. When comparing to
Fig. 3a, one can observe that the ends of the qS cusps extend as diffraction
phenomena forming two quasi-ellipses.
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The weights xi > 0 are independent of the element and are deter-
mined numerically [42], and Je is the Jacobian associated with the
mapping Fe from the element Xe to the reference domain K.

Gradients are first computed in the reference domain K:

@nue
Nðn;g; cÞ ¼

XN

p¼0

XN

q¼0

XN

r¼0

ue
Nðnp;gq; crÞh

0
pðnÞhqðgÞhrðcÞ;

@gue
Nðn;g; cÞ ¼

XN

p¼0

XN

q¼0

XN

r¼0

ue
Nðnp;gq; crÞhpðnÞh0qðgÞhrðcÞ;

@cue
Nðn;g; cÞ ¼

XN

p¼0

XN

q¼0

XN

r¼0

ue
Nðnp;gq; crÞhpðnÞhqðgÞh0rðcÞ;

ð17Þ

where h0 denotes the derivative of the 1-D Lagrange interpolant.
One subsequently uses the chain rule to compute the derivatives
in the physical domain, i.e.,

@x ¼ nx@n þ gx@g þ cx@c;

@y ¼ ny@n þ gy@g þ cy@c;

@z ¼ nz@n þ gz@g þ cz@c;

ð18Þ

where the components of the Jacobian matrix, nx, ny, nz etc. are com-
puted based upon the mapping Fe.

The effects of anisotropy in (12) are included in the termR
X $w : C : $udX, which can be rewritten as

R
X rðuNÞ : $wNdX.

Written out explicitly, the integrand is

rðuNÞ : $wN ¼ rij@jwi: ð19Þ

In the fully anisotropic 3-D case, using the definition
eij = (@iuj + @jui)/2, Hooke’s law (2), when injected in (19) to obtain
the developed expression of rðuNÞ : $wN , gives a sum of terms of
the form cab@aub@cwd, with cab the components of the reduced
stiffness matrix in (2). Each of these terms, integrated over an ele-
ment Xe, is easily computed by substituting the expansion of the
fields (14), computing gradients using (17) and the chain rule
(18), and using the GLL integration rule (16).

After this spatial discretization with spectral elements, impos-
ing that (12) holds for any test vector wN, as in a classical FEM,
we have to solve an ordinary differential equation in time. Denot-
ing by �u the global vector of unknown displacement in the med-
ium, we can rewrite Eq. (12) in matrix form as

M€�uþ K�u ¼ �f; ð20Þ

where M is called the mass matrix, K the stiffness matrix, and �f the
source term. A very important property of the Legendre SEM used
here from an implementation point of view, which allows for a
drastic reduction in the complexity and the cost of the algorithm,
is the fact that the mass matrix M is diagonal; this stems from
the choice of Lagrange interpolants at the GLL points in conjunction
with the GLL integration rule, which results in (15). This constitutes
a significant difference compared to a classical FEM and to the
Chebyshev SEM of Patera [15] and of e.g. Priolo et al.[43]. As a result,
fully explicit time evolution schemes can be used.

Time discretization of the second-order ordinary differential
equation in time (20) is performed based on a classical explicit
Newmark centered finite-difference scheme [44], which is sec-
ond-order accurate and conditionally stable. We assume zero ini-
tial conditions for the displacement and velocity fields, i.e., the
medium is initially at rest. Higher-order time schemes can be used
if needed, for instance fourth-order Runge-Kutta or symplectic
schemes [45,46]; this can be useful in particular for simulations
comprising a very large number of time steps, for which the fact
that the spatial SEM discretisation is of high order while the time
discretisation is only second order implies that overall accuracy
is significantly reduced because of the time scheme.

4. Numerical simulations

We consider the materials whose properties are given in Table
1, and which are dissimilar: apatite, beryllium and zinc have hex-
agonal symmetry and copper has cubic symmetry, with c22 = c11,
while epoxy is isotropic.

