
This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

IEEE GEOSCIENCE AND REMOTE SENSING LETTERS 1

Basis Pursuit Anisotropic Inversion Based on the
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Abstract— Prestack seismic inversion for VTI media (trans-
versely isotropic with vertical axis of symmetry) is a technique
that can be useful to obtain the properties (velocity, density, and
anisotropy parameters) of shale reservoirs. Since conventional
inversion with smooth constraints (e.g., L2-norm) is not appro-
priate, we propose a basis pursuit inversion (BPI) extended to
VTI media, where: 1) we decompose the five elasticities into
basis pursuit pairs by a dipole decomposition; 2) instead of the
commonly used L1-norm, the L1–L2 is implemented as a regu-
larization constraint to achieve higher resolution and stability;
and 3) alternating direction method of multipliers (ADMM) is
used to obtain the solutions. Since the problem is highly ill-
posed, we perform the inversion using PP and PS multicomponent
seismic data. The examples (synthetic and real data) verify
the higher resolution and better antinoise performance of the
proposed method.

Index Terms— Basis pursuit inversion (BPI), prestack seismic
inversion, sparse constraint, transversely isotropic with vertical
axis of symmetry (VTI) medium.

I. INTRODUCTION

PRESTACK seismic inversion is one of the most effec-
tive geophysical techniques for reservoir characterization

and fluid identification when applied to amplitude versus
offset (AVO) and amplitude versus angle (AVA) [1]–[4].
The method is helpful to delineate lithological boundaries,
structural features, and fluid distributions.

Stochastic inversions based on well-logs and geostatistical
information achieve high vertical resolution [5], but are not
free of uncertainties. On the other hand, multiscale inversion
uses high-frequency components to increase the resolution [6],
but these components are in many cases contaminated by
noise, which inevitably affects the result. Moreover, Tikhonov
regularization commonly used in conventional seismic inver-
sion suffers from smooth and fuzzy edges in terms of ver-
tical resolution [7]. Therefore, introducing sparse constraints
or edge-preserving (EP) regularizations into prestack inver-
sions has been an effective way to improve the resolution.
Many regularizations have been implemented, namely,
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Cauchy [8], [9], Huber [10], total variation [11], [12], and
Markov-random-field-based EP [7], [13], [14]. Zhang and
Castagna [15] decomposed reflection coefficients into odd
and even pairs and implemented the poststack basis pursuit
inversion (BPI) by using the L1-norm constraint to obtain
sparse results. Due to its effectiveness in terms of sparsity, BPI
has been extended to prestack BPI, which has been applied to
thin-layer prediction and fluid identification [16]. These works
are based on the assumption of an isotropic medium.

Nowadays, unconventional reservoirs [17], such as shale
oil/gas, are increasingly attracting the attention of the industry.
The transversely isotropic with vertical axis of symmetry
(VTI) characteristics of these rocks (thin layers) preclude
the use of isotropic inversion [18], 19]. Although the exact
expressions of the reflection coefficients of VTI media are
available [20]–[22], their complex form limits the applica-
tions. Simplified weak-anisotropy expressions [23] have been
introduced into prestack inversion [19], [24]. The existing
methods focus more on improving the estimation accuracy of
the elasticities but not the resolution. However, high-resolution
inversion results are crucial to the predication of such uncon-
ventional reservoirs where textured shales or horizontal thin
layers are often contained.

We propose a prestack high-resolution inversion based on
a BPI scheme for VTI media, where we introduce the L1–L2
sparser norm [25] as constraint. The regularized function is
minimized with the alternating direction method of multipliers
(ADMM) algorithm [26]. It is well-known that the inversion
for VTI media is highly ill-posed, since five elastic constants
need to be estimated. Therefore, we add PS wave data into
the inversion to reduce multiple solutions and improve the
accuracy.

