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A Hierarchical Prestack Seismic Inversion
Scheme for VTI Media Based on the

Exact Reflection Coefficient
Cong Luo , Jing Ba , and José M. Carcione

Abstract— Seismic exploration of unconventional hydrocarbon
reservoirs (e.g., shale rocks) must take into account the transverse
isotropy with a vertical axis of symmetry (VTI) characteristics.
Prestack inversion for VTI media is more complex than the
isotropic case, since the forward engine is highly nonlinear and
more unknowns (five instead of three) are involved, which aggra-
vate the ill-posedness of the inverse problem. Here, we propose
a hierarchical inversion scheme to improve the estimation of the
five parameters, where the exact reflection coefficient is used as
forward engine (instead of the commonly-used approximations
which lack accuracy). To handle the highly nonlinear inverse
problem, we perform the prestack anisotropic inversion in two
steps, namely, a preliminary linear result is used to reduce
the search window and to formulate the constrain term and
initial models of the subsequent nonlinear step. Specifically, for
a reasonable preliminary estimation, we introduce a data-driven
model building algorithm to provide reliable initial models,
and employ the limited-memory Broyden–Fletcher–Goldfarb–
Shanno combined with the momentum technique (LBFGS-MT)
optimization to increase the convergence speed. We derive the
Fréchet derivatives of the exact forward operator with respect to
the parameters, i.e., the key factors of the linear part. Besides,
we introduce a hybrid global optimization, the particle swarm
optimization aided by very fast simulated annealing (PSO-VFSA)
to enhance the accuracy and computational efficiency of the
nonlinear stage. Synthetic tests demonstrate the effectiveness and
accuracy of the proposed scheme. The field application shows that
the method is capable to obtain reliable elastic information of
shale reservoirs.

Index Terms— Exact reflection coefficients, hierarchical inver-
sion scheme, multi-parameter inversion, prestack seismic inver-
sion, VTI medium.

I. INTRODUCTION

PRESTACK seismic inversion using amplitude-versus-
offset/angle (AVO/AVA) responses translates subsurface

observations to elastic parameters [1]–[5], which enables the
quantitative evaluation of oil/gas reservoirs and has been
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one of most effective techniques in geophysical exploration
and petroleum industry. The traditional seismic inversions
are based on isotropic media and achieve a great success in
conventional sandstone explorations [6]–[8]. Nowadays, shale
oil/gas, an unconventional resource with a great potential,
is becoming one of the most important alternative resources.
Most shales exhibit strong transverse isotropy with a vertical
axis of symmetry (VTI) anisotropy due to the oriented clay
particles and horizontal bedding structure [9], and the seismic
response significantly differs from that of conventional sand-
mudstone reservoirs. For conventional hydrocarbon reservoirs,
seismic inversion based on the assumption of isotropic media
is not applicable to unconventional reservoirs [10]–[13].

VTI caused by a combination of intrinsic mineral anisotropy
and horizontal thin layers is one of the most common
forms of effective anisotropy [14]. It is reported to have
a significant effect on seismic amplitudes and AVO/AVA
responses [15]–[17]. The exact expressions of the reflection
coefficients for VTI media have been derived by several
authors, e.g., Carcione [18], Daley and Hron [19], Graeb-
ner [20], Schoenberg and Protázio [21]. To characterize the
anisotropy of VTI media, Thomsen defines three anisotropy
parameters: ε, δ, and γ as a function of the elasticities,
and gives simplified expressions for weak anisotropy [15].
Reflection coefficients can be parameterized using these para-
meters with different approximations [22]–[25]. Extension
of the theory to stratified elastic/anelastic media is based
on the reflectivity method [26]–[28]. However, this method
is complex from a mathematical viewpoint for practical
applications [20].

Many approximated reflection coefficients have been
adopted in AVO/AVA inversion for VTI media [9], [29]–[31]
due to their simple mathematical form. The most commonly
used PP- and PS-reflection coefficients for VTI anisotropic
prestack inversion are the Rüger approximation (RAI), Rü
ger [23], Lu et al. [31], Rüger [32] and its improved
forms [9], [14]. Compared to isotropic three-parameter inver-
sions, the VTI inverse problem has a higher ill-posedness and
is more difficult in practice due to the higher number (five) of
parameters and the smaller sensitivity of the anisotropy-related
parameters to seismic amplitudes [9], [33].

In general, the existing prestack seismic AVO/AVA inver-
sions for VTI media have several problems. The first is the
simplified forward engines [9], [23], [31], [32] which are based
on the assumption of weak anisotropy and weak impedance
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contrasts, and have a low accuracy at large offsets, where
the anisotropy parameters exhibit more sensitivity to seismic
responses [33]. Since the forward engine is the key factor of
inversion, it significantly affects the accuracy of the inverted
results. To overcome this problem, the isotropic [34]–[37]
and anisotropy reflectivity methods [38] were introduced into
AVO/AVA inversion algorithms using linear [35]–[37] and
nonlinear schemes [34], [38]. Although the effectiveness and
success of the reflectivity-method-based inversion have been
verified, its application is limited because of the mathemat-
ical complexity and high-computational cost. Therefore, the
study for VTI inversion still focuses on forward modeling
based on the single interface assumption. More parameters
make the inversion highly nonlinear and more difficult to
achieve an optimal solution, which is the second problem
of VTI inversion. Some studies try to reduce the number
of parameters [9] or propose two-step strategies [14], [33]
to improve the performance. However, these methods can-
not estimate the five parameters simultaneously, and in
most cases additional assumptions and approximations are
needed to convert the results into the anisotropy parameters,
which introduces additional errors. Besides, it is pointed out
that there are large sensitivity differences between velocity-
(P- and S-wave velocities) and anisotropy-related (Thomsen’s
ε and δ) parameters [33], leading to an unstable inversion
algorithm. Using a linear optimization, anisotropic multi-
parameter inversion will give local-minima solutions which
need to be solved by nonlinear schemes [31], [39]–[41].
Lu et al. [31] propose a hierarchical inversion strategy by
combining linear and nonlinear optimizations to improve the
stability and accuracy in VTI media. Although using RAI as
forward modeling has the restriction of weak contrasts and
moderate anisotropy, their work provides a suitable approach
for anisotropic multi-parameter estimation.