The pseudospectral method uses a mesh composed of 81 grid
points along the three Cartesian directions, with a constant grid
spacing of 2.5 mm along the x- and y-directions and a total mesh
size of 20 cm in the z-direction with varying grid spacing. The sur-
face of the sample is the (x,y,z = 0)-plane. The source is a vertical
force located at the surface and has the time history

hðtÞ ¼ cos½2pðt � t0Þf0� exp �2ðt � t0Þ2f 2
0

h i
; ð21Þ

where f0 is the dominant frequency and t0 = 3/(2f0) + 5.10�6 s is a
onset delay time that we use in order to ensure zero initial condi-
tions. The time step of the Runge-Kutta algorithm is 0.05 ls for apa-
tite and 0.1 ls for zinc and copper. Figs. 1–3 show the wavefronts
(energy velocities) in an unbounded medium and snapshots in the
(x,z)-plane for apatite, zinc and copper. The dominant frequencies

(a)

(b)

Fig. 9. Snapshot computed using the pseudospectral technique at the surface (a)
and at a vertical section (b). The medium is zinc overlaid by a substrate of epoxy of
5 mm thickness.
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of the source are 250 kHz, 150 kHz and 200 kHz, with total propaga-
tion times of 25 ls, 50 ls and 40 ls, respectively.

The Rayleigh wave can be observed at the surface, and the qP
and qS waves in the interior of the medium. Fig. 4 shows
spectral-element snapshots at different propagation times at the
surface of copper, i.e., in the (001)-plane in terms of Miller indices,
where the Rayleigh wavefront can be seen [47].

The mesh contains a total of 90 � 90 � 90 spectral elements and
we use polynomial basis functions of degree N = 4. The total size of
the mesh is 40 cm � 40 cm � 40 cm and we use a time step of
0.03 ls. Apatite and zinc are azimuthally isotropic in this surface
and therefore the wavefront is isotropic. Snapshots for the pseudo-
spectral method of the wave field at the surface of apatite, with the
sample rotated by an angle of p/4 and then an angle of p/2 with
respect to the surface are displayed in Fig. 5. The surfaces are the
(101)- and (100)-planes in terms of Miller indices. In this case,
the anisotropy of the Rayleigh wave can clearly be observed.

The analytical solution [48] for the three-dimensional Green’s
function (i.e., the impulse response) for a surface source and a

receiver located along a vertical line below the source, in the inte-
rior of the medium, is represented in Fig. 6.

For completeness the analytical expression to compute it is gi-
ven in Appendix A. It corresponds to the Green function computed
15 cm below the surface for apatite and then for beryllium. The P-
and S-wave velocities of beryllium are almost twice that of other
metals, i.e., 13,484 m/s and 9363 m/s along the symmetry axis,
respectively. These high velocities allow us to use a larger grid
spacing of 4.4 mm in the x- and y-directions for the pseudospectral
technique and a total mesh size of 35 cm in the z-direction, keeping
the same time step as that used for apatite, i.e., 0.05 ls; using a
smaller grid allows us to save in terms of computational cost. Val-
idation tests for both modeling algorithms versus the analytical
solution convolved with the source time history (21) for apatite
and beryllium are shown in Fig. 7. The fit obtained is excellent
for both techniques.

In the case of the spectral-element method, the mesh contains a
total of 60 � 60 � 60 spectral elements and we use polynomial
basis functions of degree N = 4. The total size of the mesh is

20 cm 

5 cm Zinc 

Epoxy 

(a) 

(b) (c) 

15
 c

m
 

*

x
y

z

Fig. 10. Model made of epoxy and zinc (a) and corresponding surface waves (b) and snapshot computed using the pseudospectral technique at a vertical section (c).
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40 cm � 40 cm � 40 cm in the case of apatite and 60 cm �
60 cm � 60 cm in the case of beryllium, and we use a time step of
0.03 ls.