II. THEORY AND METHODOLOGY

A. Forward Modeling for VTI Media
Let us consider the xy plane. The exact expressions of the

reflection coefficients were given by Graebner [20] and Daley
and Hron [27]. However, due to the highly nonlinear relation-
ships between the reflection coefficients and the elasticities,
these expressions are rarely used in prestack seismic inversion.
Hence, many approximations have been derived and adopted in
AVA inversion due to their simplicity. According to Rüger [23]
and Lou and Ming [25], the PP and PS reflection coefficients
are

RPP = Riso
PP + Raniso

PP , RPS = Riso
PS + Raniso

PS (1)

where Riso
PP , Raniso

PP , Riso
PS , and Raniso

PS denote the isotropic and
anisotropic terms, respectively

Riso
PP (θ) = A · rα+B · rβ + C · rρ, Raniso

PP (θ) = D · rδ +E · rε

(2)

and

Riso
PS (θ)= F · rα +G · rβ +H · rρ, Raniso

PS (θ)= H · rδ + L · rε

(3)

1545-598X © 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Konya Teknik Universitesi. Downloaded on May 25,2021 at 23:14:15 UTC from IEEE Xplore.  Restrictions apply. 

https://orcid.org/0000-0002-9861-0186
https://orcid.org/0000-0001-8003-3942


This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

2 IEEE GEOSCIENCE AND REMOTE SENSING LETTERS
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ᾱ2 − β̄2

�
cos j

sin5 θ. (4f)

Moreover, rα , rβ , rρ , rε , and rδ denote the reflectivities related
to the P-wave velocity α, S-wave velocity β, density ρ, and
anisotropy parameters ε and δ, respectively

rα = �α

ᾱ
, rβ = �β

β̄
, rρ = �ρ

ρ̄
, rε = �ε, rδ = �δ (5)

where ᾱ, β̄, and ρ̄ denote the averages across the interface,
and �α, �β,�ρ, �ε, and �δ are the contrasts between
the properties of the upper and lower media. The reflection
coefficient of the i th layer and j th incidence angle can be
expressed as

R
�
ti , θ j

� = S · m, m = �
rα(ti ), rβ(ti ), rρ(ti), rε(ti ), rδ(ti)

	T
.

(6)

For the PP and PS wave modes, we have

SPP=
�

A
�
ti , θ j

�
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�
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SPS=
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�
, H

�
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�
, K

�
ti , θ j

�
, L

�
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�	
(8)

which can be computed by (4). Convolving the reflection
coefficients with wavelets, we obtain the synthetic seismic data

dPP = WPPRPP, dPS = WPSRPS (9)

where WPP and WPS denote the wavelet matrices extracted
from the PP and PS data, respectively. Thus, we define

GPP = WPPSPP, GPS = WPSSPS. (10)

Then, the forward modeling of VTI media can be expressed
as a linear problem related to the model vector m as

dPP = GPPm = WPPSPPm, dPS = GPSm = WPSSPSm. (11)

B. Basis Pursuit Decomposition
A reflectivity series can be represented as a weighted sum

of impulse pairs [15]. In the basis pursuit method, each pair
of reflectors 	1δ(t) and 	2δ(t + i�t) can be represented into
an odd pair ro and an even one re using dipole decomposition

	1δ(t) + 	2δ(t + i�t) = romo + reme (12)

where me and mo are the coefficients corresponding to ro and
re, respectively. The odd and even pairs can be computed as

ro = δ(t) − δ(t + i�t), re = δ(t) + δ(t + i�t). (13)

One can shift the pairs of the whole trace with time interval
k�t to obtain the reflectivity series

r(t) =
N


i=1

M

j=1

�
mo,i, j (t,�t)ro,i, j (t,�t)

+ me,i, j (t,�t)re,i, j (t,�t)
�

(14)

where

ro,i, j (t,�t) = δ(t − j�t) − δ(t + i�t − j�t) (15)

re,i, j (t,�t) = δ(t − j�t) − δ(t + i�t − j�t). (16)

Similarly, we can decompose the reflectivities as⎡
⎢⎢⎢⎣

rα

rβ

rρ

rδ

rε

⎤
⎥⎥⎥⎦ =

⎡
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ro re · · · 0
ro re . .