We propose a hierarchical inversion strategy that improves
the precision to simultaneously estimate the five elastic para-
meters, namely, P-wave velocity α, S-wave velocity β, den-
sity ρ, and Thomsen’s anisotropy parameters ε and δ. The
commonly-used simplified forms limit the accuracy for large
angles, strong impedance contrasts, and strong anisotropy,
which inevitably accounts for the ill-posedness of the VTI
inverse problem. To overcome such shortcomings, the exact
reflection coefficient by Graebner [20] is used as forward
modeling, which makes the proposed inversion applicable to
arbitrary contrasts and large offsets. Besides, five inverted
parameters cause a high ill-posed and serious local minima
problem which is difficult to solve with the commonly-used
linear optimization. The hierarchical inversion scheme based
on the exact Graebner equation (EGHI) is proposed to solve
the local-minima problem. It consists of two steps, the linear
and nonlinear inversions. In the first step, we obtain a pre-
liminary estimation of the parameters by a linear anisotropic
inversion. The result is used to reduce the search windows,
set up the constraint term, and define the start models for
the subsequent nonlinear inversion. For an effective first step,
a data-driven model building algorithm is used to obtain
reliable initial models. The LBFGS combined with a momen-
tum technique (LBFGS-MT) optimization is adopted to damp

oscillations and increase the convergence. The Fréchet deriv-
atives of the exact Graebner modeling (EG) with respect
to the five parameters are derived. For nonlinear inversion,
a hybrid global optimization method, i.e., particle swarm
optimization, aided by very fast simulated annealing (PSO-
VFSA) is introduced to enhance the accuracy and reduce the
computational cost of the nonlinear stage.

Compared with existing approaches, the proposed scheme
has the following advantages. 1) setting the exact reflection
coefficient equation as the forward engine avoid the hypothe-
ses and shortcomings of the approximations to improve the
performance and applicability of the inversion and 2) in the
hierarchical scheme, the nonlinear inversion aided by the linear
results can effectively solve the local-minima problem and
achieve good estimations with limited computational costs.

This article is organized as follows. In Section II, we first
review the theory of the exact reflection coefficient of
the VTI media. Then, the proposed hierarchical inversion
scheme is given, including the exact-equation-based linear, and
preliminary-result-aided nonlinear inversions. In Sections III
and IV, we demonstrate the effectiveness and feasibility of
the proposed hierarchical anisotropic inversion scheme with
synthetic and field seismic data.

II. THEORY AND METHODOLOGY

A. Modeling Using the Exact Reflection Coefficient

One can represent a VTI medium using five elastic stiffness
parameters, where c11, c13, c33, and c55 determine the velocities
of the qP and qSV waves, and c66 that of the SH wave.
Considering a qP wave incident on an interface separating two
transversely-isotropic homogeneous media, which lie on the xy
plane, Graebner [20] gives the exact analytical expression of
the reflection coefficients to describe the AVA characteristics
of VTI media with four elasticities as a function of the
incidence angle θ . The reflection/transmission coefficients are

r = A−1 · b (1)

r = � rPP rPS tPP tPS
�T

(2)

whose components are the reflection coefficients PP (rPP)
and PS (rPS), and transmission coefficients PP (tPP)
and PS (tPS) (3), as shown at the bottom of the next
page, and

b = �−	U
P nU

P cU
55

�
sU

P 	
U
P + pnU

P

� −p	U
P cU

13 − sU
P nU

P cU
33

�T
(4)

where the subscripts U and L denote the upper and lower
layers and the subscripts P and S refer to the P- and S-wave
modes, respectively. The direction cosines are

	P = ��c33s2
P + c55 p2 − ρ

�
/gP
�1/2

, (5a)

nP = ��c55s2
P + c11 p2 − ρ

�
/gP

�1/2
(5b)

	S = ��c55s2
S + c11 p2 − ρ

�
/gS
�1/2

, (5c)

nS = ��c33s2
S + c55 p2 − ρ

�
/gS
�1/2

(5d)

g#=P,S = (c55 + c33)s
2
# + (c11 + c55)p2 − 2ρ (5e)
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where s denotes the vertical slowness, which is a function of
the horizontal slowness p and stiffness moduli

s =
�

1/
√

2
�

·
�

K1 ± �K 2
1 − 4K2 K3

�1/2
	1/2

. (6a)

The signs in s correspond to: (−,−) the vertical slowness of
the P-wave, and (+,−) the vertical slowness of the S-wave.
In terms of elasticities, we have

K1 = ρ

c33
+ ρ

c55
−



c11

c55
+ c55

c33
− (c13 + c55)

2

c33c55

�
p2 (6b)

K2 = (c11/c33)p2 − ρ/c33, K3 = p2 − ρ/c55. (6c)

According to Thomsen [15] and Carcione [28], the horizon-
tal slowness is

p =
�

2ρU sin θ
�
cU

55 + cU
11 sin2 θ + cU

33 cos2 θ + ψ
�−1/2

(7a)

ψ =

�

cU
33 − cU

55

�2

+
�
4
�
cU

13 + cU
55

�2 − 2
�
cU

33 − cU
55

��
cU

11 + cU
33 − 2cU

55

�	
× sin2 θ +

��
cU

11 + cU
33 − 2cU

55

�2 − 4
�
cU

13 + cU
55

�2
	

sin4 θ
�1/2

(7b)

where θ denotes the incidence angle. Equations (1)–(7) give
the exact expression of the reflection coefficient in terms of
(c11, c13, c33, c55) and ρ. To intuitively characterize the degree
of anisotropy, Thomsen [15] replaced the stiffness parameters
with a new set of coefficients involving two velocities (α and
β) and two non-dimensional “anisotropies” ε and δ

c33 = α2ρ, c55 = β2ρ, c11 = (2ε + 1)α2ρ, c13 = ρη − β2ρ

(8a)

η = �(ε + δ + 1)α4 − (ε + 2)α2β2 − β4
�1/2

. (8b)

The above expressions are exact and valid for arbitrary (not
only weak) anisotropy [15]. Then, (8) allows us to express the
reflection coefficient in terms of α, β, ρ, ε, and δ.

B. Hierarchical Anisotropic Inversion Scheme

A hierarchical inversion strategy is adopted based on an
exact expression of the reflection coefficients. In the first step,
we perform a linear anisotropic AVA inversion to derive five
preliminary parameters. The results of the linear inversion
deviate from the true models to some extent. We use these pre-
liminary results to setup initial particles and search windows
to accelerate and constrain the subsequent nonlinear inversion.

1) Objective Function: The seismic angle gather d∗ is a
matrix of dimension, Nt × Na where Nt and Na denote the
number of sampling points and incidence angles, respectively.
It can be expressed as

d∗ =
⎡
⎢⎣

d1,1 d1,2 · · · d1,Na
...

...
. . .

...
dNt,1 dNt,2 · · · dNt,Na

⎤
⎥⎦

Nt×Na

(9a)

where di, j with i = 1, . . . ,Nt and j = 1, . . . ,Na. In the
inversion process, the observed vector d∗ is discretized with
a Nt × Na × 1 dimension, as

d = �d1,1, . . . , dNt,1, d1,2, . . . , dNt,2, . . . , d1,Na, . . . , dNt,Na
�T
.