The practical applications of numerical modeling are numerous.
One of them is to use it as a research tool to numerically investi-
gate the complex behavior of waves propagating in crystals when
an analytical or closed form solution is not available. Recently, Des-
champs and his collaborators [49–51] showed that the cuspidal tri-
angles of the qS wave extend beyond the edges or vertices of the
cuspidal triangles, and that this phenomenon can be explained
by inhomogeneous plane waves. In order to show this, we perform
a simulation using a two-dimensional qP–qS modeling algorithm
based on the staggered Fourier method to compute the spatial
derivatives [52]. The mesh has 120 � 120 grid points with a
constant grid spacing of 2.5 mm. A vertical force with a dominant

frequency of 200 kHz is applied at its center. Fig. 8 shows a snap-
shot at a time of 36 ls for a copper crystal; the qP and qS waves
can be seen (outer and inner wavefronts, respectively). When com-
paring to Fig. 3a, one can observe that the ends of the qS cusps ex-
tend as diffraction phenomena forming two quasi-ellipses.

Because the simulation is two dimensional and the source is
placed in the center of the model, it contains no surface waves,
only body waves. This explains why this snapshot looks different
from the snapshots of Fig. 4, which are dominated by surface
waves. Indeed, as the simulation illustrated in Fig. 4 is three
dimensional with the source located exactly at the surface, Fig. 4
thus not only has body waves as in Fig. 3a, but also surface waves
superimposed and dominant.

The proposed modeling algorithms can handle heterogeneous
media, therefore numerical simulations can be performed in cases
for which there is no known analytical solution. In the next
simulation we consider a zinc sample coated with a substrate of
epoxy of 5 mm thickness. Epoxy is isotropic and has the elastic
constants given in Table 1. The simulation uses the same numerical
parameters as those used to generate Fig. 2, but the vertical force
source is located at a depth of 1 cm in the zinc crystal. In the snap-
shots of Fig. 9, isotropic and dispersive Rayleigh wavefronts can be
seen at the surface, and we notice that most of the energy is con-
tained in the thin substrate.

The model shown in Fig. 10a is composed of a prism of epoxy
embedded in zinc. The numerical parameters are unchanged and
the source is a combination of three directional forces applied at
the location indicated by a star in the model. Figs. 10b and c show
snapshots at the surface and at vertical section at a time of 55 ls,
respectively. Most of the energy is trapped in the epoxy prism.

Fig. 11 shows snapshots at a time of 50 ls at the same planes
but replacing the epoxy prism with a copper prism. The impedance
contrast between the two media is weaker and therefore energy
trapping is much reduced.

5. Conclusions

The two numerical modeling methods compute the full wave
field and have spectral accuracy. At each grid point these methods
allow us to model an anisotropic medium of arbitrary crystal sym-
metry, i.,e., a triclinic medium or a medium of lower symmetry
whose symmetry axes can be rotated by any angle. We have shown
numerical examples for media of hexagonal or cubic symmetry, for
which we obtained time histories and snapshots at the surface and
at vertical sections. The wavefronts have been compared with the
ray surfaces (energy or group velocities) obtained based on a
plane-wave analysis. The modeling algorithms have been success-
fully tested against the analytical solution for a point force source
located at the surface of a crystal and a receiver located in the inte-
rior of the medium. We have shown how these modeling tools can
be used to simulate phenomena predicted by plane-wave analyses,
as the continuation of the cuspidal triangles of the qS wave in cubic
crystals. Moreover, we have simulated wave propagation in the
presence of a free surface in cases where there is no analytical solu-
tion for models composed of media of dissimilar crystal symmetry
and with contrasting elastic properties.
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Fig. 11. Surface waves (a) and snapshot computed using the pseudospectral
technique at a vertical section (b) corresponding to the model shown in Fig. 10a,
replacing epoxy with copper.
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Appendix A. Analytical solution for transversely isotropic media

We briefly summarize the main formulas used in this article to
compute the analytical vertical motion in a VTI half-space with
horizontal free surface. For a thorough treatment, see Payton
[53,48].

A.1. Step response

Two cases are considered: (i) buried source with receiver at the
epicenter (idealized earthquake), and (ii) source at the surface with
receiver in its vertical (idealized geophysical exploration or labora-
tory experiment). The two problems are mathematically related
through the reciprocity principle [54].