.
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...

. .
.
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· �mo,α, me,α, mo,β , me,β , mo,ρ, me,ρ, mo,δ, me,δ,

mo,ε, me,ε
	T

. (17)

Then, (11) can be rewritten as

d = W · S

⎡
⎢⎢⎢⎣

ro re · · · 0
ro re . .

.

... ro re
...

. .
.

ro re
0 · · · ro re

⎤
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	T

. (18)

C. Anisotropic Inversion With the L1–L2-Norm Regularization
Since geophysical inverse problems are always ill-posed, a

regularization technique is commonly used to solve the issue.
The regularization term is an important factor of the objective
function and greatly affects the results. There are many kinds
of prior distributions which can be exploited. The expressions
of a two-point vector (x1, x2) are

L2-norm = �|x1|2 + |x2|2
� 1

2 , LCauchy-norm

= ln
�
x2

1 + 1
� + ln

�
x2

2 + 1
�

(19a)

L1-norm = |x1| + |x2|, L1 − L2-norm

= |x1| + |x2| − a
�|x1|2 + |x2|2

� 1
2 (19b)

L P -norm = �|x1|P + |x2|P
� 1

P , 0 < P < 1 (19c)

L0-norm =
⎧⎨
⎩

0, (x1, x2) = 0
2, x1x2 �= 0
1, else

(19d)

where a is a scale coefficient, which can be used to adjust the
sparseness of the L1–L2-norm.

We show the distribution properties of these norms for a
vector with two elements in Fig. 1, according to (19). For
an absolutely sparse two-element vector, at least one of the
elements should be zero. In this case, the solution is mainly
confined at the coordinate axis as can be seen in Fig. 1(f).
Therefore, the L0-norm [Fig. 1(f)] has the sparsest distribution
among all these norms. The closer the property of the norm
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Fig. 1. Distribution properties of different regularization terms. The different
norms are (a) L2, (b) LCauchy, (c) L1, (d) L P , (e) L1–L2, and (f) L0.

is to that of L0, the sparser distribution it has. The smooth
norm, L2, in Fig. 1(a), in contrast, has a different behavior.
Compared with L1, L P , and LCauchy ones, the L1–L2 norm
shows a better performance, as we shall see.

In the conventional BPI, the L1-norm is used as regulariza-
tion constraint, and the objective function is

J (m)=�
κ�GPPm−dPP�2

2+(1−κ)�GPSm − dPS�2
2+λ�m�1

�
(20)

where λ is the regularization weight, which balances the data
misfit and regularization terms, and κ is a weight factor for
the type of data. This method, used to improve the vertical
resolution, should take into account the sparser constraint.
The L0-norm has the best performance in sparsity, but it is
a NP-hard problem (a nondeterministic polynomial problem
whose solution is difficult to find and verify). Therefore,
we introduce the L1–L2 norm as regulation constraint, with
the objective function

J (m) = κ�GPPm − dPP�2
2 + (1 − κ)�GPSm − dPS�2

2

+ λ(�m�1 − a�m�2). (21)

Since this function is nonconvex, it cannot be solved with
the conventional optimization. Then, the ADMM algorithm is
adopted. We introduce an auxiliary variable z which is subject
to m − z = 0, so that nonconvex function (21) is decomposed
into two convex subproblems

arg min{ f (m) + g(z)} (22)

where f (m) = κ�GPPm − dPP�2
2 + (1 − κ)�GPSm − dPS�2

2 −
λa�m�2 and g(z) = λ�z�1. The process for solving (22) is
as follows. First, we update x by minimizing the x-related