(9b)

The forward model can be expressed as

d = GPP(m)+ e = w ∗ rPP(m)+ e = W · rPP(m)+ e (10)

where GPP, the forward engine nonlinearly related to the
model m, is the convolution of the source wavelet w with
the reflection coefficient rPP(m), and e is a vector of random
noise. The model vector contains 5Nt unknowns

m = [α1, . . . , αNt, β1, . . . , βNt, ρ1, . . . , ρNt,

ε1, . . . , εNt, δ1, . . . , δNt]. (11)

Due to the presence of noise, the problem is ill-posed. Thus,
regularization techniques are commonly used. The objective
function is usually written as the weighted sum of the data
misfit term �(m) and the model constraint term 
(m)

S(m) = �(m)+ λ
(m). (12a)

The most widely-used data misfit function is

�(m) = [d − GPP(m)]T[d − GPP(m)]. (12b)

The regularization constraint 
(m) should be set according
to the distribution of the subsurface properties. In regions
where no sharp changes exist, 
(m) could be defined as a
smooth L2-based regularization. Then, the objective function
is

S(m)= [d − GPP(m)]T[d−GPP(m)]+λ(m−u)TC−1
m (m−u)

(13)

where u is the expectation of m. Cm , the covariance matrix
of the parameter vector, is introduced to improve the stability
of the inversion [42].

A =

⎛
⎜⎜⎝

	U
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⎟⎟⎠ (3)
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2) Linear Anisotropic AVA Inversion: For linear inver-
sion, the gradient-based optimization method is usually used
to solve the objective function. To overcome the issue of
numerous local minima, damp oscillations, and increase the
convergence speed, the momentum technique (MT) [43]
has been introduced into the quasi-Newton optimization
approaches [44]. By combining the LBFGS and MT algo-
rithms, given the current estimation mk at the kth iteration
(from k = 1), the iterative method of the LBFGS-MT algo-
rithm can be expressed as

mk+1 = mk + vk+1 (14a)

vk+1 = ϕkvk − akg(mk). (14b)

Compared with the traditional update form, the kernel idea
of MT algorithm is to add a fraction of the previous update
vector vk to the current one vk+1. In particular, v1 is set to
zero. ϕk , the momentum coefficient, satisfies 0 < φk < 1 and
φk −→

k→0
0, and is set as

ϕk = Fkϕ0, 0 < F < 1 (15)

where ϕ0 is the initial coefficient. In (14), ak denotes the
step size of the kth iteration computed with the strong Wolfe
line search algorithm [45], and −g(mk) represents the descent
direction of the kth iteration, which is determined by

−g(mk) = −H (mk) · J (mk).

(16)

The Jacobian matrix J (mk) for the kth iteration denotes the
first-order derivative of the objective function

J (mk) =
�
∂GPP(mk)

∂m

�T

[d − GPP(mk)] + λC−1
m (mk − u).

(17)

In the LBFGS algorithm, H (mk), the pseudo Hessian matrix
of the objective function, is given by an iterative algorithm

⎧⎪⎨
⎪⎩

Hi(mk)
−1=QT

i−1 Hi−1(mk)
−1Qi−1+�i−1si−1sT

i−1

�i−1 =1/
�
yT

i−1si−1
�
,Qi−1 = I − �i−1yi−1sT

i−1 i =2, . . . , k

si−1 =mi − mi−1, yi−1 = J (mi )− J (mi−1)

(18)

we set

H1(mk) =
!


∂GPP(mk)

∂m

�T ∂GPP(mk)

∂m
+ λC−1

m

"
. (19)

In (17) and (19), ∂GPP(mk)/∂m is the Fréchet derivative
of the nonlinear forward operator GPP with respect to m in
the kth iteration. Based on the convolution model, the Fréchet
derivatives ∂GPP(m)/∂m, a matrix of dimension (Nt · Na) ×
(5Nt), can be computed in terms of the derivatives of the

reflection coefficient and wavelet matrix
∂GPP(m)
∂m

=

⎡
⎢⎢⎢⎣

W(θ1)
∂rPP(θ1)
∂α

W(θ1)
∂rPP(θ1)
∂β

W(θ1)
∂rPP(θ1)
∂ρ

...
...

...

W(θNa)
∂rPP(θNa)
∂α

W(θNa)
∂rPP(θNa)
∂β

W(θNa)
∂rPP(θNa)
∂ρ

W(θ1)
∂rPP(θ1)
∂ε

W(θ1)
∂rPP(θ1)
∂δ

...
...

W(θNa)
∂rPP(θNa)

∂ε
W(θNa)

∂rPP(θNa)
∂δ

⎤
⎥⎥⎥⎦
(Nt·Na)×(5Nt)

(20)

where ∂rPP(θi )/∂m∗, with ∗ = α, β, ρ, ε, δ; W(θi) is the
wavelet matrix with dimension Nt × Nt. If α is considered,
we have
∂rPP(θi)

∂α

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

∂rPP(θi ,t1)
∂α1

∂rPP(θi ,t1)
∂α2

0 · · · · · · 0

0 ∂rPP(θi ,t2)
∂α2

∂rP P (θi ,t2)
∂α3

0
...

...

... 0
. . . 0

...
...

... 0 ∂rPP(θi ,tNt−1)
∂αNt−1

∂rPP(θi ,tNt−1)
∂αNt

0 · · · · · · · · · 0 ∂rPP(θi ,tNt)
∂αNt

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Nt×Nt

(21)

where ∂rPP(θi , t j )/∂αk denotes the derivative of rPP( j th
interface and angle θi) with respect to α of the
j th layer.

Then the general forms of the derivatives of the reflec-
tion/transmission coefficients are given. For a given sampling
point and a given incidence angle, differentiating both sides
of (1), we obtain

∂r
∂M

= A−1 ∂b
∂M

− A−1 ∂A
∂M

r. (22)

M denotes a vector which contains the model parame-
ters across a certain reflecting interface (mU and mL). The
superscripts U and L represent the upper and lower layers,
respectively. Since ∂b/∂mL∗ = 0, (22) can be expressed as

∂r
∂mU∗

= A−1 ∂b
∂mU∗

− A−1 ∂A
∂mU∗

r (23)

∂r
∂mL∗

= −A−1 ∂A
∂mL∗

r. (24)

Solving (23) and (24), we can obtain ∂r/∂m#∗ =
[∂rPP/∂m#∗ ∂rPS/∂m#∗ ∂ tPP/∂m#∗ ∂ tPS/∂m#∗]T with ∗ =
α, β, ρ, ε, δ and # = U, L, and one can extract the deriva-
tives ∂rPP/∂m#∗ or ∂rPS/∂m#∗ as required in practice. In (22)
and (23), ∂A/∂M and ∂b/∂M are the partial derivatives
of the intermediate matrices A and b with respect to M,
including ∂A/∂mU∗ , ∂A/∂mL∗ , ∂b/∂mU∗ , and ∂b/∂mL∗ , whose
expressions are given in Appendix A. By calculating all
∂r/∂M at different sampling points and incidence angles
by (22)–(24) and extracting all elements of (21), the Fréchet-
derivative matrix ∂GPP(m)/∂m is obtained.
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3) Nonlinear Anisotropic AVA Inversion: The five-
parameter anisotropic inversion requires a high computational
efficiency and accuracy for the nonlinear optimization
approach. Therefore, the PSO-VFSA algorithm is
used [46]–[49], which incorporates the probabilistic jumping
mechanism of the FSA into the PSO, thus reducing the
computational cost of the FSA, as well as avoiding the
premature convergence of the PSO [47], [49].