A.1.1. Buried source
When the time dependence of the source is described by Heav-

iside’s step function, the vertical displacement at the epicenter is
given by

uzðtÞ ¼
q f z

4pc44zs
u0

ffiffiffiffiffiffiffiffiffiffiffiffi
c44=q

p
zs

t

 !
; ðA:1Þ

where t is time, q is density, fz is the amplitude of the vertical body
force, c44 is an elastic constant in Voigt notation, and zs is the depth
of the buried source. In (A.1), function u0 depends on the type of
material; for example, in the case of apatite, we have

u0ðhÞ ¼

0 if 0 6 h 6 a�1=2

Fðx3ÞgðhÞ if a�1=2 < h < 1
2Fðx3ÞgðhÞ if 1 6 h < Tþ

2Re FðxÞ 1
2þ i ð2�vÞh

2þb�1
2QðhÞ

h in o
if Tþ 6 h <1

8>>>><
>>>>:

ðA:2Þ

where

FðxÞ ¼ 2fV
ðf � hÞd ðA:3Þ

with

f ðxÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
vxþ aþ 1� ah2

a

s
;

VðxÞ ¼ fð1� jÞxðxþ 1Þ � ðvxþ aÞðxþ 1Þ þ ah2ðxþ 1Þ

� 1
j
½ðj� 1Þðxþ 1Þ þ ah2�ðxþ 1� ah2Þg;

dðxÞ ¼ 2ð1� jÞxðxþ 1Þ � ðvxþ aÞðxþ 1Þ � ahf :

ðA:4Þ

In (A.2)–(A.4), we have defined

x ¼ fðhÞ þ imðhÞ;

where

fðhÞ ¼ 1
2b
½vh2 � ðbþ 1Þ�;

mðhÞ ¼ 1
2b

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð4ab� v2Þðh2 � T2

þÞðh
2 � T2

�Þ
q

;

ðA:5Þ

with

T2
� ¼
�½vðbþ 1Þ � 2bðaþ 1Þ� �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4bðaþ b� vÞð1þ ab� vÞ

p
4ab� v2 :

ðA:6Þ

Parameters a, b, v, j appearing in (A.2)–(A.6) represent non-dimen-
sional elastic constants defined by

a ¼ c33

c44
b ¼ c11

c44
v ¼ 1þ ab� c13

c44 þ 1

� �2

j ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ab� v

p
where cij are, as usual, the anisotropic elastic constants in the abbre-
viated Voigt notation. In (A.2), g and x3 are defined as

gðhÞ ¼ 1
2
� ð2� vÞh2 þ b� 1

2SðhÞ ;

x3 ¼
vh2 � ðbþ 1Þ þ SðhÞ

2b
;

where

SðhÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½vh2 � ðbþ 1Þ�2 � 4bðah2 � 1Þðh2 � 1Þ

q
:

Finally, function Q(h) appearing in (A.2) is given by

QðhÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4bðah2 � 1Þðh2 � 1Þ � ½vh2 � ðbþ 1Þ�2

q
:

A.1.2. Point load at the surface
The epicentral-axis displacement generated at (0,0,z) by a ver-

tical point load located at (0,0,0) on the horizontal free surface is
given by

uxðx ¼ 0; y ¼ 0; z; tÞ ¼ 0;
uyðx ¼ 0; y ¼ 0; z; tÞ ¼ 0;

uzðx ¼ 0; y ¼ 0; z; tÞ ¼ h
4pc44z

u0
t
T

� �
;

ðA:7Þ

where h is the strength of the source, u0 is given by (A.2), and

T ¼ zffiffiffiffiffiffiffiffiffiffiffiffi
c44=q

p :

A.2. Response to an arbitrary wavelet

For convenience, we denote here with uh any one of the dis-
placements (A.1) or (A.7), which are due to a source whose time
dependence is described by the step function h. Likewise, let u/

be the displacement due to an arbitrary wavelet /(t). Since the
relationship between / and u/ is linear and time invariant, there
exists a function G such that

u/ ¼ G � /; ðA:8Þ

where the asterisk denotes time convolution. Putting / = d in (A.8)
yields G = ud and hence

u/ ¼ ud � /; ðA:9Þ

from which, in particular, we get

uh ¼ ud � h: ðA:10Þ

Thus, given any point source, the vertical displacement and velocity
can be computed from the step-response displacement by using

u/ ¼ uh �
d/
dt
;

V/ ¼ uh �
d2/

dt2 :

ðA:11Þ
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