Fig. 2. Inverted rα of a wedge model with (c) and (d) JRI and (e)–(h)
JBPAI without noise. (a) True rα . (b) Synthetic poststack profile. (c) rα

by L2-based JRI. (d) Residuals between (a) and (c). (e) JBPAI with the
L1-norm. (f) Residuals between (a) and (e). (g) JBPAI with the L1–L2-norm.
(h) Residuals between (a) and (g).

augmented Lagrangian function

mk+1 = arg min
m

Lρ

�
m, zk , yk

�
. (23)

Second, z is updated by solving

zk+1 = arg min
z

Lρ

�
mk+1, z, yk

�
. (24)

Then, we update the Lagrangian multiplier

yk+1 = yk + μ
�
mk+1 − yk+1

�
(25)

where μ is a penalty coefficient.

III. SYNTHETIC DATA TEST

A. Wedge Model Inversion

A benchmark wedge model is used to test the validity
of the L1–L2-based BPI. The model tests the ability of the
inversion to handle thin layers. The synthetic gathers are
obtained by convolving the reflection coefficients, calculated
with the Rüger approximations in (1)–(8), with a Ricker
wavelet, and the corresponding poststack profile is shown
in Fig. 2(b). We compare algorithms, namely, the conven-
tional joint Rüger-approximation-based inversion (JRI) with
the L2-norm [Fig. 2(c)] and the joint basis pursuit anisotropic
inversion (JBPAI) with the L1 [Fig. 2(e)] and L1–L2 norms
[Fig. 2(g)] in the absence of noise. The residuals between the
inverted results and the true reflectivities are shown in Fig. 2(d)
(JRI), Fig. 2(f) (JBPAI with L1-norm), and Fig. 2(h) (JBPAI
with L1–L2-norm). The aim of the noise-free test is to
highlight the resolution of the method, and we only show the
inverted rα for brevity. Compared with JBPAI, the reflectivities
of the JRI with the L2-norm are fuzzy, which are not enough
to describe the interfaces and distinguish the top and bottom of
thin layers. The results of L1–L2-based JBPAI have a higher
resolution than those of the L1 inversion (sparser inverted
reflectivity), which can be better seen from the residual profiles
[Fig. 2(f) and (h)].
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Fig. 3. Synthetic data with (a) SNR = 5 and (b) SNR = 2. Inverted rα of
(c) and (d) L1-based and (e) and (f) L1–L2-based JBPAI in case of (c) and
(e) SNR = 5 and (d) and (f) SNR = 2.

B. Noise Test

We add a certain amount of noise to the synthetics of the
wedge model. Fig. 3 shows the inverted reflectivities using
the L1- [Fig. 3(c) and (d)] and L1–L2-norms [Fig. 3(e) and
(f)] (JBPAI), which are obtained with signal-to-noise ratios
(SNRs) of 5 [Fig. 3(c) and (e)] and 2 [Fig. 3(d) and (f)].
Fig. 3(c) and (d) shows that the noise interference causes
outliers in the L1 results. Although the gathers with SNR = 5
give an acceptable rα , the L1-based algorithm cannot handle
interferences. In contrast, the results with the L1–L2 norm
show a higher resolution, better lateral continuity, and stability.

C. Well Model Test
The well-log curves are used to test the effectiveness for

all the inverted properties, namely, P-wave velocity α, S-wave
velocity β, density ρ, and anisotropic parameters ε and δ. The
input PP and PS gathers are computed with Rüger’s simplified
equations, and two methods, the L2-based JRI [Fig. 4(a)] and
the L1–L2-based JBPAI [Fig. 4(b)], are adopted (noise-free
case). The JBPAI algorithm achieves higher resolution results
than the JRI one. Then, the first is tested with SNR = 5
[Fig. 4(c)] and SNR = 2 [Fig. 4(d)], where we can see
that the performance is satisfactory. The root-mean-square
errors (RMSEs) between the true curves and the inverted
properties with SNR = 5 are 2.467 (α), 2.485 (β), 0.528 (ρ),
10.457 (ε), and 12.265 (δ). Although accuracy decreases with
noise [see Fig. 4(c) and (d)], the results for SNR = 2 are still
acceptable, since the RMSEs are 3.213 (α), 3.916 (β), 0.893
(ρ), 16.119 (ε), and 18.612 (δ). The analysis shows that JBPAI
with L1–L2-norm is stable and reliable with high noise levels.