To initialize the standard PSO [50], n particles in
Nt × 1 dimension are defined, each denoting a potential
solution to the inverse problem. The i th particle is mi =
[mi,1, . . . ,mi, j , . . .mi,5Nt ]T, i = 1, . . . , n and j = 1, . . . , 5Nt .
The iteration format is

mi,k = mi,k−1 + κ1Vi,k−1 (25)

where mi,k represents the i th particle in the kth iteration,
and κ1 is the inertia coefficient. Vi,k−1, the updated velocity
associated with the i th particle in the (k − 1)th iteration,
is given by

Vi,k = Vi,k−1 + rand1(·)κ2

�
mpbest

i,k−1 − mi,k−1

�
+rand2(·)κ3

�
mgbest

k−1 − mi,k−1

�
(26)

where mpbest
i,k−1 and mgbest

k−1 are the personal best position for the
i th particle and the global best position for all the particles,
respectively, all of which are selected by comparing each
particles’ fitness value computed according to the objective
function (13). rand1(·) and rand2(·) are independent random
numbers within [0, 1], and κ2 and κ3 are two constants to
control the step size of update.

Conventionally, mgbest
k is one vector selected from all mpbest

i,k
and plays a leading role in the final solution. However,
if mgbest

k is close to a local minimum, the solution will deviate
from the global solution [47]. To this end, in the PSO-
VFSA algorithm, mgbest

k is no longer selected simply from
the best one of mpbest

i,k , but selected from all the particles
mi,k according to the accepted probability Pi,k inspired by
the VFSA algorithm [39], [51]

Pi,k = Zr

�
mi,k,mgbest

k , Tk

�#$
Zr

�
mi,k,mgbest

k , Tk

�
(27)

with

Zr

�
mi,k ,mgbest

k , Tk

�
= �1 − (1 − τ ) · ��Smi,k /Tk

��1/(1−k)

(28a)

�Smi,k = S
�
mi,k

�− S
�

mgbest
k

�
(28b)

where Pi,k denotes the accepted probability of the i th particle
in the kth iteration, Tk represents the current temperature in the
kth iteration, τ is a constant, and S(mi,k) and S(mgbest

k ) denote
the objective fitness values by substituting mi,k and mgbest

k into
the objective function (13). Zr is the replacing fitness value,
used to describe the possibility of replacing mgbest

k by mi,k .
When the Pi,k of all the particles is obtained, the roulette wheel
selection [47] is employed to probabilistically determine which
particle is the new mgbest

k .

To accelerate the nonlinear inversion, another key fac-
tor is to setup a suitable search window denoted by
[mminmmax] with mmin = [mmin

1 , . . . ,mmin
j , . . . ,mmin

5Nt ] and
mmax = [mmax

1 , . . . ,mmax
j , . . . ,mmax

5Nt ], of which size is
expected to be small while covering feasible solution space.
Based on the linear inversion results, the search window
is set as⎧⎨
⎩

mmin
j = mLi

j − 2b · mLi
j

mmax
j = mLi

j + 2b · mLi
j ,

if
%%mRe

j − mLi
j

%% < b · mLi
j (29a)

⎧⎨
⎩

mmin
j = mLi

j − (1 + 2b) · %%mRe
j − mLi

j

%%
mmax

j = mLi
j + (1 + 2b) · %%mRe

j − mLi
j

%%,
if
%%mRe

j − mLi
j

%% ≥ b · mLi
j (29b)

where j = 1, . . . , 5Nt · mLi
j and mRe

j denote the preliminary
result of the linear inversion and a reference true value
extracted from well data. The size of the search window
is determined by the accuracy of mLi, i.e., when too many
anomalies occur, (29b) is useful to generate a wider search
window. b is a scale coefficient which varies with the relative
change of the parameters.

Besides reducing the search windows, the linear stage
is used to define the constraint in (13). We compute the
covariance matrix of the constrain term with the preliminary
results to provide a reliable correlation between parame-
ters for the nonlinear inversion. Although, in general, initial
models are not necessary (randomly-generated models are
usually used), a good initial model helps in improving the
estimations and convergence speed. Therefore, we set the
initial models (initial particles) for the nonlinear inversion
according to the linear outcome, i.e., the initial particles
are randomly generated within the reduced search window
and the linear result is also kept as one of the initial
particles.

C. Some Practical Aspects of the Technique

1) Rock-Physics-Based ε and δ Estimation: Since the EGHI
algorithm is a model-based inversion algorithm, the target
parameters at the well position, including α, β, ρ, and the two
anisotropy parameters ε and δ, should at least be provided.
However, it is difficult to directly measure the anisotropy
parameters in a borehole, especially for a VTI medium.
An effective rock-physics-model-based method [9], [52] is
used to predict them, which contains two main parts, the rock-
physics model for shale rocks and the anisotropy parameter
prediction method. Based on the shale model, the prediction
procedure for ε and δ is achieved by solving an inverse
problem, where two new parameters, the pore aspect ratio (asp)
and the lamination index (LI), are considered since they affect
the anisotropy. The objective function of the inversion process
is as follows:

arg min
&&creal

33 − cpre
33 (asp,LI)

&&+ &&creal
55 − cpre

55 (asp,LI)
&& (30)

where creal
33 and creal

55 denote the elastic constant vectors cal-
culated by the logging data α, β, and ρ; cpre

33 (asp,LI) and
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Fig. 1. Flowchart of the rock-physics-model-based prediction method.
1) Set a solid clay model consisting of different minerals by Backus
average [53]. 2) Add the saturated clay-related pores and kerogen to the
solid clay in 1) based on SCA and DEM [53] to obtain the aligned clay-
fluid-kerogen medium. 3) Aided by a combination of the Bond transform
and the VRH average [53], we have a rotated clay-fluid-kerogen medium.
4) Form a silt mixture of the brittle minerals by the Hashin–Shtrikman–
Walpole averaging [52]. 5) Add the silt mixture to 3) by the anisotropic SCA
to get the final model. 6) Using the model in 5), predict the elastic constants
cpre = [cpre

11 cpre
13 cpre

33 cpre
55 ] which are the functions of asp and LI. 7) Minimize

the objective function (30) to update asp and LI. 8) Based on the model in
5), calculate α, β, and ρ using the new asp and LI; if the errors are high,
repeat steps 6) and 7). 9) When the errors are less than the preset thresholds,
output cpre; calculate ε and δ using according to (8).

cpre
55 (asp,LI), the elastic constants predicted by the rock-

physics-model, are the functions of asp and LI. The proce-
dure of the rock-physics-based prediction method is shown
in Fig. 1.

2) Data-Driven Model Building: A good initial model can
effectively improve the accuracy of the linear inversion. For
target-oriented modeling, it is routine to build the initial
model by interpolating well logs along artificially interpreted
geological horizons, which requires intensive human interpre-
tation and only a small number of geological elements are
considered as constraints. A data-driven model building algo-
rithm by combining the seismic slope of geological structures
and well-log interpolation provides a remarkable improve-
ment [54]. Based on plane-wave decomposition (PWD) [55],
the seismic slope attribute is estimated from migration pro-
files to replace the artificial interpreted horizons as lateral
constraints [3]. Then, high-confidence initial models can be
obtained by solving a reshaping-regularized inverse problem,
instead of being computed by the traditional interpolation
method.

For a work area, sparsely distributed wells can be used to
sample a subsurface model via the sampling operator � [54]
as

�X = Y (31)

where X indicates property models and Y is related to well
data. Assuming that there are two wells (at the first and
i th grid points) in a 2-D working area and taking α as the

Fig. 2. Flowchart of the data-driven model building algorithm. 1) Extract
the seismic slope attribute from input migration profiles by PWD. 2) Set the
shaping operator S based on the slope attribute in 1). 3) Set the vector Y using
the logging data. 4) Establish the shaping-regularized function (34) based on
2) and 3). 5) Solve (34) to update X̂ via the conjugate gradient algorithm.
6) After Backus averaging [53], the initial models can be obtained.

example, (31) takes the form
⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

I
0
. . .

I
0
. . .

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

·

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

α1

α2
...
αi

αi+1
...

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

α1

0
...
αi

0
...

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

(32)

where X = [α1 α2 · · · αi αi+1 · · · ]T stands for a vectorized
model of α, which is reshaped from a 2-D matrix to a 1-D
vector; Y = [α1 0 · · · αi 0 · · · ]T is constructed from the
logging data. In the sampling matrix �, the diagonal blocks
corresponding to the well positions are set to the identity
matrix, the others are zeros. To solve the inverse problem (31)
to get the reconstructed model X, the common way is to
formulate it as a Tikhonov-regularized optimization problem

X̂ = arg min��X − Y�2
2 + λ�X�2

2. (33)

The shaping regularization is introduced into the inverse
problem to add lateral constraints provided by seismic data.
In this framework, a shaping operator S constrains the model
based on prior information [56], and we have (the derivation
process is shown in Appendix B)

X̂ = PH
�
υ2I + HTPT��T�− υ2I

�
PH
�−1

HTPT�TY (34)

where X̂ represents the shaping-regularized least-square esti-
mation. Then, one can reconstruct the model by solving (34)
via the conjugate gradient algorithm [57]. In building an initial
model, a robust local slope extracted from seismic data by
PWD is used to obtain the structural shaping operator S. For
practical applications, the final output X̂ are the interpolated
2-D/3-D models, including α, β, ρ, ε, and δ. Fig. 2 shows the
workflow of this model building algorithm.

By applying the proposed EGHI scheme to estimate the
elastic parameters, the procedure can be described as Fig. 3.
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Fig. 3. Flowchart of the EGHI. The implementation of the scheme is as
follows. 1) Reshape dobs to din with an (Nt·Na) × 1 dimension according to
(9); predict the logs of ε and δ according to the rock-physics-based method;
estimate the angle-dependent statistical wavelets from seismic data to set
wavelet matrix W. 2) For the linear inversion, initialize kmax, and set the initial
models mk (k = 0) using the data-driven model building algorithm; calculate
Cm and μ. 3) Based on mk , calculate G(mk) using (10) and (1), ∂G(mk)/∂m
according to (20)–(24); then calculate J (mk) and H (mk) with (17)–(19),
respectively. 4) Calculate g(mk ) using (16) and update mk+1 according to
(14). 5) For the nonlinear inversion, initialize kmax; based on the linear results
mLi, set the start particles mi,k (k = 1, i = 1, . . . , n), calculate Cm and μ, and
set the search range [mmin mmax] according to (29). 6) Apply the objective
function (13) to all the particles, select mpbest

i,k and mgbest
k ; calculate Pi of

all the particles with (27) and (28) to determine the new mgbest
k . 7) Calculate

vi,k using (26) and update mi,k+1 according to (25).

III. SYNTHETIC DATA TEST

A. Test a

We consider a two-layer model to test the sensitivity of
the PP reflection coefficient using the AVA variation with
respect to the five parameters. The base values of the upper
and lower layers are 3383 m/s (α), 2438 m/s (β), 2.35 g/cm3
(ρ), 0.065 (ε), and 0.059 (δ), and 3688 m/s (α), 2774 m/s (β),
2.15 g/cm3 (ρ), 0.081 (ε), and 0.057 (δ), respectively. Several
models can be obtained when one parameter varies and the
others are constant. We compute the reflection coefficients as

Fig. 4. PP reflection coefficients rpp as a function of the incidence angle;
rPP variation with (a) α, (b) β, (c) ρ, (d) ε, and (e) δ. The colors correspond
to different values of the parameters.

Fig. 5. Well logs for the synthetic data test after Backus averaging. From
left to right the panels are α, β, ρ, and anisotropy parameters ε and δ.

a function of the incidence angle using the EGNI (shown in
Fig. 4). The five parameters have different sensitivities, which
affect the inversion dissimilarly. Coefficients ε and δ are sen-
sitive mainly at mid and far offsets (angles), so that ensuring
modeling accuracy at these ranges is important to improve the
results. The exact equation is therefore recommended.

B. Test B

A well-log model is used to test the hierarchical inversion
scheme with synthetic data. The inverted parameters are
α, β, ρ, ε, and δ, and the true well models are shown in
Fig. 5. A rock-physics-model-based method (Fig. 1) is used
to obtain the anisotropy parameters ε and δ. The ranges of
ε and δ are 0.02–0.3396 and −0.2039–0.2344, respectively,
which includes weak, moderate, and strong anisotropy cases
[15], [58]. We generate a input PP gather within angles
ranging from 1◦ to 40◦ by convolving the EG reflection
coefficient (1) with a Ricker wavelet of 35 Hz dominant
frequency and zero phase. This synthetic example neglects
multiples and noise. The input gather and the synthetic data
of the inversion process use the same wavelet to eliminate
the errors induced by an inaccurate wavelet. We compare the
isotropic inversion based on exact Zoeppritz equation (EZI),
the conventional direct inversion based on RAI, the nonlinear
inversion based on the EGNI, and the proposed hierarchical
inversion based on the EGHI.