IV. FIELD DATA EXAMPLE

The proposed L1–L2-based JBPAI algorithm is applied
to the PP and PS seismic data from Western China and
also compared with the L2-based JRI. The target section
is a set of shale layers with a relatively stable geological
structure. The data consist of 60 gathers with incident angles
ranging from 5◦ to 35◦ (PP) and 5◦ to 30◦ (PS), respectively.
Before implementing the inversion, the PS gathers have to
be compressed into the PP time domain, a process that can
greatly affect the inversion results. Here, we adopt dynamic
time warping [28] to perform this procedure. Then, the angle
gathers are processed into partial stacked sections to suppress
random noise. Since the anisotropy parameters cannot be
measured directly in wells, an effective rock-physics-based
estimation method is adopted to predict these two parameters
at the well position [29]. Fig. 5 shows the results of the five

Fig. 4. Inverted properties of the well model with (a) JRI and (b)–(d) JBPAI
algorithms (a) and (b) without and with noise: (c) SNR = 5 and (d) SNR = 2.
The blue-solid, black-dotted, and red-solid curves represent the true logs,
initial models, and inversion results, respectively.

parameters inverted by the conventional JRI with the L2-norm
and the proposed JBPAI with the L1–L2-norm. These profiles
show that compared with the conventional method, JBPAI can
effectively improve the vertical resolution. Near the borehole
(common depth point (CDP) 31), the JBPAI achieves relatively
reasonable RMSEs for α (5.93), β (6.64), and ρ (1.31), but
unacceptable values for ε (20.94) and δ (23.06). To improve
the accuracy of the anisotropy parameters, large-angle gathers
and a more accurate forward modeling need to be considered
in a future study.

V. CONCLUSION

We have proposed a JBPAI method for VTI media based on
the Rüger approximation. Instead of the L1-norm, a commonly
used sparse constraint, we use the L1–L2-norm to improve
the resolution and stability of the algorithm. Tests with wedge
model and with well-log profiles show the method can achieve
high resolution, even in the presence of noise. Application to
a set of multicomponent data of a shale reservoir illustrates
the performance of inversion.

L1–L2 is introduced into the proposed JBPAI, which does
not mean that this norm is specifically more suitable for
anisotropic conditions. This L1–L2-based BPI scheme, in fact,
is applicable to both isotropic and anisotropic conditions when
high-resolution results are desired. We aim to improve the
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Fig. 5. Inverted 2-D profiles by (a), (c), (e), (g), and (i) JRI with the L2-norm
and (b), (d), (f), (h), and (j) JBPAI with the L1–L2-norm, including (a) and
(b) P-wave velocity α, (c) and (d) S-wave velocity β, (e) and (f) density ρ,
and anisotropy parameters, (g) and (h) ε, and (i) and (j) δ.

vertical resolution of the anisotropic inversion here, but not
the inversion accuracy. Similar to the conventional anisotropic
inversion, the method is limited by the relatively low accuracy
of the simplified forward operator in the medium-to-large
angle range, where the seismic gathers contain important
information on the anisotropy parameters. Future studies will
intend to improve the accuracy by introducing a suitable for-
ward operator and making use of large-angle gathers. Besides,
it should be noted that the L1–L2-norm, a combination of L1
and L2, often results in a balanced result rather than a better
result. One can adjust the scale coefficient a to achieve the
desired results.
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