The traditional isotropic inversion (EZI) is tested using
the input data generated from the anisotropic model. The
results are displayed in Fig. 6, including the P-wave velocity
α, the S-wave velocity β, and the density ρ. Ignoring the
anisotropic characteristics of the medium, the EZI fails to
obtain acceptable results for the three elastic parameters, which
can be effectively obtained if anisotropy is considered.
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Fig. 6. Inversion results of the EZI assuming isotropy using the synthetic
PP data generated from anisotropic media. From left to right the panels are
α, β, and ρ. The red solid, black solid, and black dotted lines represent the
results, true logs and initial models, respectively.

Fig. 7. Results of the RAI by synthetic PP data within different angle
ranges. From left to right the panels are α, β, ρ, ε, and δ. From (a) 0◦ to 20◦ ,
(b) 0 to 30◦, and (c) 0◦ to 40◦ . The red solid, black solid, and black dotted
lines represent the inversion results, true logs, and initial models, respectively.

The RAI requires the inversion of the reflectivities (includ-
ing �α/α, �β/β, �ρ/ρ, �ε, and, �δ) first by a linear
optimization, and then a conversion to α, β, ρ, ε, and δ by
a trace integral algorithm [59]. We use the RAI method with
input gathers of angles ranging from 0◦ to 20◦, 0◦ to 30◦, and
0◦ to 40◦, and a fixed regularization parameter. The results
and the residual profiles between the input gather and the
synthetics generated by RAI results are shown in Figs. 7 and 8,
respectively. Since the RAI is limited by weak anisotropy,
the RAI does not yield accurate results, especially for the
anisotropy parameters. Moreover, its low accuracy at large
angles affects the estimation of ε and δ. The poor results are
reflected in the low relative root-mean-square errors (RRMSE)
and correlation coefficients (CC) between the true logs and
the estimated results shown in Table I. Although the input
gather within 0◦–20◦ achieves the best estimations of ε and δ,
unsatisfactory RRMSEs and CCs are obtained.

The results obtained with the proposed hierarchical scheme
EGHI are shown in Fig. 9, including the preliminary linear
inversion [Fig. 9(a)], the search windows generated with the
linear constraints [Fig. 9(b)], and the results of the nonlinear
stage [Fig. 9(c)]. Since one purpose of the linear inversion
is to approximate the real model to reduce the length of the

Fig. 8. (Left panels) Input gather, (Middle) synthetic gathers by the inversion,
and (Right) corresponding residuals. Residuals using the RAI results in
(a) Fig. 7(a), (b) Fig. 7(b), and (c) Fig. 7(c).

TABLE I

RRMSE AND CC BETWEEN THE INVERSION RESULTS

IN FIG. 7 BY RAI AND THE TRUE MODELS

search window, a relatively large regularization parameter is
adopted here to avoid the occurrence of anomalies. Compared
with RAI, the estimation, especially the anisotropy parameters,
is significantly improved by the linear inversion based on
the EGLI, which is reflected by better RRMSEs and CCs in
Table II. This indicates that the inversion method based on
the exact reflection coefficient has a higher accuracy and is
applicable for moderate to strong anisotropy. According to
(29), we set the windows [in Fig. 9(b) (dashed pink lines)]
to constrain the subsequent nonlinear inversion. Compared
with the EGLI, the hierarchical scheme (EGHI) shows obvi-
ously better estimations of the CCs and RRMSEs (Table II).
Density has the smallest RRMSE due to its smaller relative
change. Besides, due to the lower sensitivity of δ to PP-
wave data [33], the results for this parameter are worse than
those of ε in both the linear and nonlinear steps. The red
curves in Fig. 10(b) show the simultaneous results of EGNI
(pure nonlinear inversion based on the PSO-VFSA and EGNI).
The dashed lines in Fig. 10(a) define the search windows.
The corresponding RRMSEs and CCs are shown in Table III,
showing that the estimation of the parameters with the classical
nonlinear inversion [Fig. 10(b)] are better than the preliminary
results of EGLI [Fig. 9(a)] but worse than the final results of
EGHI [Fig. 9(c)]. Fig. 11(a) and (b) shows the total RRMSEs
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Fig. 9. Inversion results of the well model by the hierarchical inversion
scheme. (a) Preliminary results by EGLI in the first step, (b) search windows
used for the subsequent nonlinear inversion, and (c) final results of EGHI. The
black solid and the black dotted lines are the real logs and the initial logs,
respectively; pink dotted lines indicate the search windows; the blue and red
curves are the results of the linear and nonlinear inversions, respectively.

TABLE II

RRMSE AND CC BETWEEN THE INVERSION RESULTS BY

EGHI IN FIG. 9(A) AND (C) AND THE TRUE MODELS

TABLE III

RRMSE AND CC BETWEEN THE INVERSION RESULTS
IN FIG. 10(B) BY EGNI AND THE TRUE MODELS

of the iterations/time of the two steps in EGHI. Fig. 12 shows
the residual errors between the input and synthetic gathers
using the results of EGLI, EGHI, and EGNI.

Besides, EGHI has a higher computational efficiency,
as illustrated by the convergence curves in Fig. 11 (they show
the total RRMSEs of all five inverted parameters varying
with the iteration/time). Compared with the pure nonlinear
method EGNI [Fig. 11(b) (blue curve)], the EGHI aided by
the linear stage yields better results and uses less time (EGHI
employs 692 s with 3500 iterations, while EGNI requires
1705 s and 8000 iterations). Based on the linear results
[Fig. 9(a)], the convergences are tested using the EGHI with
two searching windows, including that in Fig. 9(b) (limited)
and 1.25 times that window [the comparison is shown in
Fig. 11(c)], which indicates that reducing the search range can
effectively improve the results and save time (the latter needs
812 s and 4000 iterations). From the normalized RRMSEs

TABLE IV

RRMSE AND CC BETWEEN THE INVERSION
RESULTS IN FIG. 13 AND TRUE MODELS

of all three inversions [Fig. 11(d)], it can be seen that EGHI
yields the faster convergence.

C. Test C

Since the forward operator of the linear and nonlinear
methods is based on the convolution model, the wavelet affects
the inversion results. In this test, by considering different
wavelets with different (inaccurate) dominant frequency and
phase, we analyze how this affects the results of the proposed
EGHI algorithm. The input gather is the same to Test A and
the actual dominant frequency and phase of the wavelet are
35 Hz and zero, respectively. Fig. 13(a) and (b) show the
inversion results when the dominant frequencies are 25 and
45 Hz, deviating from the real one by −28.6% and 28.6%,
respectively. Compared with the results using the accurate
wavelet [Fig. 9(c)], an incorrect dominant frequency affects
the accuracy of the results, especially for ρ, ε, and δ, which
are quantified with the RRMSEs and CCs listed in Table IV.
Fig. 13(c) and (d) show the inversion results of EGHI using
phases of −5◦ and 5◦. The corresponding RRMSEs and CCs
are shown in Table IV, which indicate that, similar to the
dominant frequency, phase inaccuracy worsens the inversion.
Compared to the velocities, ρ, ε, and δ are more affected.
Then, to ensure reliable estimations of the anisotropy parame-
ters, an accurate wavelet should be considered.

Next, we investigate the effect of Gaussian random noise
on gathers processed by EGHI. Fig. 14(a)–(c) show results
with signal-to-noise ratio (SNR) = 10, 5, 3, respectively.
The RRMSEs and CCs of the inverted parameters are shown
in Table V. Fig. 14(c) shows that the quality of α and β
are satisfactory even using the noisy gather with SNR = 3.
Compared with the velocities, the errors of the other three
parameters increase rapidly with decreasing SNR. Among
them, two Thomsen’s parameters are more affected by noise,
especially δ. Given the data with SNR = 3, the estimation
of δ has a relatively poor RRMSE (17.439) and CC (0.9377).
The quality of the input gathers should be good enough to
obtain relatively acceptable estimations of two Thomsen’s
parameters.

IV. FIELD DATA EXAMPLE

Prestack seismic data from a shale-gas reservoir survey is
used to verify the feasibility of the proposed method. The
target area is a set of shale layers from the Sichuan Basin
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TABLE V

RRMSE AND CC BETWEEN THE INVERSION RESULTS
IN FIG. 14 AND THE TRUE MODELS

Fig. 10. Results corresponding to the well model by pure nonlinear inversion
(EGNI) based on the PSO-VFSA and the exact Graebner equation. (a) Search
windows and (b) comparison between the log curves (black) and the results by
EGNI (green) and EGHI (red) [see Fig. 9(c)]. The dashed lines in (a) indicate
the search windows.

Fig. 11. RRMSEs variation with the iterations/time cost of the different
inversion methods. (a) Linear stage of EGHI [EGLI in Fig. 9(a)]. (b) Com-
parison between the nonlinear stages of EGHI [Fig. 9(c)] with the limited
window [Fig. 9(b)] and the pure nonlinear EGNI [Fig. 10(c)]. (c) Comparison
between the nonlinear stage of EGHI with the limited window [Fig. 9(b)] and
that with a relatively larger window. (d) Normalized RRMSEs of the results
in (b) and (c).

of southwest China. The input seismic data are a set of
common-image-point gathers after normal moveout (NMO)
correction and offset-to-angle transform. To account for
anisotropy, appropriate methods, such as nonhyperbolic move-
out and double scanning, have been used for the NMO
correction [9], [60], [61]. Other procedures for conven-
tional prestack isotropic inversions, e.g., offset-to-angle trans-
form, angle-dependent statistical wavelet estimation, and well
ties are used in this inversion and implemented with the

Fig. 12. (Left panels) Input gather, (Middle) synthetic gathers using the
inversion results, and (Right) corresponding the residuals. (a) Residuals using
the results of EGLI in Fig. 9(a). (b) EGHI in Fig. 9(c). (c) EGNI in Fig. 10(b).

Fig. 13. Comparison of the inversion results of the EGHI algorithm using the
wavelet with inaccurate dominant frequency and phase. (a) and (b) Dominant
frequencies of 25 and 45 Hz, respectively, deviating from the real one (35 Hz)
by −28.5% and 28.5%. (c) and (d) Phase of −5◦ and 5◦, respectively. The
black and red curves are the real logs and the inversion results.

Hampson–Russell software (HRS). The well logs show that
this formation is located between 2100 and 2350 m depth
(1.25 and 1.48 s times) at CDP 50 and contains moderate
clay content, a relatively large volume ratio of quartz and
carbonates. The available logs are P- (α) and S-wave (β)
velocities, and density (ρ). Since the anisotropy parameters
cannot be measured directly, a rock-physics-based method is
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Fig. 14. Comparison of the inversion results of the EGHI algorithm using
noisy gathers. (a) SNR = 10. (b) SNR = 5. (c) SNR = 3. The black and red
curves correspond to the real logs and inversion results, respectively.

Fig. 15. Well logs at CDP 50. From left to right, the panels show the logs
of α, β, ρ, and anisotropy parameters ε and δ.

Fig. 16. (Left) Post-stack profile of the real seismic data and (Right) seismic
slope estimated with the PWD algorithm.

adopted to predict the exact ε and δ at the well location.
The feasibility of this method has been verified by model tests
and real data applications [9]. The true parameters at the well
location are displayed in Fig. 15.

In the proposed hierarchical scheme, the initial models
significantly affect the accuracy of the linear inversion and
the effectiveness of the nonlinear stage. Then a data-driven
model-building algorithm is introduced to obtain reasonable
initial models. It is known that the conventional model build-
ing method interpolates the well data laterally constrained
by artificial interpretations of geological horizons. However,
in the areas where there is a lack of interpreted horizons,
the structural form of models will mainly be consistent with
the upper or lower horizons. It is unreasonable, especially
for the complex geological conditions. The data-driven model

Fig. 17. Initial models of (a) α, (b) β, (c) ρ, (d) ε, and (e) δ obtained with
the data-driven model building method.

Fig. 18. Inversion results, namely, (a) α, (b) β, (c) ρ, (d) ε, and (e) δ, using
the EGLI in the first stage. The corresponding well logs are given.

building needs no artificial interpretations and use the seismic
slope attribute as lateral constraint. Using the PWD algo-
rithm [55], [62], the seismic slope attribute [3] [Fig. 16(b)]
is extracted from the post-stack seismic profile [Fig. 16(a)].
Using the slope attribute as lateral constraint, and a shaping-
regularization-based inversion strategy [(34)] to interpolate the
initial curves at the well position, we obtained the initial
models shown in Fig. 17, which are consistent with the
available geological information.

The input data is a set of PP-wave angle gathers. To suppress
random noise, the gathers are processed into several constant
angle sections (also called partial stacked sections) by stacking
the data within a certain angle interval. We use these partial-
stacked data to estimate the angle-dependent wavelets for the
subsequent inversion. The statistical wavelets are estimated
by HRS after amplitude normalization. In the first stage,
the LBFGS-MT optimization is used to solve the objective
function. To improve the nonlinear inversion, the linear results
are used to reduce the search window and setup the initial
models for the second stage, and the PSO-VFSA is adopted
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Fig. 19. Final inversion results, namely, (a) α, (b) β, (c) ρ, (d) ε, and (e) δ
by the EGHI based on the results of Fig. 18. The corresponding well logs are
given.

Fig. 20. Inversion results at the well location. (a) Preliminary results obtained
with EGLI in the first stage. (b) Search windows used for the subsequent
nonlinear inversion. (c) Final results of EGHI. The black solid and the black
dotted lines denote the real logs and the initial logs, respectively; pink dotted
lines indicate the search windows; the blue and red curves are the results of
the linear and nonlinear inversions, respectively.

to achieve good convergence. A joint penta-variate Gaussian
is used as the prior constraint to develop the stability of the
multi-parameter inversion, and the covariance matrices of the
linear and nonlinear inversion are computed from the initial
models and the linear results, respectively.

Figs. 18 and 19 show the preliminary and final inverted
profiles, respectively, for all CDPs (from 1 to 151) and the
corresponding well profiles are included. Compared with the
preliminary estimation (Fig. 18), the hierarchical inversion
scheme gives higher resolution, better well consistency, and
better lateral continuity (Fig. 19). The improved areas are

TABLE VI

RRMSE AND CC BETWEEN THE INVERSION RESULTS BY
SEISMIC TRACES NEAR THE WELL AND THE REAL LOGS

marked with black arrows. The profiles with better continuity
in Fig. 18 are in better agreement with the local geological
structure. Moreover, the better resolution helps in highlighting
several layers (marked with blue arrows), e.g., layers L1 and
L2 in the P- and S-wave velocity sections [Fig. 19(a) and (b)],
respectively, layers L3 and L4 in the density [Fig. 19(c)], layer
L5 in ε [Fig. 19(d)], and layer L6 in δ [Fig. 19(e)].

The results for seismic traces near the borehole are shown
in Fig. 20. Compared with the initial models (the black dashed
curves extracted from Fig. 17), the inverted parameters of the
first stage [Fig. 20(a) (blue lines)] are close to the true logs
(black lines) to some extent but there are still errors. It can
be seen from the RRMSEs and CCs, between the true and
inverted parameters, shown in Table VI. According to (29),
the search windows are determined by the linear results and
represented by pink dashed lines in Fig. 20(b). The final results
of the nonlinear inversion are shown in Fig. 20(c) (red lines).
It can be seen that the second stage has a better consistency
with well logs, and the improved areas are highlighted by black
arrows in Fig. 20(c). Table VI shows that the EGHI scheme
can effectively improve the inversion performance of the five
parameters, especially for ρ, ε, and δ (see RRMSEs and CCs).

V. CONCLUSION

In this work, a hierarchical scheme that combines linear
(first stage) and nonlinear prestack seismic anisotropic inver-
sions (second stage) is proposed to improve the performance to
estimate the velocities (α and β), density (ρ), and anisotropy
parameters (ε and δ). The exact Graebner reflection coefficient
is used as forward operator to improve the accuracy and
applicability of the inversion to arbitrary contrast, arbitrary
anisotropy, and large angles. To obtain reliable preliminary
results in the first stage, a data-driven initial model build-
ing method and the LBFGS-MT optimization algorithm are
adopted. The linear inversion results are used to reduce the
search windows and constrain the nonlinear, second stage.
A hybrid optimization PSO-VFSA is introduced to improve
the estimations and save the computational time in nonlinear
stage.

The proposed hierarchical scheme (EGHI) is tested with
synthetic and field seismic data. The test shows that the
inversion algorithm yields acceptable results for ε and δ in
the moderate to strong anisotropy cases. Compared with the
classical linear and nonlinear anisotropic inversion, EGHI
improves the estimation and reduces the computation cost.
Moreover, the inverted 2-D profiles and the results using
seismic traces near the well validate the better accuracy and
stability of the scheme.
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Although a nonlinear optimization is used to obtain the final
results, the accuracy and the computational efficiency of this
inversion scheme relies on the provided initial models. If the
initial model has a large deviation (from true model) or the
low-frequency information is inaccurate, linear outcomes will
deviate from the true models causing a large search window
for the sub-sequential nonlinear inversion, which leads to
unacceptable final results. Therefore, to ensure the accuracy of
parameter estimations, a good initial model is still requested
for the proposed hierarchical scheme. Besides, only PP seismic
data is adopted in this work, which limits the improvement
of the inverted properties. According to the previous stud-
ies [33], [63], [64], the converted PS data contains important
information on anisotropy parameters, especially for δ. For
better estimations, a joint PP-PS inversion is recommended
in the future study for the hierarchical anisotropic inversion.
It is generally accepted that the phenomenon of wave-induced
fluid flow is dominant in subsurface rocks, and the dispersion
caused by this loss mechanism affects the inversion results
to some extent. In future work, we will consider the pres-
ence of attenuation and velocity dispersion based on this
mechanism.

When using the proposed hierarchical inversion scheme,
one should choose the forward operator (the approximated or
exact reflection coefficient) according to the actual conditions.
For moderate to strong anisotropy conditions and input data
containing large offsets, the EGNI is recommended to improve
the inversion accuracy. For weak anisotropy and small to
moderate offsets, the RAI may be a choice due to its higher
computational efficiency.

APPENDIX A

A. Derivations of Matrices A and b

According to (3), the derivative of A with respect to the
elastic parameters of the upper layer mU∗ can be expressed
as
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The derivative of vector b can be obtained by differentiating
both sides of (4) with respect to mU∗
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Regarding the parameters of the lower layers mL∗ , the
derivative ∂A/∂mL∗ can be expressed as
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where aL , bL , d L , and eL have the same forms as those of
the upper layer [see (A-2)–(A-5)]. From (5), we obtain the
derivatives ∂	P/∂m∗, ∂nP/∂m∗, ∂	S/∂m∗, and ∂nS/∂m∗ in
(A-1)–(A-8)
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with
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Differentiating (6) with respect to m∗, we obtain
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According to (7), we have
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and

∂p
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= 0. (A-22)

The elasticities and density are functions of the model
parameters m∗, and the corresponding derivatives are derived
according to (8)
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Based on the derivatives above, we obtain the partial
derivatives of the reflection coefficients and then the Fréchet
derivatives of the forward modeling.

APPENDIX B

According to Chen et al. [57] and Huang et al. [62], the
shaping regularization method solves the inverse problem (31)
via the following iteration

Xn+1 = S
�
Xn + λ�T(Y −�Xn)

�
(B-1)
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where S is the shaping operator and �T is the adjoint of the
forward operator. When S and � are both linear operators,
we have

X̂ = �I − S + λS�T�
�−1

λS�TY. (B-2)

The structural smoothness shaping operator is

S = PHHTPT (B-3)

where H is a triangle smoothing operator [57], [62], and P is a
summation operator. Since PH, PTHT, and �T� are diagonal
square matrices, substituting (B-3) into (B-2) and setting
λ = 1/υ2, we can obtain (34).
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